期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Topology optimization of compliant adaptive wing leading edge with composite materials 被引量:16
1
作者 Tong Xinxing Ge Wenjie +1 位作者 Sun Chao Liu Xiaoyong 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第6期1488-1494,共7页
An approach for designing the compliant adaptive wing leading edge with composite material is proposed based on the topology optimization. Firstly, an equivalent constitutive relationship of laminated glass fiber rein... An approach for designing the compliant adaptive wing leading edge with composite material is proposed based on the topology optimization. Firstly, an equivalent constitutive relationship of laminated glass fiber reinforced epoxy composite plates has been built based on the symmetric laminated plate theory. Then, an optimization objective function of compliant adaptive wing leading edge was used to minimize the least square error(LSE) between deformed curve and desired aerodynamics shape. After that, the topology structures of wing leading edge of different glass fiber ply-orientations were obtained by using the solid isotropic material with penalization(SIMP) model and sensitivity filtering technique. The desired aerodynamics shape of compliant adaptive wing leading edge was obtained based on the proposed approach. The topology structures of wing leading edge depend on the glass fiber ply-orientation. Finally, the corresponding morphing experiment of compliant wing leading edge with composite materials was implemented, which verified the morphing capability of topology structure and illustrated the feasibility for designing compliant wing leading edge. The present paper lays the basis of ply-orientation optimization for compliant adaptive wing leading edge in unmanned aerial vehicle(UAV) field. 展开更多
关键词 Airfoil Compliant mechanisms Composite materials Topology optimization Wing leading edge
原文传递
Optimization of clay material mixture ratio and filling process in gypsum mine goaf 被引量:14
2
作者 Liu Zhixiang Dang Wengang +2 位作者 Liu Qingling Chen Guanghui Peng Kang 《International Journal of Mining Science and Technology》 SCIE EI 2013年第3期337-342,共6页
Because there is neither waste rock nor mill tailings in the gypsum mine, and the buildings on the goaf of gypsum mine are needed to be protected, the research proposed the scheme of the clay filling technology. Gypsu... Because there is neither waste rock nor mill tailings in the gypsum mine, and the buildings on the goaf of gypsum mine are needed to be protected, the research proposed the scheme of the clay filling technology. Gypsum, cement, lime and water glass were used as adhesive, and the strength of different material ratios were investigated in this study. The influence factors of clay strength were obtained in the order of cement, gypsum, water glass and lime. The results show that the cement content is the determinant influence factor, and gypsum has positive effects, while the water glass can enhance both clay strength and the fluidity of the filing slurry. Furthermore, combining chaotic optimization method with neural network, the optimal ratio of composite cementing agent was obtained. The results show that the optimal ratio of water glass, cement, lime and clay (in quality) is 1.17:6.74:4.17:87.92 in the process of bottom self-flow filling, while the optimal ratio is 1.78:9.58:4.71:83.93 for roof-contacted filling. A novel filling process to fill in gypsum mine goaf with clay is established. The engineering practice shows that the filling cost is low, thus, notable economic benefit is achieved. 展开更多
关键词 Mining engineering Filling material mixture ratio Neural network Chaotic optimization Filling process
在线阅读 下载PDF
Combinatorial Discovery and Optimization of New Materials
3
作者 Gao Chen, Zhang Xinyi(National Synchrotron Radiation Lab., University of Science and Technology of China)Yan Dongsheng(Shanghai Institute of Ceramics, the CAS) 《Bulletin of the Chinese Academy of Sciences》 2001年第3期162-165,共4页
The concept of the combinatorial discovery and optimization of new materials, and its background,importance, and application, as well as its current status in the world, are briefly reviewed in this paper.
