An approach for designing the compliant adaptive wing leading edge with composite material is proposed based on the topology optimization. Firstly, an equivalent constitutive relationship of laminated glass fiber rein...An approach for designing the compliant adaptive wing leading edge with composite material is proposed based on the topology optimization. Firstly, an equivalent constitutive relationship of laminated glass fiber reinforced epoxy composite plates has been built based on the symmetric laminated plate theory. Then, an optimization objective function of compliant adaptive wing leading edge was used to minimize the least square error(LSE) between deformed curve and desired aerodynamics shape. After that, the topology structures of wing leading edge of different glass fiber ply-orientations were obtained by using the solid isotropic material with penalization(SIMP) model and sensitivity filtering technique. The desired aerodynamics shape of compliant adaptive wing leading edge was obtained based on the proposed approach. The topology structures of wing leading edge depend on the glass fiber ply-orientation. Finally, the corresponding morphing experiment of compliant wing leading edge with composite materials was implemented, which verified the morphing capability of topology structure and illustrated the feasibility for designing compliant wing leading edge. The present paper lays the basis of ply-orientation optimization for compliant adaptive wing leading edge in unmanned aerial vehicle(UAV) field.展开更多
Because there is neither waste rock nor mill tailings in the gypsum mine, and the buildings on the goaf of gypsum mine are needed to be protected, the research proposed the scheme of the clay filling technology. Gypsu...Because there is neither waste rock nor mill tailings in the gypsum mine, and the buildings on the goaf of gypsum mine are needed to be protected, the research proposed the scheme of the clay filling technology. Gypsum, cement, lime and water glass were used as adhesive, and the strength of different material ratios were investigated in this study. The influence factors of clay strength were obtained in the order of cement, gypsum, water glass and lime. The results show that the cement content is the determinant influence factor, and gypsum has positive effects, while the water glass can enhance both clay strength and the fluidity of the filing slurry. Furthermore, combining chaotic optimization method with neural network, the optimal ratio of composite cementing agent was obtained. The results show that the optimal ratio of water glass, cement, lime and clay (in quality) is 1.17:6.74:4.17:87.92 in the process of bottom self-flow filling, while the optimal ratio is 1.78:9.58:4.71:83.93 for roof-contacted filling. A novel filling process to fill in gypsum mine goaf with clay is established. The engineering practice shows that the filling cost is low, thus, notable economic benefit is achieved.展开更多
The concept of the combinatorial discovery and optimization of new materials, and its background,importance, and application, as well as its current status in the world, are briefly reviewed in this paper.
In this study, a novel nanoscale zero-valent iron(n ZVI) composite material was successfully synthesized using a low-cost natural clay, "Hangjin 2~#clay"(HJ clay) as the support and tested for the decolorization...In this study, a novel nanoscale zero-valent iron(n ZVI) composite material was successfully synthesized using a low-cost natural clay, "Hangjin 2~#clay"(HJ clay) as the support and tested for the decolorization of the azo dye Methyl Orange(MO) in aqueous solution by n ZVI particles. According to the characterization and MO decolorization experiments, the sample with 5:1 HJ clay-supported n ZVI(HJ/n ZVI) mass ratio(HJ-n ZVI5) showed the best dispersion and reactivity and the highest MO decolorization efficiency. With the same equivalent Fe0 dosage, the HJ-n ZVI1 and HJ-n ZVI5 samples demonstrated a synergetic effect for the decolorization of MO: their decolorization efficiencies were much higher than that achieved by physical mixing of HJ clay and n ZVIs, or the sum of HJ clay and n ZVIs alone. The synergetic effect was primarily due to the improved dispersion and more effective utilization of the n ZVI particles on/in the composite materials. Higher decolorization efficiency of MO was obtained at larger HJ-n ZVI dosage, higher temperature and under N2 atmosphere, while the MO initial concentration and p H were negatively correlated to the efficiency. HJ clay not only works as a carrier for n ZVI nanoparticles, but also contributes to the decolorization through an "adsorption-enhanced reduction" mechanism. The high efficiency of HJ-n ZVI for decontamination gives it great potential for use in a variety of remediation applications.展开更多
Converting ambient vibration energy into electrical energy by using piezoelectric energy harvester has attracted a lot of interest in the past few years.In this paper,a topology optimization based method is applied to...Converting ambient vibration energy into electrical energy by using piezoelectric energy harvester has attracted a lot of interest in the past few years.In this paper,a topology optimization based method is applied to simultaneously determine the optimal layout of the piezoelectric energy harvesting devices and the optimal position of the mass loading.The objective function is to maximize the energy harvesting performance over a range of vibration frequencies.Pseudo excitation method (PEM) is adopted to analyze structural stationary random responses,and sensitivity analysis is then performed by using the adjoint method.Numerical examples are presented to demonstrate the validity of the proposed approach.展开更多
