In this manuscript,we propose an analytical equivalent linear viscoelastic constitutive model for fiber-reinforced composites,bypassing general computational homogenization.The method is based on the reduced-order hom...In this manuscript,we propose an analytical equivalent linear viscoelastic constitutive model for fiber-reinforced composites,bypassing general computational homogenization.The method is based on the reduced-order homogenization(ROH)approach.The ROH method typically involves solving multiple finite element problems under periodic conditions to evaluate elastic strain and eigenstrain influence functions in an‘off-line’stage,which offers substantial cost savings compared to direct computational homogenization methods.Due to the unique structure of the fibrous unit cell,“off-line”stage calculation can be eliminated by influence functions obtained analytically.Introducing the standard solid model to the ROH method enables the creation of a comprehensive analytical homogeneous viscoelastic constitutive model.This method treats fibrous composite materials as homogeneous,anisotropic viscoelastic materials,significantly reducing computational time due to its analytical nature.This approach also enables precise determination of a homogenized anisotropic relaxation modulus and accurate capture of various viscoelastic responses under different loading conditions.Three sets of numerical examples,including unit cell tests,three-point beam bending tests,and torsion tests,are given to demonstrate the predictive performance of the homogenized viscoelastic model.Furthermore,the model is validated against experimental measurements,confirming its accuracy and reliability.展开更多
Flexible electronic skin(E-skin)sensors offer innovative solutions for detecting human body signals,enabling human-machine interactions and advancing the development of intelligent robotics.Electrospun nanofibers are ...Flexible electronic skin(E-skin)sensors offer innovative solutions for detecting human body signals,enabling human-machine interactions and advancing the development of intelligent robotics.Electrospun nanofibers are particularly wellsuited for E-skin applications due to their exceptional mechanical properties,tunable breathability,and lightweight nature.Nanofiber-based composite materials consist of three-dimensional structures that integrate one-dimensional polymer nanofibers with other functional materials,enabling efficient signal conversion and positioning them as an ideal platform for next-generation intelligent electronics.Here,this review begins with an overview of electrospinning technology,including far-field electrospinning,near-field electrospinning,and melt electrospinning.It also discusses the diverse morphologies of electrospun nanofibers,such as core-shell,porous,hollow,bead,Janus,and ribbon structure,as well as strategies for incorporating functional materials to enhance nanofiber performance.Following this,the article provides a detailed introduction to electrospun nanofiber-based composite materials(i.e.,nanofiber/hydrogel,nanofiber/aerogel,nanofiber/metal),emphasizing their recent advancements in monitoring physical,physiological,body fluid,and multi-signal in human signal detection.Meanwhile,the review explores the development of multimodal sensors capable of responding to diverse stimuli,focusing on innovative strategies for decoupling multiple signals and their state-of-the-art advancements.Finally,current challenges are analyzed,while future prospects for electrospun nanofiber-based composite sensors are outlined.This review aims to advance the design and application of next-generation flexible electronics,fostering breakthroughs in multifunctional sensing and health monitoring technologies.展开更多
Untreated water environments encourage the emergence of pathogenic microorganisms,which pose a significant risk to human health and sustainable development.Antimicrobial technologies in advanced photothermal materials...Untreated water environments encourage the emergence of pathogenic microorganisms,which pose a significant risk to human health and sustainable development.Antimicrobial technologies in advanced photothermal materials offer a promising alternative strategy for solving water disinfection challenges.This technology effectively destroys bacterial biofilms by designing materials with controlled photothermal properties.Despite the potential of this technology,there is a lack of comprehensive reviews on the application of photothermal materials in water disinfection.The aim of this paper is to provide a comprehensive and up-to-date overview of the research and application of photothermal materials in water disinfection.It focuses on composites in photothermal materials,elucidates their basic mechanisms and sterilization properties,and provides a systematic and detailed overview of their recent progress in the field.The goal of this review is to offer insights into the future design of photothermal materials and to propose strategies for their practical application in disinfection processes.展开更多
Sodium ion batteries(SIBs)are one of the most prospective energy storage devices recently.Carbon materials have been commonly used as anode materials for SIBs because of their wide sources and low price.However,pure c...Sodium ion batteries(SIBs)are one of the most prospective energy storage devices recently.Carbon materials have been commonly used as anode materials for SIBs because of their wide sources and low price.However,pure carbon materials still have the disadvantage of low theoretical capacity.New design and preparation strategies for carbon-based composites can overcome the problems.Based on the analysis of Na^(+)storage mechanism of carbon-based composite materials,the factors influencing the performance of SIBs are discussed.Adjustment methods for improving the electrochemical performance of electrodes are evaluated in detail,including carbon skeleton design and composite material selection.Some advanced composite materials,i.e.,carbon-conversion composite and carbon-MXene composite,are also being explored.New advances in flexible electrodes based on carbon-based composite on flexible SIBs is investigated.The existing issues and future issues of carbon-based composite materials are discussed.展开更多
In integrated circuit packaging,thermal interface materials(TIMs)must exhibit high thermal conductivity and electrical resistivity to prevent short circuits,enhance reliability,and ensure safety in high-voltage applic...In integrated circuit packaging,thermal interface materials(TIMs)must exhibit high thermal conductivity and electrical resistivity to prevent short circuits,enhance reliability,and ensure safety in high-voltage applications.We proposed the thermal-percolation electrical-resistive TIM incorporating binary fillers of both insulating and metallic nanowires with an orientation in the insulating polymer matrix.High thermal conductivity can be achieved through thermal percolation,while electrical non-conductivity is preserved by carefully controlling the electrical percolation threshold through metallic nanowire orientation.The electrical conductivity of the composite can be further regulated by adjusting the orientation and aspect ratio of the metallic fillers.A thermal conductivity of 10 W·m^(-1)·K^(-1)is achieved,with electrical non-conductive behavior preserved.This approach offers a pathway to realizing“thermal-percolation electrical-resistive”in hybrid TIMs,providing a strategic framework for designing high-performance TIMs.展开更多
