Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate o...Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate of this method is investigated.展开更多
The existence of nondecreasing positive solutions for the nonlinear third-order twopoint boundary value problem u′″(t) + q(t)f(t,u(t),u′(t)) = 0, 0 〈 t 〈 1, u(0) = u″(0) = u′(1) = 0 is studied....The existence of nondecreasing positive solutions for the nonlinear third-order twopoint boundary value problem u′″(t) + q(t)f(t,u(t),u′(t)) = 0, 0 〈 t 〈 1, u(0) = u″(0) = u′(1) = 0 is studied. The iterative schemes for approximating the solutions are obtained by applying a monotone iterative method.展开更多
This article presents the Parametric Iteration Method (PIM) for finding optimal control and its corresponding trajectory of linear systems. Without any discretization or transformation, PIM provides a sequence of func...This article presents the Parametric Iteration Method (PIM) for finding optimal control and its corresponding trajectory of linear systems. Without any discretization or transformation, PIM provides a sequence of functions which converges to the exact solution of problem. Our emphasis will be on an auxiliary parameter which directly affects on the rate of convergence. Comparison of PIM and the Variational Iteration Method (VIM) is given to show the preference of PIM over VIM. Numerical results are given for several test examples to demonstrate the applicability and efficiency of the method.展开更多
In this paper we develop multilevel iteration methods for solving linear systems resulting from the Galerkin method and Tikhonov regularization for ill-posed problems. The algorithm and its convergence analysis are pr...In this paper we develop multilevel iteration methods for solving linear systems resulting from the Galerkin method and Tikhonov regularization for ill-posed problems. The algorithm and its convergence analysis are presented in an abstract framework.展开更多
In this paper, an algorithm based on a shifted inverse power iteration for computing generalized eigenvalues with corresponding eigenvectors of a large scale sparse symmetric positive definite matrix pencil is present...In this paper, an algorithm based on a shifted inverse power iteration for computing generalized eigenvalues with corresponding eigenvectors of a large scale sparse symmetric positive definite matrix pencil is presented. It converges globally with a cubic asymptotic convergence rate, preserves sparsity of the original matrices and is fully parallelizable. The algebraic multilevel itera-tion method (AMLI) is used to improve the efficiency when symmetric positive definite linear equa-tions need to be solved.展开更多
In this paper, we propose a Fast Iteration Method for solving mixture regression problem, which can be treated as a model-based clustering. Compared to the EM algorithm, the proposed method is faster, more flexible an...In this paper, we propose a Fast Iteration Method for solving mixture regression problem, which can be treated as a model-based clustering. Compared to the EM algorithm, the proposed method is faster, more flexible and can solve mixture regression problem with different error distributions (i.e. Laplace and t distribution). Extensive numeric experiments show that our proposed method has better performance on randomly simulations and real data.展开更多
For stabilized saddle-point problems, we apply the two iteration parameters idea for regularized Hermitian and skew-Hermitian splitting (RHSS) method and establish accelerated RHSS (ARHSS) iteration method. Theoretica...For stabilized saddle-point problems, we apply the two iteration parameters idea for regularized Hermitian and skew-Hermitian splitting (RHSS) method and establish accelerated RHSS (ARHSS) iteration method. Theoretical analysis shows that the ARHSS method converges unconditionally to the unique solution of the saddle point problem. Finally, we use a numerical example to confirm the effectiveness of the method.展开更多
In this paper,we propose a new full-Newton step feasible interior-point algorithm for the special weighted linear complementarity problems.The proposed algorithm employs the technique of algebraic equivalent transform...In this paper,we propose a new full-Newton step feasible interior-point algorithm for the special weighted linear complementarity problems.The proposed algorithm employs the technique of algebraic equivalent transformation to derive the search direction.It is shown that the proximity measure reduces quadratically at each iteration.Moreover,the iteration bound of the algorithm is as good as the best-known polynomial complexity for these types of problems.Furthermore,numerical results are presented to show the efficiency of the proposed algorithm.展开更多
An optimal dimension-down iterative algorithm (DDIA) is proposed for solving a mixed (continuous/ discrete) transportation network design problem (MNDP), which is generally expressed as a mathematical programmin...An optimal dimension-down iterative algorithm (DDIA) is proposed for solving a mixed (continuous/ discrete) transportation network design problem (MNDP), which is generally expressed as a mathematical programming with equilibrium constraints (MPEC). The upper level of the MNDP aims to optimize the network performance via both the expansion of existing links and the addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE) model. The idea of the proposed DDIA is to reduce the dimensions of the problem. A group of variables (discrete/continuous) are fixed to altemately optimize another group of variables (continuous/discrete). Some continuous network design problems (CNDPs) and discrete network design problems (DNDPs) are solved repeatedly until the optimal solution is obtained. A numerical example is given to demonstrate the efficiency of the proposed algorithm.展开更多