The genetic algorithm was used in optimal design of deep jet method pile.The cost of deep jet method pile in one unit area of foundation was taken as the objective function.All the restrains were listed following the ...The genetic algorithm was used in optimal design of deep jet method pile.The cost of deep jet method pile in one unit area of foundation was taken as the objective function.All the restrains were listed following the corresponding specification.Suggestions were proposed and the modified.The real-coded Genetic Algorithm was given to deal with the problems of excessive computational cost and premature convergence.Software system of optimal design of deep jet method pile was developed.展开更多
Product design plays a decisive role in material resource consumption in manufacturing systems. So it is significant to study optimal utilization of material resources of manufacturing system from the perspective of p...Product design plays a decisive role in material resource consumption in manufacturing systems. So it is significant to study optimal utilization of material resources of manufacturing system from the perspective of product design. This paper firstly defines concept of product design, then after an analysis of design objectives the author proposes a target system of product design with three subsystems: structural system, functional system, and technical system. Finally, a product design system on Architectural Metal Structure Enterprises is developed and used in light of the great consumption of material resources in Metal Structure Enterprises. The system has got an obvious effect on improving comprehensive optimal using rate of material resources of enterprises, reducing design cycle, improving management of enterprises.展开更多
According to the structural characteristics of the automobile engine bracket, the finite element model of the bracket is established. As the connecting part between the engine and the body, the performance requirement...According to the structural characteristics of the automobile engine bracket, the finite element model of the bracket is established. As the connecting part between the engine and the body, the performance requirements of the automobile engine bracket affect the comfort and the safety of the vehicle directly. Using the RADIOSS solver, the dangerous point of the bracket is analyzed. Under the premise of ensuring its reliability, with the help of OptiStruct software to carry out the topology optimization design, to get the optimal material distribution of the bracket and the final design will meet the performance requirements.展开更多
Material is the core element of childrens inquiry activities. In the inquiry activities, the more children are interested in the materials, the stronger their desire for inquiry, and the deeper and more lasting the in...Material is the core element of childrens inquiry activities. In the inquiry activities, the more children are interested in the materials, the stronger their desire for inquiry, and the deeper and more lasting the inquiry behavior. It is necessary to select and optimize materials based on childrens interests and needs, so as to promote children to explore actively and actively. Secondly, effective questioning in scientific inquiry activities can not only stimulate childrens desire for knowledge, but also arouse childrens learning enthusiasm and improve childrens inquiry level, thus improving childrens ability to find and solve problems. Proper questioning can make childrens inquiry more focused, thinking more deeply and expressing more accurately.展开更多
Triboelectric nanogenerators(TENGs),a type of promising micro/nano energy source,have been arousing tremendous research interest since their inception and have been the subject of many striking developments,including ...Triboelectric nanogenerators(TENGs),a type of promising micro/nano energy source,have been arousing tremendous research interest since their inception and have been the subject of many striking developments,including defining the fundamental physical mechanisms,expanding applications in mechanical to electric power conversion and self-powered sensors,etc.TENGs with a superior surface charge density at the interfaces of the electrodes and dielectrics are found to be crucial to the enhancement of the performance of the devices.Here,an overview of recent advances,including material optimization,circuit design,and strategy conjunction,in developing TENGs through surface charge enhancement is presented.In these topics,different strategies are retrospected in terms of charge transport and trapping mechanisms,technical merits,and limitations.Additionally,the current challenges in high-performance TENG research and the perspectives in this field are discussed.展开更多