A solid,fast-dissolving sodium silicate was used as an alkaline activator.Granulated blast furnace slag(GGBS),metakaolin(MK),and steel slag(SS)were used as the cementious components to prepare a ternary composite ceme...A solid,fast-dissolving sodium silicate was used as an alkaline activator.Granulated blast furnace slag(GGBS),metakaolin(MK),and steel slag(SS)were used as the cementious components to prepare a ternary composite cementitious material known as alkali-activated steel slag composite cementitious material(ASCM)by the"one-step method".The impacts of cementitious components,alkali activator modulus,and Na_(2)O%on the mechanical strength were investigated,and the hydration products and hydration kinetics of ASCM were analyzed.The experimental results reveal that XRD,FTIR,SEM,EDS,and exothermic heat of hydration show that when GGBS:MK:SS=60wt%:10wt%:30wt%,the activator modulus is 1.2,and the alkali content is 5.5wt%,the 28 d flexural strength of ASCM mortar is 12.6 MPa,and the compressive strength is 53.3 MPa,the hydration products consist of C-S-H gel/C-A-S-H gel,mullite(3Al_(2)O_(3)-2SiO_(2)),calcite(CaCO_(3)),quartz,etc.ASCM has a large initial hydration exotherm rate but a small cumulative exotherm.展开更多
Thermal runaway(TR)is considered a significant safety hazard for lithium batteries,and thermal protection materials are crucial in mitigating this risk.However,current thermal protection materials generally suffer fro...Thermal runaway(TR)is considered a significant safety hazard for lithium batteries,and thermal protection materials are crucial in mitigating this risk.However,current thermal protection materials generally suffer from poor mechanical properties,flammability,leakage,and rigid crystallization,and they struggle to continuously block excess heat transfer and propagation once thermal saturation occurs.This study proposes a novel type of thermal protection material:an aerogel coupled composite phase change material(CPCM).The composite material consists of gelatin/sodium alginate(Ge/SA)composite biomass aerogel as an insulating component and a thermally induced flexible CPCM made from thermoplastic polyester elastomer as a heat-absorbing component.Inspired by power bank,we coupled the aerogel with CPCM through the binder,so that CPCM can continue to‘charge and store energy’for the aerogel,effectively absorbing heat,delaying the heat saturation phenomenon,and maximizing the duration of thermal insulation.The results demonstrate that the Ge/SA aerogel exhibits excellent thermal insulation(with a temperature difference of approximately 120℃ across a 1 cm thickness)and flame retardancy(achieving a V-0 flame retardant rating).The CPCM exhibits high heat storage density(811.9 J g^(−1)),good thermally induced flexibility(bendable above 40℃),and thermal stability.Furthermore,the Ge/SA-CPCM coupled composite material shows even more outstanding thermal insulation performance,with the top surface temperature remaining at 89℃ after 100 min of exposure to a high temperature of 230℃.This study provides a new direction for the development of TR protection materials for lithium batteries.展开更多
Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based compos...Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based composites were compared with adding different silica gel particle size and proportion.The morphological characteristics,the isothermal equilibrium moisture content curve,moisture absorption and desorption rate,moisture absorption and desorption stability,and humidity-conditioning performance were tested and analyzed.The experimental results show that,compared with pure-gypsum,the surface structure of the gypsum-based composites is relatively loose,the quantity,density and aperture of the pores in the structure increase.The absorption and desorption capacity increase along with the increase of silica gel particle size and silica gel proportion.When 3 mm silica gel particle size is added with a mass ratio of 40%,the maximum equilibrium moisture content of humidity-controlling composites is 0.161 g/g at 98% relative humidity(RH),3.22 times that of pure-gypsum.The moisture absorption and desorption rates are increased,the equilibrium moisture absorption and desorption rates are 2.68 times and 1.61 times that of pure-gypsum at 58.5% RH,respectively.The gypsum-based composites have a good stability,which has better timely response to dynamic humidity changes and can effectively regulate indoor humidity under natural conditions.展开更多
This paper studied the effects of different retarders on the performance of the"one-step"alkali-activated composite cementitious material(ACCM)which is composed of ground granulated blast slag(GGBS)and fly a...This paper studied the effects of different retarders on the performance of the"one-step"alkali-activated composite cementitious material(ACCM)which is composed of ground granulated blast slag(GGBS)and fly ash(FA),and analyzed its mechanical properties,hydration mechanism,and retardation mechanism.The effects of retarders on the hydration products,mechanical properties,and hydration kinetics of ACCM were investigated using XRD,SEM,FTIR,EDS,and thermoactive microcalorimetry.The results showed that Na_(2)B_(4)O_(7)·10H_(2)O(B)delayed the exotherm during the alkali activation process and could effectively delay the setting time of ACCM,but the mechanical properties were slightly decreased.The setting time of ACCM increased with the increase in SG content,but the mechanical properties of ACCM decreased with the increase in SG content.C1_(2)H_(22)O_(11)(CHO)could effectively delay the hydration reaction of ACCM and weakly enhanced the compressive strength.H_(3)PO_(4)(HP)at a concentration of 0.05 mol/L had a certain effect on ACCM retardation,but HP at a concentration of 0.07 and 0.09 mol/L had an effect of promoting the setting and hardening time of ACCM.展开更多
Non-destructive testing of composites is an important issue in the modern aircraft industry.Composites are susceptible to the barely visible impact damage which can affect the residual strength of the material and occ...Non-destructive testing of composites is an important issue in the modern aircraft industry.Composites are susceptible to the barely visible impact damage which can affect the residual strength of the material and occurs both during production and operation.The continuum model for describing the damaged zone is presented.The slip theory relations used for a continuous distribution of slip planes are applied.At the initial stage,the isotropic background model is used.This model allows the material slippage along the fractures based on the Coulomb friction law with the small viscous addition.In this regime,the govern system of equations becomes rigid.To overcome this difficulty,the explicit-implicit grid-characteristic scheme is proposed.The standard ultrasound diagnostic procedure of damaged composite materials is successfully simulated.Compared with the trivial free-surface fracture model,different reactions on the compression and stretch waves are registered.This approach provided an effective way for the simulation of complex dynamic behavior of damage zones.展开更多