关键词 Combinatorial Discovery and optimization of New materials IMC
在线阅读 下载PDF
Decolorization of Methyl Orange by a new clay-supported nanoscale zero-valent iron:Synergetic effect,efficiency optimization and mechanism 被引量:9
4
作者 Xiaoguang Li Ying Zhao +5 位作者 Beidou Xi Xiaoguang Meng Bin Gong Rui Li Xing Peng Hongliang Liu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第2期8-17,共10页
In this study, a novel nanoscale zero-valent iron(n ZVI) composite material was successfully synthesized using a low-cost natural clay, "Hangjin 2~#clay"(HJ clay) as the support and tested for the decolorization... In this study, a novel nanoscale zero-valent iron(n ZVI) composite material was successfully synthesized using a low-cost natural clay, "Hangjin 2~#clay"(HJ clay) as the support and tested for the decolorization of the azo dye Methyl Orange(MO) in aqueous solution by n ZVI particles. According to the characterization and MO decolorization experiments, the sample with 5:1 HJ clay-supported n ZVI(HJ/n ZVI) mass ratio(HJ-n ZVI5) showed the best dispersion and reactivity and the highest MO decolorization efficiency. With the same equivalent Fe0 dosage, the HJ-n ZVI1 and HJ-n ZVI5 samples demonstrated a synergetic effect for the decolorization of MO: their decolorization efficiencies were much higher than that achieved by physical mixing of HJ clay and n ZVIs, or the sum of HJ clay and n ZVIs alone. The synergetic effect was primarily due to the improved dispersion and more effective utilization of the n ZVI particles on/in the composite materials. Higher decolorization efficiency of MO was obtained at larger HJ-n ZVI dosage, higher temperature and under N2 atmosphere, while the MO initial concentration and p H were negatively correlated to the efficiency. HJ clay not only works as a carrier for n ZVI nanoparticles, but also contributes to the decolorization through an "adsorption-enhanced reduction" mechanism. The high efficiency of HJ-n ZVI for decontamination gives it great potential for use in a variety of remediation applications. 展开更多
关键词 Nanoscale zero-valent iron CLAY material optimization Methyl Orange
原文传递
Design of piezoelectric energy harvesting devices subjected to broadband random vibrations by applying topology optimization 被引量:6
5
作者 Zhe-Qi Lin Hae Chang Gea Shu-Tian Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第5期730-737,共8页
Converting ambient vibration energy into electrical energy by using piezoelectric energy harvester has attracted a lot of interest in the past few years.In this paper,a topology optimization based method is applied to... Converting ambient vibration energy into electrical energy by using piezoelectric energy harvester has attracted a lot of interest in the past few years.In this paper,a topology optimization based method is applied to simultaneously determine the optimal layout of the piezoelectric energy harvesting devices and the optimal position of the mass loading.The objective function is to maximize the energy harvesting performance over a range of vibration frequencies.Pseudo excitation method (PEM) is adopted to analyze structural stationary random responses,and sensitivity analysis is then performed by using the adjoint method.Numerical examples are presented to demonstrate the validity of the proposed approach. 展开更多
关键词 Topology optimization · Energy harvesting · Piezoelectric material ··
在线阅读 下载PDF
Optimal Design of Materials for DJMP Based on Genetic Algorithm
6
作者 冯仲仁 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第1期89-90,共2页
The genetic algorithm was used in optimal design of deep jet method pile.The cost of deep jet method pile in one unit area of foundation was taken as the objective function.All the restrains were listed following the ... The genetic algorithm was used in optimal design of deep jet method pile.The cost of deep jet method pile in one unit area of foundation was taken as the objective function.All the restrains were listed following the corresponding specification.Suggestions were proposed and the modified.The real-coded Genetic Algorithm was given to deal with the problems of excessive computational cost and premature convergence.Software system of optimal design of deep jet method pile was developed. 展开更多
关键词 DJMP materials optimal design genetic algorithm
在线阅读 下载PDF
Study and application on product design system orienting to optimal utilization of material resources
7
作者 阎春平 《Journal of Chongqing University》 CAS 2006年第2期83-88,共6页
Product design plays a decisive role in material resource consumption in manufacturing systems. So it is significant to study optimal utilization of material resources of manufacturing system from the perspective of p... Product design plays a decisive role in material resource consumption in manufacturing systems. So it is significant to study optimal utilization of material resources of manufacturing system from the perspective of product design. This paper firstly defines concept of product design, then after an analysis of design objectives the author proposes a target system of product design with three subsystems: structural system, functional system, and technical system. Finally, a product design system on Architectural Metal Structure Enterprises is developed and used in light of the great consumption of material resources in Metal Structure Enterprises. The system has got an obvious effect on improving comprehensive optimal using rate of material resources of enterprises, reducing design cycle, improving management of enterprises. 展开更多