With the increase in car ownership,traffic noise pollution has increased considerably and is one of the most severe types of noise pollution that affects living standards.Noise reduction by sound barriers is a common ...With the increase in car ownership,traffic noise pollution has increased considerably and is one of the most severe types of noise pollution that affects living standards.Noise reduction by sound barriers is a common protective measure used in this country and abroad.The acoustic performance of a sound barrier is highly dependent on its shape and material.In this paper,a semianalytical meshless Burton-Miller‐type singular boundary method is proposed to analyze the acoustic performance of various shapes of sound barriers,and the distribution of sound‐absorbing materials on the surface of sound barriers is optimized by combining a solid isotropic material with a penalization method.The acoustic effect of the sound‐absorbing material is simplified as the acoustical impedance boundary condition.The objective of optimization is to minimize the sound pressure in a given reference plane.The volume of the sound‐absorbing material is used as a constraint.The density of the nodes covered with the sound‐absorbing material is used as the design variable.The method of moving asymptotes was used to update the design variables.This model completely avoids the mesh discretization process in the finite element method and requires only boundary nodes.In addition,the approach also does not require the singular integral calculation in the boundary element method.The method is illustrated and validated using numerical examples to demonstrate its accuracy and efficiency.展开更多
Ceramic electrochemical cells(CECs)are promising devices for clean and efficient energy conversion and storage due to their high energy efficiency,more extended system durability,and less expensive materials.However,t...Ceramic electrochemical cells(CECs)are promising devices for clean and efficient energy conversion and storage due to their high energy efficiency,more extended system durability,and less expensive materials.However,the search for suitable materials with desired properties,including high ionic and electronic conductivity,thermal stability,and chemical compatibility,presents ongoing challenges that impede widespread adoption and further advancement in the field.Artificial intelligence(AI)has emerged as a versatile tool capable of enhancing and expediting the materials discovery cycle in CECs through data-driven modeling,simulation,and optimization techniques.Herein,we comprehensively review the state-of-the-art AI applications for materials design and optimization for CECs,covering various material aspects,database construction,data pre-processing,and AI methods.We also present some representative case studies of AI-predicted and synthesized materials for CECs and provide insightful highlights about their approaches.We emphasize the main implications and contributions of the AI approach for advancing the CEC technology,such as reducing the trial-and-error experiments,exploring the vast materials space,discovering novel and optimal materials,and enhancing the understanding of the materials-performance relationships.We also discuss the AI approach’s main limitations and future directions for CECs,such as addressing the data and model challenges,improving and extending the AI models and methods,and integrating with other computational and experimental techniques.We conclude by suggesting some potential applications and collaborations for AI in materials design for CECs.展开更多
The design of advanced materials for applications in areas of photovoltaics,energy storage,and structural engineering has made significant strides.However,the rapid proliferation of candidate materials—characterized ...The design of advanced materials for applications in areas of photovoltaics,energy storage,and structural engineering has made significant strides.However,the rapid proliferation of candidate materials—characterized by structural complexity that complicates the relationships between features—presents substantial challenges in manufacturing,fabrication,and characterization.This review introduces a comprehensive methodology for materials design using cutting-edge quantum computing,with a particular focus on quadratic unconstrained binary optimization(QUBO)and quantum machine learning(QML).We introduce the loop framework for QUBO-empowered materials design,including constructing high-quality datasets that capture critical material properties,employing tailored computational methods for precise material modeling,developing advanced figures of merit to evaluate performance metrics,and utilizing quantum optimization algorithms to discover optimal materials.In addition,we delve into the core principles of QML and illustrate its transformative potential in accelerating material discovery through a range of quantum simulations and innovative adaptations.The review also highlights advanced active learning strategies that integrate quantum artificial intelligence,offering a more efficient pathway to explore the vast,complex material design space.Finally,we discuss the key challenges and future opportunities for QML in material design,emphasizing their potential to revolutionize the field and facilitate groundbreaking innovations.展开更多
The development of organic solar cells(OSCs) has focused on optimizing donor and acceptor materials and their morphology in bulk heterojunctions(BHJs), leading to efficiencies over 20% [1-6].