High-performance yttrium oxide-phenolic resin(Y_(2)O_(3)-PF)alternating coating was prepared on epoxy resin-based composite material using supersonic plasma spraying and dual-channel powder feeding technique.Y_(2)O_(3...High-performance yttrium oxide-phenolic resin(Y_(2)O_(3)-PF)alternating coating was prepared on epoxy resin-based composite material using supersonic plasma spraying and dual-channel powder feeding technique.Y_(2)O_(3)-coated PF(Y_(2)O_(3)/PF)powder was firstly sprayed onto the substrate,forming a transition layer,and then the spherical Y_(2)O_(3) powder and Y_(2)O_(3)/PF powder were alternately deposited to form the composite alternating coating.Results show that the alternating coating is mainly composed of deposited Y_(2)O_(3)/PF powder.The bonding strength between coating and substrate is as high as 26.48 MPa with the single-test maximum bonding strength of 28.10 MPa,and shear strength reaches 24.30 MPa.Additionally,the heat transfer effect caused by external Y_(2)O_(3) particles gradually softens and even melts PF,thus effectively avoiding the damage of high temperature to molecular structure and thereby promoting the crosslinking and curing effects of resin during the deposition process.In the meantime,the unmelted Y_(2)O_(3) powder results in the shot peening effect,which washes out and eliminates the powder particles with inferior deposition effect,ultimately improving the physical and chemical properties of the alternating coating.展开更多
With the rapid development of electric vehicles,hybrid electric vehicles and smart grids,people's demand for large-scale energy storage devices is increasingly intense.As a new type of secondary battery,potassium ...With the rapid development of electric vehicles,hybrid electric vehicles and smart grids,people's demand for large-scale energy storage devices is increasingly intense.As a new type of secondary battery,potassium ion battery is promising to replace the lithium-ion battery in the field of large-scale energy storage by virtue of its low price and environmental friendliness.At present,the research on the anode materials of potassium ion batteries mainly focuses on carbon materials and the design of various nanostructured metal-based materials.Problems such as poor rate performance and inferior cycle life caused by electrode structure comminution during charge and discharge have not been solved.Quantum dots/nanodots materials are a new type of nanomaterials that can effectively improve the utilization of electrode materials and reduce production costs.In addition,quantum dots/nanodots materials can enhance the electrode reaction kinetics,reduce the stress generated in cycling,and effectively alleviate the agglomeration and crushing of electrode materials.In this review,we will systematically introduce the synthesis methods,K+storage properties and K+storage mechanisms of carbon quantum dots and carbon-based transition metal compound quantum dots composites.This review will have significant references for potassium ion battery researchers.展开更多
Aramid papers (AP), made of aramid fibers, demonstrate superiority in electrical insulation applications. Unfortunately, the strength and electrical insulating properties of AP remain suboptimal, primarily due to the ...Aramid papers (AP), made of aramid fibers, demonstrate superiority in electrical insulation applications. Unfortunately, the strength and electrical insulating properties of AP remain suboptimal, primarily due to the smooth surface and chemical inertness of aramid fibers. Herein, AP are modified via the nacre-mimetic structure composed of aramid nanofibers (ANF) and carbonylated basalt nanosheets (CBSNs). This is achieved by impregnating AP into an ANF-CBSNs (A-C) suspension containing a 3D ANF framework as the matrix and 2D CBSNs as fillers. The resultant biomimetic composite papers (AP/A-C composite papers) exhibit a layered “brick-and-mortar” structure, demonstrating superior mechanical and electrical insulating properties. Notably, the tensile strength and breakdown strength of AP/A-C5 composite papers reach 39.69 MPa and 22.04 kV mm^(−1), respectively, representing a 155 % and 85 % increase compared to those of the control AP. These impressive properties are accompanied with excellent volume resistivity, exceptional dielectric properties, impressive folding endurance, outstanding heat insulation, and remarkable flame retardance. The nacre-inspired strategy offers an effective approach for producing highly promising electrical insulating papers for advanced electrical equipment.展开更多
Silicone is a kind of polymer material with high cross-linked structure,which is com-posed by Si-O-Si main chain.Due to the special molecular chain structure,silicone mate-rials are characterized by oxidation resistan...Silicone is a kind of polymer material with high cross-linked structure,which is com-posed by Si-O-Si main chain.Due to the special molecular chain structure,silicone mate-rials are characterized by oxidation resistance,aging resistance,high and low temperature resistance and chemical corrosion resistance.Moreover,silicone materials have process-able properties,simple forming process,good mechanical property,non-toxic and pollution-free.Therefore,silicone has been widely concerned by researchers at home and abroad.In this paper,the main research progress and application directions of carbon-silicone composite at home and abroad in recent years are reviewed.展开更多
The objective of this study is to seek solutions to reduce the impact of buildings on climate change and to promote the use of local bio-sourced or geo-sourced materials for sustainable construction. Different samples...The objective of this study is to seek solutions to reduce the impact of buildings on climate change and to promote the use of local bio-sourced or geo-sourced materials for sustainable construction. Different samples of raw earth from 3 sites were taken in the commune of Mlomp. Geotechnical tests showed that the raw earth samples from sites 2 and 3 have more clay fraction while site 1 contains more sand. The fact of integrating fibers from crushed palm leaves (Borassus aethiopum) (2%, 4% and 6%) into the 3 raw earth samples reduced the mechanical resistance to compression and traction of the 3 raw earths. The experimental results of thermal tests on samples of earth mixtures with crushed Palma leaf fibers show a decrease in thermal conductivity as well as thermal effusivity as the percentages increase (2%, 4% and 6%) of fibers in raw earth for the 3 sites. This shows that this renewable composite material can help improve the thermal insulation of building envelopes.展开更多
