Dental implants have restored masticatory function to over 100000000 individuals,yet almost 1000000 implants fail each year due to peri-implantitis,a disease triggered by peri-implant microbial dysbiosis.Our ability t...Dental implants have restored masticatory function to over 100000000 individuals,yet almost 1000000 implants fail each year due to peri-implantitis,a disease triggered by peri-implant microbial dysbiosis.Our ability to prevent and treat peri-implantitis is hampered by a paucity of knowledge of how these biomes are acquired and the factors that engender normobiosis.Therefore,we combined a 3-month interventional study of 15 systemically and periodontally healthy adults with whole genome sequencing,finescale enumeration and graph theoretics to interrogate colonization dynamics in the pristine peri-implant sulcus.We discovered that colonization trajectories of implants differ substantially from adjoining teeth in acquisition of new members and development of functional synergies.Source-tracking algorithms revealed that this niche is initially seeded by bacteria trapped within the coverscrew chamber during implant placement.These pioneer species stably colonize the microbiome and exert a sustained influence on the ecosystem by serving as anchors of influential hubs and by providing functions that enable cell replication and biofilm maturation.Unlike the periodontal microbiome,recruitment of new members to the peri-implant community occurs on nepotistic principles.Maturation is accompanied by a progressive increase in anaerobiosis,however,the predominant functionalities are oxygen-dependent over the 12-weeks.The peri-implant community is easily perturbed following crown placement,but demonstrates remarkable resilience;returning to pre-perturbation states within three weeks.This study highlights important differences in the development of the periodontal and peri-implant ecosystems,and signposts the importance of placing implants in periodontally healthy individuals or following the successful resolution of periodontal disease.展开更多
BACKGROUND Dentition defect,a common clinical oral disease developed in humans,not only causes masticatory dysfunction and articulation difficulties but also affects facial appearance and increases the burden on the i...BACKGROUND Dentition defect,a common clinical oral disease developed in humans,not only causes masticatory dysfunction and articulation difficulties but also affects facial appearance and increases the burden on the intestinal tract.Restorative treatment is the primary option for this disease.However,traditional restorations have many drawbacks,such as mismatch with the body,low reliability,and incomplete occlusal function recovery.AIM to analyze the efficacy of orthodontics combined with 3D printing guide plate implant restoration in treating patients with dentition defects and its influence on masticatory and phonic functions.METHODS A prospective study was carried out in 86 patients with dentition defects who received implant prosthesis after orthodontic treatment in our hospital between January 2018 and January 2019.Those patients were divided into a control group and an intervention group with 43 patients in each group using a random number table.The control group received traditional implant restoration,whereas the intervention group received 3D printing guide plate implant restoration.Treatment outcomes,cosmetic appearance,dental function,implant deviation,and quality of life were compared between the two groups.RESULTS The overall response rate in the intervention group was significantly higher than that in the control group(95.35%vs 81.40%,χ^(2)=4.071,P=0.044).The number of cases with neatly trimmed cosmetic appearance(χ^(2)=4.497,P=0.034),complete coverage(χ^(2)=4.170,P=0.041),and normal occlusion(χ^(2)=5.512,P=0.019)in the intervention group was higher than that in the control group.After treatment,mastication,swallowing,and articulation were significantly improved in both groups.Masticatory(t=2.980,P=0.004),swallowing(t=2.199,P=0.031),and phonic functions(t=3.950,P=0.004)were better in the intervention group than those in the control group.The deviation value and the deviation angle(t=5.440,P=0.000)at the top(t=6.320,P=0.000)and middle parts of the implants(t=22.295,P=0.000)in the intervention group were lower than those in the control group after treatment.Functional limitations,psychosocial and physical pain and discomfort,and total scores decreased in both groups.The functional limitation(t=2.379,P=0.020),psychosocial(t=2.420,P=0.000),physical pain and discomfort(t=6.581,P=0.000),and total scores(t=2.140,P=0.035)were lower in the intervention group than those in the control group.CONCLUSION Orthodontic treatment combined with 3D printing guide plate implant restoration can significantly improve the masticatory and phonic functions,quality of life,and psychological health of patients with dentition defects.Therefore,it is highly recommended in clinic application.展开更多
基金supported by National Institutes of Health R03DE027492 to Shareef Dabdoubsupported by National Institutes of Health,project number 7R01DE027857-06supported by National Institutes of Health R56DE033913 awarded to Purnima Kumar.