关键词 optimal utilization of material resources product design system architectural metal structure enterprises
在线阅读 下载PDF
Topology Optimization Design of Automotive Engine Bracket
8
作者 Po Wu Qihua Ma +1 位作者 Yiping Luo Chao Tao 《Energy and Power Engineering》 2016年第4期230-235,共6页
According to the structural characteristics of the automobile engine bracket, the finite element model of the bracket is established. As the connecting part between the engine and the body, the performance requirement... According to the structural characteristics of the automobile engine bracket, the finite element model of the bracket is established. As the connecting part between the engine and the body, the performance requirements of the automobile engine bracket affect the comfort and the safety of the vehicle directly. Using the RADIOSS solver, the dangerous point of the bracket is analyzed. Under the premise of ensuring its reliability, with the help of OptiStruct software to carry out the topology optimization design, to get the optimal material distribution of the bracket and the final design will meet the performance requirements. 展开更多
关键词 Engine Bracket Optimal material Distribution Topology optimization
在线阅读 下载PDF
Optimizing Materials and Questioning to Stimulate Children's Exploring Vitality——Take the Middle Class Inquiry Activity "Magic Ball" As An Example
9
作者 WANGXiaping 《外文科技期刊数据库(文摘版)教育科学》 2022年第5期132-136,共5页
Material is the core element of childrens inquiry activities. In the inquiry activities, the more children are interested in the materials, the stronger their desire for inquiry, and the deeper and more lasting the in... Material is the core element of childrens inquiry activities. In the inquiry activities, the more children are interested in the materials, the stronger their desire for inquiry, and the deeper and more lasting the inquiry behavior. It is necessary to select and optimize materials based on childrens interests and needs, so as to promote children to explore actively and actively. Secondly, effective questioning in scientific inquiry activities can not only stimulate childrens desire for knowledge, but also arouse childrens learning enthusiasm and improve childrens inquiry level, thus improving childrens ability to find and solve problems. Proper questioning can make childrens inquiry more focused, thinking more deeply and expressing more accurately. 展开更多
关键词 optimizing materials ask questions effectively scientific inquiry
在线阅读 下载PDF
Recent advances in fabricating high-performance triboelectric nanogenerators via modulating surface charge density
10
作者 Zekun Li Aifang Yu +1 位作者 Qing Zhang Junyi Zhai 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第5期37-58,共22页
Triboelectric nanogenerators(TENGs),a type of promising micro/nano energy source,have been arousing tremendous research interest since their inception and have been the subject of many striking developments,including ... Triboelectric nanogenerators(TENGs),a type of promising micro/nano energy source,have been arousing tremendous research interest since their inception and have been the subject of many striking developments,including defining the fundamental physical mechanisms,expanding applications in mechanical to electric power conversion and self-powered sensors,etc.TENGs with a superior surface charge density at the interfaces of the electrodes and dielectrics are found to be crucial to the enhancement of the performance of the devices.Here,an overview of recent advances,including material optimization,circuit design,and strategy conjunction,in developing TENGs through surface charge enhancement is presented.In these topics,different strategies are retrospected in terms of charge transport and trapping mechanisms,technical merits,and limitations.Additionally,the current challenges in high-performance TENG research and the perspectives in this field are discussed. 展开更多
关键词 triboelectric nanogenerators surface charge density material optimization circuit design
在线阅读 下载PDF
Performance analysis and material distribution optimization for sound barriers using a semianalytical meshless method
11
作者 Hanqing Liu Fajie Wang Chuanzeng Zhang 《International Journal of Mechanical System Dynamics》 EI 2023年第4期331-344,共14页
With the increase in car ownership,traffic noise pollution has increased considerably and is one of the most severe types of noise pollution that affects living standards.Noise reduction by sound barriers is a common ... With the increase in car ownership,traffic noise pollution has increased considerably and is one of the most severe types of noise pollution that affects living standards.Noise reduction by sound barriers is a common protective measure used in this country and abroad.The acoustic performance of a sound barrier is highly dependent on its shape and material.In this paper,a semianalytical meshless Burton-Miller‐type singular boundary method is proposed to analyze the acoustic performance of various shapes of sound barriers,and the distribution of sound‐absorbing materials on the surface of sound barriers is optimized by combining a solid isotropic material with a penalization method.The acoustic effect of the sound‐absorbing material is simplified as the acoustical impedance boundary condition.The objective of optimization is to minimize the sound pressure in a given reference plane.The volume of the sound‐absorbing material is used as a constraint.The density of the nodes covered with the sound‐absorbing material is used as the design variable.The method of moving asymptotes was used to update the design variables.This model completely avoids the mesh discretization process in the finite element method and requires only boundary nodes.In addition,the approach also does not require the singular integral calculation in the boundary element method.The method is illustrated and validated using numerical examples to demonstrate its accuracy and efficiency. 展开更多