This study aims to explore the influence of the laying angle on the pressure shell structure made of composite materials under the condition of a fixed shape. By using a composite material composed of a mixture of T80...This study aims to explore the influence of the laying angle on the pressure shell structure made of composite materials under the condition of a fixed shape. By using a composite material composed of a mixture of T800 carbon fiber and AG80 epoxy resin to design pressure vessels, this material combination can significantly improve the interlaminar shear strength and heat resistance. The article elaborates on the basic concepts and failure criteria of composite materials, such as the maximum stress criterion, the maximum strain criterion, the Tsai-Hill criterion, etc. With the help of the APDL parametric modeling language, the arc-shaped, parabolic, elliptical, and fitting curve-shaped pressure vessel models are accurately constructed, and the material property settings and mesh division are completed. Subsequently, APDL is used for static analysis, and the genetic algorithm toolbox built into Matlab is combined to carry out optimization calculations to determine the optimal laying angle. The research results show that the equivalent stress corresponding to the optimal laying angle of the arc-shaped pressure vessel is 5.3685e+08 Pa, the elliptical one is 5.1969e+08 Pa, the parabolic one is 5.8692e+08 Pa, and the fitting curve-shaped one is 5.36862e+08 Pa. Among them, the stress distribution of the fitting curve-shaped pressure vessel is relatively more uniform, with a deformation of 0.568E−03 m, a minimum equivalent stress value of 0.261E+09 Pa, a maximum equivalent stress value of 0.537E+09 Pa, and a ratio of 0.48, which conforms to the equivalent stress criterion. In addition, the fitting curve of this model can adapt to various models and has higher practical value. However, the stress distribution of the elliptical and parabolic pressure vessels is uneven, and their applicability is poor. In the future, further exploration can be conducted on the application of the fitting curve model in composite materials to optimize the design of pressure vessels. This study provides important theoretical support and practical guidance for the design of composite material pressure vessels.展开更多
The traditional techniques for treating wastewater contaminated by heavy metals mostly involve chemical precipitation,solvent extraction and adsorption,ion-exchange,chemical precipitation,and membrane separation.The m...The traditional techniques for treating wastewater contaminated by heavy metals mostly involve chemical precipitation,solvent extraction and adsorption,ion-exchange,chemical precipitation,and membrane separation.The main shortcomings of traditional procedures are low economic efficiency,lack of environmental friendliness,and poor selectivity.Cyclodextrins are artificial compounds that resemble cages.Through host-vip interaction,pollutants can be adsorbed by its stable inner hydrophobic chamber and exterior hydrophilic surface.It is not only inexpensive and environmentally friendly,but also quite selective.The synthesis and application of materials were reviewed,as well as the primary influencing factors,and the reaction principle of cyclodextrin adsorbent materials for better separation of heavy metal ions.And the future trend of discovery was described.展开更多
In pursuit of more efficient and stable electrochemical energy storage materials,composite materials consisting of metal oxides and graphene oxide have garnered significant attention due to their unique structures and...In pursuit of more efficient and stable electrochemical energy storage materials,composite materials consisting of metal oxides and graphene oxide have garnered significant attention due to their unique structures and exceptional properties.Graphene oxide(GO),a two-dimensional material with an extremely high specific surface area and excellent conductivity,offers new possibilities for enhancing the electrochemical performance of metal oxides.In this work,we synthesized met-al-organic framework(MOF)and GO composites by regulating the amount of GO,and successfully prepared composites of metal oxides supported by nitrogen-doped carbon frameworks and GO through a simple one-step calcination process.Based on the electrochemical tests,the optimal amount of GO was determined.This research will provide new insights into and directions for designing and synthesizing metal oxide and graphene oxide composite materials with an ideal electro-chemical performance.展开更多
At present,many parts of the world are seriously short of water resources.Photothermal seawater desalination has been considered to be an efficient and clean way to solve water shortages.Transition metal dichalcogenid...At present,many parts of the world are seriously short of water resources.Photothermal seawater desalination has been considered to be an efficient and clean way to solve water shortages.Transition metal dichalcogenides(TMDs)has excellent photothermal properties and plays a key role in photothermal seawater desalination.In recent years,a lot of progress has been made regarding TMDs in photothermal seawater desalination,so it is necessary to review the progress of TMDs structure regulation in improving photothermal properties to further enhance the development of this filed.In this review,firstly,various structural regulation methods of TMDs to optimize its properties and improve the performance of photothermal seawater desalination are comprehensively summarized.Secondly,the relationship between unique structure and its photothermal properties of TMDs is further detailedly discussed.Last but not least,we have provided some suggestions in the solar desalination applying TMDs in future.This review would provide a very important reference for the research of structure regulation of TMDs for effective photothermal seawater desalination.展开更多
With the increasing exploration of oil and gas into deep waters,the necessity for material development increases for lighter conduits such as composite marine risers,in the oil and gas industry.To understand the resea...With the increasing exploration of oil and gas into deep waters,the necessity for material development increases for lighter conduits such as composite marine risers,in the oil and gas industry.To understand the research knowledge on this novel area,there is a need to have a bibliometric analysis on composite marine risers.A research methodology was developed whereby the data retrieval was from SCOPUS database from 1977–2023.Then,VOSviewer was used to visualize the knowledge maps.This study focuses on the progress made by conducting knowledge mapping and scientometric review on composite marine risers.This scientometric analysis on the subject shows current advances,geographical activities by countries,authorship records,collaborations,funders,affiiliations,co‑occurrences,and future research areas.It was observed that the research trends recorded the highest publication volume in the U.S.A.,but less cluster affiiliated,as it was followed by countries like the U.K.,China,Nigeria,Australia and Singapore.Also,thisfiield has more conference papers than journal papers due to the challenge of adaptability,acceptance,qualifiication,and application of composite marine risers in the marine industry.Hence,there is a need for more collaborations on composite marine risers and more funding to enhance the research trend.展开更多
基金support by the National Key R&D Program of China(Grant No.2023YFA1008901)the National Natural Science Foundation of China(Grant Nos.11988102,12172009)is gratefully acknowledged.