The flexible job shop scheduling problem(FJSP) is considered as an important problem in the modern manufacturing system. It is known to be an NP-hard problem. Most of the algorithms used in solving FJSP problem are ca...The flexible job shop scheduling problem(FJSP) is considered as an important problem in the modern manufacturing system. It is known to be an NP-hard problem. Most of the algorithms used in solving FJSP problem are categorized as metaheuristic methods. Some of these methods normally consume more CPU time and some other methods are more complicated which make them di cult to code and not easy to reproduce. This paper proposes a modified iterated greedy(IG) algorithm to deal with FJSP problem in order to provide a simpler metaheuristic, which is easier to code and to reproduce than some other much more complex methods. This is done by separating the classical IG into two phases. Each phase is used to solve a sub-problem of the FJSP: sequencing and routing sub-problems. A set of dispatching rules are employed in the proposed algorithm for the sequencing and machine selection in the construction phase of the solution. To evaluate the performance of proposed algorithm, some experiments including some famous FJSP benchmarks have been conducted. By compared with other algorithms, the experimental results show that the presented algorithm is competitive and able to find global optimum for most instances. The simplicity of the proposed IG provides an e ective method that is also easy to apply and consumes less CPU time in solving the FJSP problem.展开更多
We discuss the solution of complex multistage decision problems using methods that are based on the idea of policy iteration(PI),i.e.,start from some base policy and generate an improved policy.Rollout is the simplest...We discuss the solution of complex multistage decision problems using methods that are based on the idea of policy iteration(PI),i.e.,start from some base policy and generate an improved policy.Rollout is the simplest method of this type,where just one improved policy is generated.We can view PI as repeated application of rollout,where the rollout policy at each iteration serves as the base policy for the next iteration.In contrast with PI,rollout has a robustness property:it can be applied on-line and is suitable for on-line replanning.Moreover,rollout can use as base policy one of the policies produced by PI,thereby improving on that policy.This is the type of scheme underlying the prominently successful Alpha Zero chess program.In this paper we focus on rollout and PI-like methods for problems where the control consists of multiple components each selected(conceptually)by a separate agent.This is the class of multiagent problems where the agents have a shared objective function,and a shared and perfect state information.Based on a problem reformulation that trades off control space complexity with state space complexity,we develop an approach,whereby at every stage,the agents sequentially(one-at-a-time)execute a local rollout algorithm that uses a base policy,together with some coordinating information from the other agents.The amount of total computation required at every stage grows linearly with the number of agents.By contrast,in the standard rollout algorithm,the amount of total computation grows exponentially with the number of agents.Despite the dramatic reduction in required computation,we show that our multiagent rollout algorithm has the fundamental cost improvement property of standard rollout:it guarantees an improved performance relative to the base policy.We also discuss autonomous multiagent rollout schemes that allow the agents to make decisions autonomously through the use of precomputed signaling information,which is sufficient to maintain the cost improvement property,without any on-line coordination of control selection between the agents.For discounted and other infinite horizon problems,we also consider exact and approximate PI algorithms involving a new type of one-agent-at-a-time policy improvement operation.For one of our PI algorithms,we prove convergence to an agentby-agent optimal policy,thus establishing a connection with the theory of teams.For another PI algorithm,which is executed over a more complex state space,we prove convergence to an optimal policy.Approximate forms of these algorithms are also given,based on the use of policy and value neural networks.These PI algorithms,in both their exact and their approximate form are strictly off-line methods,but they can be used to provide a base policy for use in an on-line multiagent rollout scheme.展开更多
In this paper we develop two multilevel iteration methods for solving linear systems resulting from the Galerkin method and Tikhonov regularization for linear ill-posed problems. The two algorithms and their convergen...In this paper we develop two multilevel iteration methods for solving linear systems resulting from the Galerkin method and Tikhonov regularization for linear ill-posed problems. The two algorithms and their convergence analyses are presented in an abstract framework.展开更多
Linear Least Squares(LLS) problems are particularly difficult to solve because they are frequently ill-conditioned, and involve large quantities of data. Ill-conditioned LLS problems are commonly seen in mathematics...Linear Least Squares(LLS) problems are particularly difficult to solve because they are frequently ill-conditioned, and involve large quantities of data. Ill-conditioned LLS problems are commonly seen in mathematics and geosciences, where regularization algorithms are employed to seek optimal solutions. For many problems, even with the use of regularization algorithms it may be impossible to obtain an accurate solution. Riley and Golub suggested an iterative scheme for solving LLS problems. For the early iteration algorithm, it is difficult to improve the well-conditioned perturbed matrix and accelerate the convergence at the same time. Aiming at this problem, self-adaptive iteration algorithm(SAIA) is proposed in this paper for solving severe ill-conditioned LLS problems. The algorithm is different from other popular algorithms proposed in recent references. It avoids matrix inverse by using Cholesky decomposition, and tunes the perturbation parameter according to the rate of residual error decline in the iterative process. Example shows that the algorithm can greatly reduce iteration times, accelerate the convergence,and also greatly enhance the computation accuracy.展开更多