关键词 sound barrier acoustic analysis material distribution optimization semianalytical meshless method
原文传递
AI-enabled materials discovery for advanced ceramic electrochemical cells
12
作者 Idris Temitope Bello Ridwan Taiwo +7 位作者 Oladapo Christopher Esan Adesola Habeeb Adegoke Ahmed Olanrewaju Ijaola Zheng Li Siyuan Zhao Chen Wang Zongping Shao Meng Ni 《Energy and AI》 EI 2024年第1期55-87,共33页
Ceramic electrochemical cells(CECs)are promising devices for clean and efficient energy conversion and storage due to their high energy efficiency,more extended system durability,and less expensive materials.However,t... Ceramic electrochemical cells(CECs)are promising devices for clean and efficient energy conversion and storage due to their high energy efficiency,more extended system durability,and less expensive materials.However,the search for suitable materials with desired properties,including high ionic and electronic conductivity,thermal stability,and chemical compatibility,presents ongoing challenges that impede widespread adoption and further advancement in the field.Artificial intelligence(AI)has emerged as a versatile tool capable of enhancing and expediting the materials discovery cycle in CECs through data-driven modeling,simulation,and optimization techniques.Herein,we comprehensively review the state-of-the-art AI applications for materials design and optimization for CECs,covering various material aspects,database construction,data pre-processing,and AI methods.We also present some representative case studies of AI-predicted and synthesized materials for CECs and provide insightful highlights about their approaches.We emphasize the main implications and contributions of the AI approach for advancing the CEC technology,such as reducing the trial-and-error experiments,exploring the vast materials space,discovering novel and optimal materials,and enhancing the understanding of the materials-performance relationships.We also discuss the AI approach’s main limitations and future directions for CECs,such as addressing the data and model challenges,improving and extending the AI models and methods,and integrating with other computational and experimental techniques.We conclude by suggesting some potential applications and collaborations for AI in materials design for CECs. 展开更多
关键词 Ceramic electrochemical cells Artificial intelligence materials design materials optimization materials performance Machine learning
在线阅读 下载PDF
Harnessing quantum power:Revolutionizing materials design through advanced quantum computation
13
作者 Zikang Guo Rui Li +2 位作者 Xianfeng He Jiang Guo Shenghong Ju 《Materials Genome Engineering Advances》 2024年第4期2-25,共24页
The design of advanced materials for applications in areas of photovoltaics,energy storage,and structural engineering has made significant strides.However,the rapid proliferation of candidate materials—characterized ... The design of advanced materials for applications in areas of photovoltaics,energy storage,and structural engineering has made significant strides.However,the rapid proliferation of candidate materials—characterized by structural complexity that complicates the relationships between features—presents substantial challenges in manufacturing,fabrication,and characterization.This review introduces a comprehensive methodology for materials design using cutting-edge quantum computing,with a particular focus on quadratic unconstrained binary optimization(QUBO)and quantum machine learning(QML).We introduce the loop framework for QUBO-empowered materials design,including constructing high-quality datasets that capture critical material properties,employing tailored computational methods for precise material modeling,developing advanced figures of merit to evaluate performance metrics,and utilizing quantum optimization algorithms to discover optimal materials.In addition,we delve into the core principles of QML and illustrate its transformative potential in accelerating material discovery through a range of quantum simulations and innovative adaptations.The review also highlights advanced active learning strategies that integrate quantum artificial intelligence,offering a more efficient pathway to explore the vast,complex material design space.Finally,we discuss the key challenges and future opportunities for QML in material design,emphasizing their potential to revolutionize the field and facilitate groundbreaking innovations. 展开更多
关键词 active learning framework materials design and optimization quadratic unconstrained binary optimization quantum machine learning
在线阅读 下载PDF
High-efficiency organic solar cells with solvent-insensitive morphology
14
作者 Haomiao Zhang Zhi-Guo Zhang Yingping Zou 《Science China Materials》 2025年第10期3836-3837,共2页
The development of organic solar cells(OSCs) has focused on optimizing donor and acceptor materials and their morphology in bulk heterojunctions(BHJs), leading to efficiencies over 20% [1-6].
关键词 solvent insensitive morphology bulk heterojunctions bhjs organic solar cells organic solar cells oscs bulk heterojunctions high efficiency optimizing donor acceptor materials
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部