文摘In this manuscript,we propose an analytical equivalent linear viscoelastic constitutive model for fiber-reinforced composites,bypassing general computational homogenization.The method is based on the reduced-order homogenization(ROH)approach.The ROH method typically involves solving multiple finite element problems under periodic conditions to evaluate elastic strain and eigenstrain influence functions in an‘off-line’stage,which offers substantial cost savings compared to direct computational homogenization methods.Due to the unique structure of the fibrous unit cell,“off-line”stage calculation can be eliminated by influence functions obtained analytically.Introducing the standard solid model to the ROH method enables the creation of a comprehensive analytical homogeneous viscoelastic constitutive model.This method treats fibrous composite materials as homogeneous,anisotropic viscoelastic materials,significantly reducing computational time due to its analytical nature.This approach also enables precise determination of a homogenized anisotropic relaxation modulus and accurate capture of various viscoelastic responses under different loading conditions.Three sets of numerical examples,including unit cell tests,three-point beam bending tests,and torsion tests,are given to demonstrate the predictive performance of the homogenized viscoelastic model.Furthermore,the model is validated against experimental measurements,confirming its accuracy and reliability.
基金supported by the National Natural Science Foundation of China(22302110,22375047,22378068)National Key Research and Development Program of China(2022YFB3804905)+1 种基金the Open Project Foundation of Jiangsu Key Laboratory for Carbon-Based Functional Materials&Devices,Soochow University(No.KJS2210)High-level Talent Initiative Project at Anhui Agricultural University(rc362401)。
文摘Flexible electronic skin(E-skin)sensors offer innovative solutions for detecting human body signals,enabling human-machine interactions and advancing the development of intelligent robotics.Electrospun nanofibers are particularly wellsuited for E-skin applications due to their exceptional mechanical properties,tunable breathability,and lightweight nature.Nanofiber-based composite materials consist of three-dimensional structures that integrate one-dimensional polymer nanofibers with other functional materials,enabling efficient signal conversion and positioning them as an ideal platform for next-generation intelligent electronics.Here,this review begins with an overview of electrospinning technology,including far-field electrospinning,near-field electrospinning,and melt electrospinning.It also discusses the diverse morphologies of electrospun nanofibers,such as core-shell,porous,hollow,bead,Janus,and ribbon structure,as well as strategies for incorporating functional materials to enhance nanofiber performance.Following this,the article provides a detailed introduction to electrospun nanofiber-based composite materials(i.e.,nanofiber/hydrogel,nanofiber/aerogel,nanofiber/metal),emphasizing their recent advancements in monitoring physical,physiological,body fluid,and multi-signal in human signal detection.Meanwhile,the review explores the development of multimodal sensors capable of responding to diverse stimuli,focusing on innovative strategies for decoupling multiple signals and their state-of-the-art advancements.Finally,current challenges are analyzed,while future prospects for electrospun nanofiber-based composite sensors are outlined.This review aims to advance the design and application of next-generation flexible electronics,fostering breakthroughs in multifunctional sensing and health monitoring technologies.
基金financial support from National Natural Science Foundation of China(No.21908085)Natural Science Foundation of Jiangsu Province(No.BK20241950)+3 种基金China Postdoctoral Science Foundation(No.2023M731422)Open Project of State Key Laboratory of Materials Chemical Engineering(No.KL-NICE-23B03)Hubei Key Laboratory of Processing and Application of Catalytic Materials(No.202441204)the Science and Technology Plan School-Enterprise Cooperation IndustryUniversity-Research Forward-looking Project of Zhangjiagang(No.ZKYY2341)。
文摘Untreated water environments encourage the emergence of pathogenic microorganisms,which pose a significant risk to human health and sustainable development.Antimicrobial technologies in advanced photothermal materials offer a promising alternative strategy for solving water disinfection challenges.This technology effectively destroys bacterial biofilms by designing materials with controlled photothermal properties.Despite the potential of this technology,there is a lack of comprehensive reviews on the application of photothermal materials in water disinfection.The aim of this paper is to provide a comprehensive and up-to-date overview of the research and application of photothermal materials in water disinfection.It focuses on composites in photothermal materials,elucidates their basic mechanisms and sterilization properties,and provides a systematic and detailed overview of their recent progress in the field.The goal of this review is to offer insights into the future design of photothermal materials and to propose strategies for their practical application in disinfection processes.
基金support from the National Natural Science Foundation of China(52376216,52006194,52006191)the Key Research and Development Program of Shaanxi(2023-YBGY-054).
文摘Sodium ion batteries(SIBs)are one of the most prospective energy storage devices recently.Carbon materials have been commonly used as anode materials for SIBs because of their wide sources and low price.However,pure carbon materials still have the disadvantage of low theoretical capacity.New design and preparation strategies for carbon-based composites can overcome the problems.Based on the analysis of Na^(+)storage mechanism of carbon-based composite materials,the factors influencing the performance of SIBs are discussed.Adjustment methods for improving the electrochemical performance of electrodes are evaluated in detail,including carbon skeleton design and composite material selection.Some advanced composite materials,i.e.,carbon-conversion composite and carbon-MXene composite,are also being explored.New advances in flexible electrodes based on carbon-based composite on flexible SIBs is investigated.The existing issues and future issues of carbon-based composite materials are discussed.
基金supported by the National Key R&D Program(Grant No.2022YFA1203-100)sponsorship by Shanghai Sailing Program(Grant No.24YF2713800)+2 种基金financial support from the Local College Capacity Building Project of Shanghai Municipal Science and Technology Commission(Grant No.20010500700)the Natural Science Foundation of Shanghai(Grant No.23ZR1424300)Shanghai Shuguang Program(Grant No.22SG56)。
文摘In integrated circuit packaging,thermal interface materials(TIMs)must exhibit high thermal conductivity and electrical resistivity to prevent short circuits,enhance reliability,and ensure safety in high-voltage applications.We proposed the thermal-percolation electrical-resistive TIM incorporating binary fillers of both insulating and metallic nanowires with an orientation in the insulating polymer matrix.High thermal conductivity can be achieved through thermal percolation,while electrical non-conductivity is preserved by carefully controlling the electrical percolation threshold through metallic nanowire orientation.The electrical conductivity of the composite can be further regulated by adjusting the orientation and aspect ratio of the metallic fillers.A thermal conductivity of 10 W·m^(-1)·K^(-1)is achieved,with electrical non-conductive behavior preserved.This approach offers a pathway to realizing“thermal-percolation electrical-resistive”in hybrid TIMs,providing a strategic framework for designing high-performance TIMs.