In the optimal control problem of nonlinear dynamical system,the Hamiltonian formulation is useful and powerful to solve an optimal control force.However,the resulting Euler-Lagrange equations are not easy to solve,wh...In the optimal control problem of nonlinear dynamical system,the Hamiltonian formulation is useful and powerful to solve an optimal control force.However,the resulting Euler-Lagrange equations are not easy to solve,when the performance index is complicated,because one may encounter a two-point boundary value problem of nonlinear differential algebraic equations.To be a numerical method,it is hard to exactly preserve all the specified conditions,which might deteriorate the accuracy of numerical solution.With this in mind,we develop a novel algorithm to find the solution of the optimal control problem of nonlinear Duffing oscillator,which can exactly satisfy all the required conditions for the minimality of the performance index.A new idea of shape functions method(SFM)is introduced,from which we can transform the optimal control problems to the initial value problems for the new variables,whose initial values are given arbitrarily,and meanwhile the terminal values are determined iteratively.Numerical examples confirm the high-performance of the iterative algorithms based on the SFM,which are convergence fast,and also provide very accurate solutions.The new algorithm is robust,even large noise is imposed on the input data.展开更多
The present paper is devoted to a novel smoothing function method for convex quadratic programming problem with mixed constrains, which has important application in mechanics and engineering science. The problem is re...The present paper is devoted to a novel smoothing function method for convex quadratic programming problem with mixed constrains, which has important application in mechanics and engineering science. The problem is reformulated as a system of non-smooth equations, and then a smoothing function for the system of non-smooth equations is proposed. The condition of convergences of this iteration algorithm is given. Theory analysis and primary numerical results illustrate that this method is feasible and effective.展开更多
In this paper, we introduce a hybrid iterative method for finding a common element of the set of common solutions of generalized mixed equilibrium problems and the set of common fixed points of an finite family of non...In this paper, we introduce a hybrid iterative method for finding a common element of the set of common solutions of generalized mixed equilibrium problems and the set of common fixed points of an finite family of nonexpansive mappings. Furthermore, we show a strong convergence theorem under some mild conditions.展开更多
In this paper, we consider an inverse problem of determining the corrosion occurring in an inaccessible interior part of a pipe from the measurements on the outer boundary. The problem is modelled by Laplace's equ...In this paper, we consider an inverse problem of determining the corrosion occurring in an inaccessible interior part of a pipe from the measurements on the outer boundary. The problem is modelled by Laplace's equation with an unknown term γ in the boundary condition on the inner boundary. Based on the Maz'ya iterative algorithm, a regularized BEM method is proposed for obtaining approximate solutions for this inverse problem. The numerical results show that our method can be easily realized and is quite effective.展开更多
In this paper,a new full-Newton step primal-dual interior-point algorithm for solving the special weighted linear complementarity problem is designed and analyzed.The algorithm employs a kernel function with a linear ...In this paper,a new full-Newton step primal-dual interior-point algorithm for solving the special weighted linear complementarity problem is designed and analyzed.The algorithm employs a kernel function with a linear growth term to derive the search direction,and by introducing new technical results and selecting suitable parameters,we prove that the iteration bound of the algorithm is as good as best-known polynomial complexity of interior-point methods.Furthermore,numerical results illustrate the efficiency of the proposed method.展开更多
An inverse problem for identification of the coefficient in heat-conduction equation is considered. After reducing the problem to a nonlinear ill-posed operator equation, Newton type iterative methods are considered. ...An inverse problem for identification of the coefficient in heat-conduction equation is considered. After reducing the problem to a nonlinear ill-posed operator equation, Newton type iterative methods are considered. The implicit iterative method is applied to the linearized Newton equation, and the key step in the process is that a new reasonable a posteriori stopping rule for the inner iteration is presented. Numerical experiments for the new method as well as for Tikhonov method and Bakushikskii method are given, and these results show the obvious advantages of the new method over the other ones.展开更多
In the paper, we extend the implicit iterative method for linear ill-posed operator equations to solve nonlinear ill-posed problems. We show that under some conditions the error sequence of solutions of the nonlinear ...In the paper, we extend the implicit iterative method for linear ill-posed operator equations to solve nonlinear ill-posed problems. We show that under some conditions the error sequence of solutions of the nonlinear implicit iterative method is monotonically decreasing and, with this monotonicity, prove convergence of the new method for both the exact and perturbed equations.展开更多
文摘Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate of this method is investigated.