文摘Dental implants have restored masticatory function to over 100000000 individuals,yet almost 1000000 implants fail each year due to peri-implantitis,a disease triggered by peri-implant microbial dysbiosis.Our ability to prevent and treat peri-implantitis is hampered by a paucity of knowledge of how these biomes are acquired and the factors that engender normobiosis.Therefore,we combined a 3-month interventional study of 15 systemically and periodontally healthy adults with whole genome sequencing,finescale enumeration and graph theoretics to interrogate colonization dynamics in the pristine peri-implant sulcus.We discovered that colonization trajectories of implants differ substantially from adjoining teeth in acquisition of new members and development of functional synergies.Source-tracking algorithms revealed that this niche is initially seeded by bacteria trapped within the coverscrew chamber during implant placement.These pioneer species stably colonize the microbiome and exert a sustained influence on the ecosystem by serving as anchors of influential hubs and by providing functions that enable cell replication and biofilm maturation.Unlike the periodontal microbiome,recruitment of new members to the peri-implant community occurs on nepotistic principles.Maturation is accompanied by a progressive increase in anaerobiosis,however,the predominant functionalities are oxygen-dependent over the 12-weeks.The peri-implant community is easily perturbed following crown placement,but demonstrates remarkable resilience;returning to pre-perturbation states within three weeks.This study highlights important differences in the development of the periodontal and peri-implant ecosystems,and signposts the importance of placing implants in periodontally healthy individuals or following the successful resolution of periodontal disease.
文摘BACKGROUND Dentition defect,a common clinical oral disease developed in humans,not only causes masticatory dysfunction and articulation difficulties but also affects facial appearance and increases the burden on the intestinal tract.Restorative treatment is the primary option for this disease.However,traditional restorations have many drawbacks,such as mismatch with the body,low reliability,and incomplete occlusal function recovery.AIM to analyze the efficacy of orthodontics combined with 3D printing guide plate implant restoration in treating patients with dentition defects and its influence on masticatory and phonic functions.METHODS A prospective study was carried out in 86 patients with dentition defects who received implant prosthesis after orthodontic treatment in our hospital between January 2018 and January 2019.Those patients were divided into a control group and an intervention group with 43 patients in each group using a random number table.The control group received traditional implant restoration,whereas the intervention group received 3D printing guide plate implant restoration.Treatment outcomes,cosmetic appearance,dental function,implant deviation,and quality of life were compared between the two groups.RESULTS The overall response rate in the intervention group was significantly higher than that in the control group(95.35%vs 81.40%,χ^(2)=4.071,P=0.044).The number of cases with neatly trimmed cosmetic appearance(χ^(2)=4.497,P=0.034),complete coverage(χ^(2)=4.170,P=0.041),and normal occlusion(χ^(2)=5.512,P=0.019)in the intervention group was higher than that in the control group.After treatment,mastication,swallowing,and articulation were significantly improved in both groups.Masticatory(t=2.980,P=0.004),swallowing(t=2.199,P=0.031),and phonic functions(t=3.950,P=0.004)were better in the intervention group than those in the control group.The deviation value and the deviation angle(t=5.440,P=0.000)at the top(t=6.320,P=0.000)and middle parts of the implants(t=22.295,P=0.000)in the intervention group were lower than those in the control group after treatment.Functional limitations,psychosocial and physical pain and discomfort,and total scores decreased in both groups.The functional limitation(t=2.379,P=0.020),psychosocial(t=2.420,P=0.000),physical pain and discomfort(t=6.581,P=0.000),and total scores(t=2.140,P=0.035)were lower in the intervention group than those in the control group.CONCLUSION Orthodontic treatment combined with 3D printing guide plate implant restoration can significantly improve the masticatory and phonic functions,quality of life,and psychological health of patients with dentition defects.Therefore,it is highly recommended in clinic application.