基金Funded by the Scientific Research Program of Jilin Provincial Science and Technology Development(No.20250203184SF)。
文摘A solid,fast-dissolving sodium silicate was used as an alkaline activator.Granulated blast furnace slag(GGBS),metakaolin(MK),and steel slag(SS)were used as the cementious components to prepare a ternary composite cementitious material known as alkali-activated steel slag composite cementitious material(ASCM)by the"one-step method".The impacts of cementitious components,alkali activator modulus,and Na_(2)O%on the mechanical strength were investigated,and the hydration products and hydration kinetics of ASCM were analyzed.The experimental results reveal that XRD,FTIR,SEM,EDS,and exothermic heat of hydration show that when GGBS:MK:SS=60wt%:10wt%:30wt%,the activator modulus is 1.2,and the alkali content is 5.5wt%,the 28 d flexural strength of ASCM mortar is 12.6 MPa,and the compressive strength is 53.3 MPa,the hydration products consist of C-S-H gel/C-A-S-H gel,mullite(3Al_(2)O_(3)-2SiO_(2)),calcite(CaCO_(3)),quartz,etc.ASCM has a large initial hydration exotherm rate but a small cumulative exotherm.
基金supported by the National Key Research and Development Program of China(2022YFB3806501)the National Natural Science Foundation of China(22178050,22108026)+3 种基金the Young Elite Scientists Sponsorship Program by CAST(2021QNRC001)the Natural Science Foundation of Liaoning Province(2022-BS-091)the Dalian Science and Technology Innovation Fund Young Tech Star(2022RQ008)the Fundamental Research Funds for the Central Universities(DUT22LAB610).
文摘Thermal runaway(TR)is considered a significant safety hazard for lithium batteries,and thermal protection materials are crucial in mitigating this risk.However,current thermal protection materials generally suffer from poor mechanical properties,flammability,leakage,and rigid crystallization,and they struggle to continuously block excess heat transfer and propagation once thermal saturation occurs.This study proposes a novel type of thermal protection material:an aerogel coupled composite phase change material(CPCM).The composite material consists of gelatin/sodium alginate(Ge/SA)composite biomass aerogel as an insulating component and a thermally induced flexible CPCM made from thermoplastic polyester elastomer as a heat-absorbing component.Inspired by power bank,we coupled the aerogel with CPCM through the binder,so that CPCM can continue to‘charge and store energy’for the aerogel,effectively absorbing heat,delaying the heat saturation phenomenon,and maximizing the duration of thermal insulation.The results demonstrate that the Ge/SA aerogel exhibits excellent thermal insulation(with a temperature difference of approximately 120℃ across a 1 cm thickness)and flame retardancy(achieving a V-0 flame retardant rating).The CPCM exhibits high heat storage density(811.9 J g^(−1)),good thermally induced flexibility(bendable above 40℃),and thermal stability.Furthermore,the Ge/SA-CPCM coupled composite material shows even more outstanding thermal insulation performance,with the top surface temperature remaining at 89℃ after 100 min of exposure to a high temperature of 230℃.This study provides a new direction for the development of TR protection materials for lithium batteries.
基金Funded by the National Natural Science Foundation of China(No.51678254)。
文摘Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based composites were compared with adding different silica gel particle size and proportion.The morphological characteristics,the isothermal equilibrium moisture content curve,moisture absorption and desorption rate,moisture absorption and desorption stability,and humidity-conditioning performance were tested and analyzed.The experimental results show that,compared with pure-gypsum,the surface structure of the gypsum-based composites is relatively loose,the quantity,density and aperture of the pores in the structure increase.The absorption and desorption capacity increase along with the increase of silica gel particle size and silica gel proportion.When 3 mm silica gel particle size is added with a mass ratio of 40%,the maximum equilibrium moisture content of humidity-controlling composites is 0.161 g/g at 98% relative humidity(RH),3.22 times that of pure-gypsum.The moisture absorption and desorption rates are increased,the equilibrium moisture absorption and desorption rates are 2.68 times and 1.61 times that of pure-gypsum at 58.5% RH,respectively.The gypsum-based composites have a good stability,which has better timely response to dynamic humidity changes and can effectively regulate indoor humidity under natural conditions.
基金Funded by Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education(No.JLJZHDKF202204)。
文摘This paper studied the effects of different retarders on the performance of the"one-step"alkali-activated composite cementitious material(ACCM)which is composed of ground granulated blast slag(GGBS)and fly ash(FA),and analyzed its mechanical properties,hydration mechanism,and retardation mechanism.The effects of retarders on the hydration products,mechanical properties,and hydration kinetics of ACCM were investigated using XRD,SEM,FTIR,EDS,and thermoactive microcalorimetry.The results showed that Na_(2)B_(4)O_(7)·10H_(2)O(B)delayed the exotherm during the alkali activation process and could effectively delay the setting time of ACCM,but the mechanical properties were slightly decreased.The setting time of ACCM increased with the increase in SG content,but the mechanical properties of ACCM decreased with the increase in SG content.C1_(2)H_(22)O_(11)(CHO)could effectively delay the hydration reaction of ACCM and weakly enhanced the compressive strength.H_(3)PO_(4)(HP)at a concentration of 0.05 mol/L had a certain effect on ACCM retardation,but HP at a concentration of 0.07 and 0.09 mol/L had an effect of promoting the setting and hardening time of ACCM.