基金Supported by the Natural Science Foundation of Zhejiang Province (Y605144)the XNF of Zhejiang University of Media and Communications (XN080012008034)
文摘The existence of nondecreasing positive solutions for the nonlinear third-order twopoint boundary value problem u′″(t) + q(t)f(t,u(t),u′(t)) = 0, 0 〈 t 〈 1, u(0) = u″(0) = u′(1) = 0 is studied. The iterative schemes for approximating the solutions are obtained by applying a monotone iterative method.
文摘This article presents the Parametric Iteration Method (PIM) for finding optimal control and its corresponding trajectory of linear systems. Without any discretization or transformation, PIM provides a sequence of functions which converges to the exact solution of problem. Our emphasis will be on an auxiliary parameter which directly affects on the rate of convergence. Comparison of PIM and the Variational Iteration Method (VIM) is given to show the preference of PIM over VIM. Numerical results are given for several test examples to demonstrate the applicability and efficiency of the method.
基金Natural Science Foundation of China under grants 10371137 and 10201034 the Foundation of Doctoral Program of National Higher Education of China under grant 20030558008 Guangdong Provincial Natural Science Foundation of China under grant 1011170 the Foundation of Zhongshan University Advanced Research Center.
文摘In this paper we develop multilevel iteration methods for solving linear systems resulting from the Galerkin method and Tikhonov regularization for ill-posed problems. The algorithm and its convergence analysis are presented in an abstract framework.
文摘In this paper, an algorithm based on a shifted inverse power iteration for computing generalized eigenvalues with corresponding eigenvectors of a large scale sparse symmetric positive definite matrix pencil is presented. It converges globally with a cubic asymptotic convergence rate, preserves sparsity of the original matrices and is fully parallelizable. The algebraic multilevel itera-tion method (AMLI) is used to improve the efficiency when symmetric positive definite linear equa-tions need to be solved.
文摘In this paper, we propose a Fast Iteration Method for solving mixture regression problem, which can be treated as a model-based clustering. Compared to the EM algorithm, the proposed method is faster, more flexible and can solve mixture regression problem with different error distributions (i.e. Laplace and t distribution). Extensive numeric experiments show that our proposed method has better performance on randomly simulations and real data.
文摘For stabilized saddle-point problems, we apply the two iteration parameters idea for regularized Hermitian and skew-Hermitian splitting (RHSS) method and establish accelerated RHSS (ARHSS) iteration method. Theoretical analysis shows that the ARHSS method converges unconditionally to the unique solution of the saddle point problem. Finally, we use a numerical example to confirm the effectiveness of the method.
基金Supported by the Optimisation Theory and Algorithm Research Team(Grant No.23kytdzd004)University Science Research Project of Anhui Province(Grant No.2024AH050631)the General Programs for Young Teacher Cultivation of Educational Commission of Anhui Province(Grant No.YQYB2023090).
文摘In this paper,we propose a new full-Newton step feasible interior-point algorithm for the special weighted linear complementarity problems.The proposed algorithm employs the technique of algebraic equivalent transformation to derive the search direction.It is shown that the proximity measure reduces quadratically at each iteration.Moreover,the iteration bound of the algorithm is as good as the best-known polynomial complexity for these types of problems.Furthermore,numerical results are presented to show the efficiency of the proposed algorithm.