基金co-supported by the National Natural Science Foundation of China (No. 51375383)Graduate Starting Seed Fund of Northwestern Polytechnical University of China (No. Z2014110)
文摘An approach for designing the compliant adaptive wing leading edge with composite material is proposed based on the topology optimization. Firstly, an equivalent constitutive relationship of laminated glass fiber reinforced epoxy composite plates has been built based on the symmetric laminated plate theory. Then, an optimization objective function of compliant adaptive wing leading edge was used to minimize the least square error(LSE) between deformed curve and desired aerodynamics shape. After that, the topology structures of wing leading edge of different glass fiber ply-orientations were obtained by using the solid isotropic material with penalization(SIMP) model and sensitivity filtering technique. The desired aerodynamics shape of compliant adaptive wing leading edge was obtained based on the proposed approach. The topology structures of wing leading edge depend on the glass fiber ply-orientation. Finally, the corresponding morphing experiment of compliant wing leading edge with composite materials was implemented, which verified the morphing capability of topology structure and illustrated the feasibility for designing compliant wing leading edge. The present paper lays the basis of ply-orientation optimization for compliant adaptive wing leading edge in unmanned aerial vehicle(UAV) field.
基金supported by the National Basic Research and Development Program of China (No. 2010CB732004)the joint funding of the National Natural Science Foundation and Shanghai Baosteel Group Corporation of China (No. 51074177)
文摘Because there is neither waste rock nor mill tailings in the gypsum mine, and the buildings on the goaf of gypsum mine are needed to be protected, the research proposed the scheme of the clay filling technology. Gypsum, cement, lime and water glass were used as adhesive, and the strength of different material ratios were investigated in this study. The influence factors of clay strength were obtained in the order of cement, gypsum, water glass and lime. The results show that the cement content is the determinant influence factor, and gypsum has positive effects, while the water glass can enhance both clay strength and the fluidity of the filing slurry. Furthermore, combining chaotic optimization method with neural network, the optimal ratio of composite cementing agent was obtained. The results show that the optimal ratio of water glass, cement, lime and clay (in quality) is 1.17:6.74:4.17:87.92 in the process of bottom self-flow filling, while the optimal ratio is 1.78:9.58:4.71:83.93 for roof-contacted filling. A novel filling process to fill in gypsum mine goaf with clay is established. The engineering practice shows that the filling cost is low, thus, notable economic benefit is achieved.
文摘The concept of the combinatorial discovery and optimization of new materials, and its background,importance, and application, as well as its current status in the world, are briefly reviewed in this paper.
基金support provided by the National Key Technology R&D Program(no.2012BAJ21B04)the financial support from the China Scholarship Council(CSC)for one year as a visiting scholar at Stevens Institute of Technology
文摘In this study, a novel nanoscale zero-valent iron(n ZVI) composite material was successfully synthesized using a low-cost natural clay, "Hangjin 2~#clay"(HJ clay) as the support and tested for the decolorization of the azo dye Methyl Orange(MO) in aqueous solution by n ZVI particles. According to the characterization and MO decolorization experiments, the sample with 5:1 HJ clay-supported n ZVI(HJ/n ZVI) mass ratio(HJ-n ZVI5) showed the best dispersion and reactivity and the highest MO decolorization efficiency. With the same equivalent Fe0 dosage, the HJ-n ZVI1 and HJ-n ZVI5 samples demonstrated a synergetic effect for the decolorization of MO: their decolorization efficiencies were much higher than that achieved by physical mixing of HJ clay and n ZVIs, or the sum of HJ clay and n ZVIs alone. The synergetic effect was primarily due to the improved dispersion and more effective utilization of the n ZVI particles on/in the composite materials. Higher decolorization efficiency of MO was obtained at larger HJ-n ZVI dosage, higher temperature and under N2 atmosphere, while the MO initial concentration and p H were negatively correlated to the efficiency. HJ clay not only works as a carrier for n ZVI nanoparticles, but also contributes to the decolorization through an "adsorption-enhanced reduction" mechanism. The high efficiency of HJ-n ZVI for decontamination gives it great potential for use in a variety of remediation applications.