基金the financial support of the Russian Science Foundation(No.19-71-10060)。
文摘Non-destructive testing of composites is an important issue in the modern aircraft industry.Composites are susceptible to the barely visible impact damage which can affect the residual strength of the material and occurs both during production and operation.The continuum model for describing the damaged zone is presented.The slip theory relations used for a continuous distribution of slip planes are applied.At the initial stage,the isotropic background model is used.This model allows the material slippage along the fractures based on the Coulomb friction law with the small viscous addition.In this regime,the govern system of equations becomes rigid.To overcome this difficulty,the explicit-implicit grid-characteristic scheme is proposed.The standard ultrasound diagnostic procedure of damaged composite materials is successfully simulated.Compared with the trivial free-surface fracture model,different reactions on the compression and stretch waves are registered.This approach provided an effective way for the simulation of complex dynamic behavior of damage zones.
基金National Natural Science Foundation of China(52130509,52275211,52075542)Supported by 145 Project+1 种基金Science and Technology New Star Project of Shaanxi Innovation Capability Support Program(2021KJXX-38)China Postdoctoral Science Foundation(2021M693883)。
文摘High-performance yttrium oxide-phenolic resin(Y_(2)O_(3)-PF)alternating coating was prepared on epoxy resin-based composite material using supersonic plasma spraying and dual-channel powder feeding technique.Y_(2)O_(3)-coated PF(Y_(2)O_(3)/PF)powder was firstly sprayed onto the substrate,forming a transition layer,and then the spherical Y_(2)O_(3) powder and Y_(2)O_(3)/PF powder were alternately deposited to form the composite alternating coating.Results show that the alternating coating is mainly composed of deposited Y_(2)O_(3)/PF powder.The bonding strength between coating and substrate is as high as 26.48 MPa with the single-test maximum bonding strength of 28.10 MPa,and shear strength reaches 24.30 MPa.Additionally,the heat transfer effect caused by external Y_(2)O_(3) particles gradually softens and even melts PF,thus effectively avoiding the damage of high temperature to molecular structure and thereby promoting the crosslinking and curing effects of resin during the deposition process.In the meantime,the unmelted Y_(2)O_(3) powder results in the shot peening effect,which washes out and eliminates the powder particles with inferior deposition effect,ultimately improving the physical and chemical properties of the alternating coating.
基金financial support from the Doctoral Foundation of Henan University of Engineering(No.D2022025)National Natural Science Foundation of China(No.U2004162)+1 种基金National Natural Science Foundation of China(No.52302138)Key Project for Science and Technology Development of Henan Province(No.232102320221)。
文摘With the rapid development of electric vehicles,hybrid electric vehicles and smart grids,people's demand for large-scale energy storage devices is increasingly intense.As a new type of secondary battery,potassium ion battery is promising to replace the lithium-ion battery in the field of large-scale energy storage by virtue of its low price and environmental friendliness.At present,the research on the anode materials of potassium ion batteries mainly focuses on carbon materials and the design of various nanostructured metal-based materials.Problems such as poor rate performance and inferior cycle life caused by electrode structure comminution during charge and discharge have not been solved.Quantum dots/nanodots materials are a new type of nanomaterials that can effectively improve the utilization of electrode materials and reduce production costs.In addition,quantum dots/nanodots materials can enhance the electrode reaction kinetics,reduce the stress generated in cycling,and effectively alleviate the agglomeration and crushing of electrode materials.In this review,we will systematically introduce the synthesis methods,K+storage properties and K+storage mechanisms of carbon quantum dots and carbon-based transition metal compound quantum dots composites.This review will have significant references for potassium ion battery researchers.
基金supported by the National Natural Science Foundation of China(No.22278260)the Open Foundation of Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry(No.KFKT2021-14)Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology(No.KFKT2021-14).
文摘Aramid papers (AP), made of aramid fibers, demonstrate superiority in electrical insulation applications. Unfortunately, the strength and electrical insulating properties of AP remain suboptimal, primarily due to the smooth surface and chemical inertness of aramid fibers. Herein, AP are modified via the nacre-mimetic structure composed of aramid nanofibers (ANF) and carbonylated basalt nanosheets (CBSNs). This is achieved by impregnating AP into an ANF-CBSNs (A-C) suspension containing a 3D ANF framework as the matrix and 2D CBSNs as fillers. The resultant biomimetic composite papers (AP/A-C composite papers) exhibit a layered “brick-and-mortar” structure, demonstrating superior mechanical and electrical insulating properties. Notably, the tensile strength and breakdown strength of AP/A-C5 composite papers reach 39.69 MPa and 22.04 kV mm^(−1), respectively, representing a 155 % and 85 % increase compared to those of the control AP. These impressive properties are accompanied with excellent volume resistivity, exceptional dielectric properties, impressive folding endurance, outstanding heat insulation, and remarkable flame retardance. The nacre-inspired strategy offers an effective approach for producing highly promising electrical insulating papers for advanced electrical equipment.
文摘Silicone is a kind of polymer material with high cross-linked structure,which is com-posed by Si-O-Si main chain.Due to the special molecular chain structure,silicone mate-rials are characterized by oxidation resistance,aging resistance,high and low temperature resistance and chemical corrosion resistance.Moreover,silicone materials have process-able properties,simple forming process,good mechanical property,non-toxic and pollution-free.Therefore,silicone has been widely concerned by researchers at home and abroad.In this paper,the main research progress and application directions of carbon-silicone composite at home and abroad in recent years are reviewed.
文摘The objective of this study is to seek solutions to reduce the impact of buildings on climate change and to promote the use of local bio-sourced or geo-sourced materials for sustainable construction. Different samples of raw earth from 3 sites were taken in the commune of Mlomp. Geotechnical tests showed that the raw earth samples from sites 2 and 3 have more clay fraction while site 1 contains more sand. The fact of integrating fibers from crushed palm leaves (Borassus aethiopum) (2%, 4% and 6%) into the 3 raw earth samples reduced the mechanical resistance to compression and traction of the 3 raw earths. The experimental results of thermal tests on samples of earth mixtures with crushed Palma leaf fibers show a decrease in thermal conductivity as well as thermal effusivity as the percentages increase (2%, 4% and 6%) of fibers in raw earth for the 3 sites. This shows that this renewable composite material can help improve the thermal insulation of building envelopes.