基金The National Natural Science Foundation of China(No. 50908235 )China Postdoctoral Science Foundation (No.201003520)
文摘An optimal dimension-down iterative algorithm (DDIA) is proposed for solving a mixed (continuous/ discrete) transportation network design problem (MNDP), which is generally expressed as a mathematical programming with equilibrium constraints (MPEC). The upper level of the MNDP aims to optimize the network performance via both the expansion of existing links and the addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE) model. The idea of the proposed DDIA is to reduce the dimensions of the problem. A group of variables (discrete/continuous) are fixed to altemately optimize another group of variables (continuous/discrete). Some continuous network design problems (CNDPs) and discrete network design problems (DNDPs) are solved repeatedly until the optimal solution is obtained. A numerical example is given to demonstrate the efficiency of the proposed algorithm.
基金Supported by National Natural Science Foundation of China(Grant Nos.51825502,51775216)Hubei Provincial Natural Science Foundation of China(Grant No.2018CFA078)Program for HUST Academic Frontier Youth Team
文摘The flexible job shop scheduling problem(FJSP) is considered as an important problem in the modern manufacturing system. It is known to be an NP-hard problem. Most of the algorithms used in solving FJSP problem are categorized as metaheuristic methods. Some of these methods normally consume more CPU time and some other methods are more complicated which make them di cult to code and not easy to reproduce. This paper proposes a modified iterated greedy(IG) algorithm to deal with FJSP problem in order to provide a simpler metaheuristic, which is easier to code and to reproduce than some other much more complex methods. This is done by separating the classical IG into two phases. Each phase is used to solve a sub-problem of the FJSP: sequencing and routing sub-problems. A set of dispatching rules are employed in the proposed algorithm for the sequencing and machine selection in the construction phase of the solution. To evaluate the performance of proposed algorithm, some experiments including some famous FJSP benchmarks have been conducted. By compared with other algorithms, the experimental results show that the presented algorithm is competitive and able to find global optimum for most instances. The simplicity of the proposed IG provides an e ective method that is also easy to apply and consumes less CPU time in solving the FJSP problem.
文摘We discuss the solution of complex multistage decision problems using methods that are based on the idea of policy iteration(PI),i.e.,start from some base policy and generate an improved policy.Rollout is the simplest method of this type,where just one improved policy is generated.We can view PI as repeated application of rollout,where the rollout policy at each iteration serves as the base policy for the next iteration.In contrast with PI,rollout has a robustness property:it can be applied on-line and is suitable for on-line replanning.Moreover,rollout can use as base policy one of the policies produced by PI,thereby improving on that policy.This is the type of scheme underlying the prominently successful Alpha Zero chess program.In this paper we focus on rollout and PI-like methods for problems where the control consists of multiple components each selected(conceptually)by a separate agent.This is the class of multiagent problems where the agents have a shared objective function,and a shared and perfect state information.Based on a problem reformulation that trades off control space complexity with state space complexity,we develop an approach,whereby at every stage,the agents sequentially(one-at-a-time)execute a local rollout algorithm that uses a base policy,together with some coordinating information from the other agents.The amount of total computation required at every stage grows linearly with the number of agents.By contrast,in the standard rollout algorithm,the amount of total computation grows exponentially with the number of agents.Despite the dramatic reduction in required computation,we show that our multiagent rollout algorithm has the fundamental cost improvement property of standard rollout:it guarantees an improved performance relative to the base policy.We also discuss autonomous multiagent rollout schemes that allow the agents to make decisions autonomously through the use of precomputed signaling information,which is sufficient to maintain the cost improvement property,without any on-line coordination of control selection between the agents.For discounted and other infinite horizon problems,we also consider exact and approximate PI algorithms involving a new type of one-agent-at-a-time policy improvement operation.For one of our PI algorithms,we prove convergence to an agentby-agent optimal policy,thus establishing a connection with the theory of teams.For another PI algorithm,which is executed over a more complex state space,we prove convergence to an optimal policy.Approximate forms of these algorithms are also given,based on the use of policy and value neural networks.These PI algorithms,in both their exact and their approximate form are strictly off-line methods,but they can be used to provide a base policy for use in an on-line multiagent rollout scheme.
基金The NSF(0611005)of Jiangxi Province and the SF(2007293)of Jiangxi Provincial Education Department.
文摘In this paper we develop two multilevel iteration methods for solving linear systems resulting from the Galerkin method and Tikhonov regularization for linear ill-posed problems. The two algorithms and their convergence analyses are presented in an abstract framework.