基金supported by the National Basic Research Pro-gram of China (2011CB610304)the National Science & Technology Major Project (2009ZX04014-034)the ResearchFund for the Doctoral Program of Higher Education of China (20090041110023)
文摘Converting ambient vibration energy into electrical energy by using piezoelectric energy harvester has attracted a lot of interest in the past few years.In this paper,a topology optimization based method is applied to simultaneously determine the optimal layout of the piezoelectric energy harvesting devices and the optimal position of the mass loading.The objective function is to maximize the energy harvesting performance over a range of vibration frequencies.Pseudo excitation method (PEM) is adopted to analyze structural stationary random responses,and sensitivity analysis is then performed by using the adjoint method.Numerical examples are presented to demonstrate the validity of the proposed approach.
文摘The genetic algorithm was used in optimal design of deep jet method pile.The cost of deep jet method pile in one unit area of foundation was taken as the objective function.All the restrains were listed following the corresponding specification.Suggestions were proposed and the modified.The real-coded Genetic Algorithm was given to deal with the problems of excessive computational cost and premature convergence.Software system of optimal design of deep jet method pile was developed.
基金Foundation item: Funded by China 863 R&D Program(No: 2002AA414080)
文摘Product design plays a decisive role in material resource consumption in manufacturing systems. So it is significant to study optimal utilization of material resources of manufacturing system from the perspective of product design. This paper firstly defines concept of product design, then after an analysis of design objectives the author proposes a target system of product design with three subsystems: structural system, functional system, and technical system. Finally, a product design system on Architectural Metal Structure Enterprises is developed and used in light of the great consumption of material resources in Metal Structure Enterprises. The system has got an obvious effect on improving comprehensive optimal using rate of material resources of enterprises, reducing design cycle, improving management of enterprises.
文摘According to the structural characteristics of the automobile engine bracket, the finite element model of the bracket is established. As the connecting part between the engine and the body, the performance requirements of the automobile engine bracket affect the comfort and the safety of the vehicle directly. Using the RADIOSS solver, the dangerous point of the bracket is analyzed. Under the premise of ensuring its reliability, with the help of OptiStruct software to carry out the topology optimization design, to get the optimal material distribution of the bracket and the final design will meet the performance requirements.
文摘Material is the core element of childrens inquiry activities. In the inquiry activities, the more children are interested in the materials, the stronger their desire for inquiry, and the deeper and more lasting the inquiry behavior. It is necessary to select and optimize materials based on childrens interests and needs, so as to promote children to explore actively and actively. Secondly, effective questioning in scientific inquiry activities can not only stimulate childrens desire for knowledge, but also arouse childrens learning enthusiasm and improve childrens inquiry level, thus improving childrens ability to find and solve problems. Proper questioning can make childrens inquiry more focused, thinking more deeply and expressing more accurately.
基金supported by the National Key R&D Project from the Ministry of Science and Technology,China(2021YFA1201603)NSFC(52073032 and 52192611)the Fundamental Research Funds for the Central Universities.
文摘Triboelectric nanogenerators(TENGs),a type of promising micro/nano energy source,have been arousing tremendous research interest since their inception and have been the subject of many striking developments,including defining the fundamental physical mechanisms,expanding applications in mechanical to electric power conversion and self-powered sensors,etc.TENGs with a superior surface charge density at the interfaces of the electrodes and dielectrics are found to be crucial to the enhancement of the performance of the devices.Here,an overview of recent advances,including material optimization,circuit design,and strategy conjunction,in developing TENGs through surface charge enhancement is presented.In these topics,different strategies are retrospected in terms of charge transport and trapping mechanisms,technical merits,and limitations.Additionally,the current challenges in high-performance TENG research and the perspectives in this field are discussed.