文摘This study aims to explore the influence of the laying angle on the pressure shell structure made of composite materials under the condition of a fixed shape. By using a composite material composed of a mixture of T800 carbon fiber and AG80 epoxy resin to design pressure vessels, this material combination can significantly improve the interlaminar shear strength and heat resistance. The article elaborates on the basic concepts and failure criteria of composite materials, such as the maximum stress criterion, the maximum strain criterion, the Tsai-Hill criterion, etc. With the help of the APDL parametric modeling language, the arc-shaped, parabolic, elliptical, and fitting curve-shaped pressure vessel models are accurately constructed, and the material property settings and mesh division are completed. Subsequently, APDL is used for static analysis, and the genetic algorithm toolbox built into Matlab is combined to carry out optimization calculations to determine the optimal laying angle. The research results show that the equivalent stress corresponding to the optimal laying angle of the arc-shaped pressure vessel is 5.3685e+08 Pa, the elliptical one is 5.1969e+08 Pa, the parabolic one is 5.8692e+08 Pa, and the fitting curve-shaped one is 5.36862e+08 Pa. Among them, the stress distribution of the fitting curve-shaped pressure vessel is relatively more uniform, with a deformation of 0.568E−03 m, a minimum equivalent stress value of 0.261E+09 Pa, a maximum equivalent stress value of 0.537E+09 Pa, and a ratio of 0.48, which conforms to the equivalent stress criterion. In addition, the fitting curve of this model can adapt to various models and has higher practical value. However, the stress distribution of the elliptical and parabolic pressure vessels is uneven, and their applicability is poor. In the future, further exploration can be conducted on the application of the fitting curve model in composite materials to optimize the design of pressure vessels. This study provides important theoretical support and practical guidance for the design of composite material pressure vessels.
基金National Natural Science Foundation of China(52074031)Key Research and Development Program of Shandong Province(ZR2021MB051,ZR2020ME256)。
文摘The traditional techniques for treating wastewater contaminated by heavy metals mostly involve chemical precipitation,solvent extraction and adsorption,ion-exchange,chemical precipitation,and membrane separation.The main shortcomings of traditional procedures are low economic efficiency,lack of environmental friendliness,and poor selectivity.Cyclodextrins are artificial compounds that resemble cages.Through host-vip interaction,pollutants can be adsorbed by its stable inner hydrophobic chamber and exterior hydrophilic surface.It is not only inexpensive and environmentally friendly,but also quite selective.The synthesis and application of materials were reviewed,as well as the primary influencing factors,and the reaction principle of cyclodextrin adsorbent materials for better separation of heavy metal ions.And the future trend of discovery was described.
基金supported by the National Natural Science Foundation of China(51971157)Shenzhen Science and Technology Program(JCYJ20210324115412035,JCYJ202103-24123202008,JCYJ20210324122803009 and ZDS-YS20210813095534001)Guangdong Foundation for Basic and Applied Basic Research Program(2021A1515110880).
文摘In pursuit of more efficient and stable electrochemical energy storage materials,composite materials consisting of metal oxides and graphene oxide have garnered significant attention due to their unique structures and exceptional properties.Graphene oxide(GO),a two-dimensional material with an extremely high specific surface area and excellent conductivity,offers new possibilities for enhancing the electrochemical performance of metal oxides.In this work,we synthesized met-al-organic framework(MOF)and GO composites by regulating the amount of GO,and successfully prepared composites of metal oxides supported by nitrogen-doped carbon frameworks and GO through a simple one-step calcination process.Based on the electrochemical tests,the optimal amount of GO was determined.This research will provide new insights into and directions for designing and synthesizing metal oxide and graphene oxide composite materials with an ideal electro-chemical performance.
基金financially supported by the National Natural Science Foundation of China(No.51902101)Natural Science Foundation of Jiangsu Province(No.BK20201381)。
文摘At present,many parts of the world are seriously short of water resources.Photothermal seawater desalination has been considered to be an efficient and clean way to solve water shortages.Transition metal dichalcogenides(TMDs)has excellent photothermal properties and plays a key role in photothermal seawater desalination.In recent years,a lot of progress has been made regarding TMDs in photothermal seawater desalination,so it is necessary to review the progress of TMDs structure regulation in improving photothermal properties to further enhance the development of this filed.In this review,firstly,various structural regulation methods of TMDs to optimize its properties and improve the performance of photothermal seawater desalination are comprehensively summarized.Secondly,the relationship between unique structure and its photothermal properties of TMDs is further detailedly discussed.Last but not least,we have provided some suggestions in the solar desalination applying TMDs in future.This review would provide a very important reference for the research of structure regulation of TMDs for effective photothermal seawater desalination.
基金support of the School of Engineering,Lancaster University,UK,for the Engineering Department Studentship as well as the Engineering and Physical Sciences Research Council(EPSRC)’s Doctoral Training Centre(DTC)。
文摘With the increasing exploration of oil and gas into deep waters,the necessity for material development increases for lighter conduits such as composite marine risers,in the oil and gas industry.To understand the research knowledge on this novel area,there is a need to have a bibliometric analysis on composite marine risers.A research methodology was developed whereby the data retrieval was from SCOPUS database from 1977–2023.Then,VOSviewer was used to visualize the knowledge maps.This study focuses on the progress made by conducting knowledge mapping and scientometric review on composite marine risers.This scientometric analysis on the subject shows current advances,geographical activities by countries,authorship records,collaborations,funders,affiiliations,co‑occurrences,and future research areas.It was observed that the research trends recorded the highest publication volume in the U.S.A.,but less cluster affiiliated,as it was followed by countries like the U.K.,China,Nigeria,Australia and Singapore.Also,thisfiield has more conference papers than journal papers due to the challenge of adaptability,acceptance,qualifiication,and application of composite marine risers in the marine industry.Hence,there is a need for more collaborations on composite marine risers and more funding to enhance the research trend.