基金The Natural Science Foundation of Shandong Province of China,Grant/Award Number:ZR2023YQ005The DAAD-K.C.Wong Postdoctoral Fellowships。
文摘With the increase in car ownership,traffic noise pollution has increased considerably and is one of the most severe types of noise pollution that affects living standards.Noise reduction by sound barriers is a common protective measure used in this country and abroad.The acoustic performance of a sound barrier is highly dependent on its shape and material.In this paper,a semianalytical meshless Burton-Miller‐type singular boundary method is proposed to analyze the acoustic performance of various shapes of sound barriers,and the distribution of sound‐absorbing materials on the surface of sound barriers is optimized by combining a solid isotropic material with a penalization method.The acoustic effect of the sound‐absorbing material is simplified as the acoustical impedance boundary condition.The objective of optimization is to minimize the sound pressure in a given reference plane.The volume of the sound‐absorbing material is used as a constraint.The density of the nodes covered with the sound‐absorbing material is used as the design variable.The method of moving asymptotes was used to update the design variables.This model completely avoids the mesh discretization process in the finite element method and requires only boundary nodes.In addition,the approach also does not require the singular integral calculation in the boundary element method.The method is illustrated and validated using numerical examples to demonstrate its accuracy and efficiency.
基金M.NI appreciates the grant(Project Number:N_PolyU552/20)from the Research Grants Council,University Grants Committee,Hong Kong SAR.
文摘Ceramic electrochemical cells(CECs)are promising devices for clean and efficient energy conversion and storage due to their high energy efficiency,more extended system durability,and less expensive materials.However,the search for suitable materials with desired properties,including high ionic and electronic conductivity,thermal stability,and chemical compatibility,presents ongoing challenges that impede widespread adoption and further advancement in the field.Artificial intelligence(AI)has emerged as a versatile tool capable of enhancing and expediting the materials discovery cycle in CECs through data-driven modeling,simulation,and optimization techniques.Herein,we comprehensively review the state-of-the-art AI applications for materials design and optimization for CECs,covering various material aspects,database construction,data pre-processing,and AI methods.We also present some representative case studies of AI-predicted and synthesized materials for CECs and provide insightful highlights about their approaches.We emphasize the main implications and contributions of the AI approach for advancing the CEC technology,such as reducing the trial-and-error experiments,exploring the vast materials space,discovering novel and optimal materials,and enhancing the understanding of the materials-performance relationships.We also discuss the AI approach’s main limitations and future directions for CECs,such as addressing the data and model challenges,improving and extending the AI models and methods,and integrating with other computational and experimental techniques.We conclude by suggesting some potential applications and collaborations for AI in materials design for CECs.
基金supported by the Shanghai Key Fundamental Research Grant(No.21JC1403300).
文摘The design of advanced materials for applications in areas of photovoltaics,energy storage,and structural engineering has made significant strides.However,the rapid proliferation of candidate materials—characterized by structural complexity that complicates the relationships between features—presents substantial challenges in manufacturing,fabrication,and characterization.This review introduces a comprehensive methodology for materials design using cutting-edge quantum computing,with a particular focus on quadratic unconstrained binary optimization(QUBO)and quantum machine learning(QML).We introduce the loop framework for QUBO-empowered materials design,including constructing high-quality datasets that capture critical material properties,employing tailored computational methods for precise material modeling,developing advanced figures of merit to evaluate performance metrics,and utilizing quantum optimization algorithms to discover optimal materials.In addition,we delve into the core principles of QML and illustrate its transformative potential in accelerating material discovery through a range of quantum simulations and innovative adaptations.The review also highlights advanced active learning strategies that integrate quantum artificial intelligence,offering a more efficient pathway to explore the vast,complex material design space.Finally,we discuss the key challenges and future opportunities for QML in material design,emphasizing their potential to revolutionize the field and facilitate groundbreaking innovations.
文摘The development of organic solar cells(OSCs) has focused on optimizing donor and acceptor materials and their morphology in bulk heterojunctions(BHJs), leading to efficiencies over 20% [1-6].