基金supported by Open Fund of Engineering Laboratory of Spatial Information Technology of Highway Geological Disaster Early Warning in Hunan Province(Changsha University of Science&Technology,kfj150602)Hunan Province Science and Technology Program Funded Projects,China(2015NK3035)+1 种基金the Land and Resources Department Scientific Research Project of Hunan Province,China(2013-27)the Education Department Scientific Research Project of Hunan Province,China(13C1011)
文摘Linear Least Squares(LLS) problems are particularly difficult to solve because they are frequently ill-conditioned, and involve large quantities of data. Ill-conditioned LLS problems are commonly seen in mathematics and geosciences, where regularization algorithms are employed to seek optimal solutions. For many problems, even with the use of regularization algorithms it may be impossible to obtain an accurate solution. Riley and Golub suggested an iterative scheme for solving LLS problems. For the early iteration algorithm, it is difficult to improve the well-conditioned perturbed matrix and accelerate the convergence at the same time. Aiming at this problem, self-adaptive iteration algorithm(SAIA) is proposed in this paper for solving severe ill-conditioned LLS problems. The algorithm is different from other popular algorithms proposed in recent references. It avoids matrix inverse by using Cholesky decomposition, and tunes the perturbation parameter according to the rate of residual error decline in the iterative process. Example shows that the algorithm can greatly reduce iteration times, accelerate the convergence,and also greatly enhance the computation accuracy.
文摘In the optimal control problem of nonlinear dynamical system,the Hamiltonian formulation is useful and powerful to solve an optimal control force.However,the resulting Euler-Lagrange equations are not easy to solve,when the performance index is complicated,because one may encounter a two-point boundary value problem of nonlinear differential algebraic equations.To be a numerical method,it is hard to exactly preserve all the specified conditions,which might deteriorate the accuracy of numerical solution.With this in mind,we develop a novel algorithm to find the solution of the optimal control problem of nonlinear Duffing oscillator,which can exactly satisfy all the required conditions for the minimality of the performance index.A new idea of shape functions method(SFM)is introduced,from which we can transform the optimal control problems to the initial value problems for the new variables,whose initial values are given arbitrarily,and meanwhile the terminal values are determined iteratively.Numerical examples confirm the high-performance of the iterative algorithms based on the SFM,which are convergence fast,and also provide very accurate solutions.The new algorithm is robust,even large noise is imposed on the input data.
文摘The present paper is devoted to a novel smoothing function method for convex quadratic programming problem with mixed constrains, which has important application in mechanics and engineering science. The problem is reformulated as a system of non-smooth equations, and then a smoothing function for the system of non-smooth equations is proposed. The condition of convergences of this iteration algorithm is given. Theory analysis and primary numerical results illustrate that this method is feasible and effective.
文摘In this paper, we introduce a hybrid iterative method for finding a common element of the set of common solutions of generalized mixed equilibrium problems and the set of common fixed points of an finite family of nonexpansive mappings. Furthermore, we show a strong convergence theorem under some mild conditions.
基金NSF of China (No. 10271032)Shuguang Project from the Education Commission of Shanghai, China.
文摘In this paper, we consider an inverse problem of determining the corrosion occurring in an inaccessible interior part of a pipe from the measurements on the outer boundary. The problem is modelled by Laplace's equation with an unknown term γ in the boundary condition on the inner boundary. Based on the Maz'ya iterative algorithm, a regularized BEM method is proposed for obtaining approximate solutions for this inverse problem. The numerical results show that our method can be easily realized and is quite effective.
基金Supported by University Science Research Project of Anhui Province(2023AH052921)Outstanding Youth Talent Project of Anhui Province(gxyq2021254)。
文摘In this paper,a new full-Newton step primal-dual interior-point algorithm for solving the special weighted linear complementarity problem is designed and analyzed.The algorithm employs a kernel function with a linear growth term to derive the search direction,and by introducing new technical results and selecting suitable parameters,we prove that the iteration bound of the algorithm is as good as best-known polynomial complexity of interior-point methods.Furthermore,numerical results illustrate the efficiency of the proposed method.
文摘An inverse problem for identification of the coefficient in heat-conduction equation is considered. After reducing the problem to a nonlinear ill-posed operator equation, Newton type iterative methods are considered. The implicit iterative method is applied to the linearized Newton equation, and the key step in the process is that a new reasonable a posteriori stopping rule for the inner iteration is presented. Numerical experiments for the new method as well as for Tikhonov method and Bakushikskii method are given, and these results show the obvious advantages of the new method over the other ones.
基金supported by the Key Disciplines of Shanghai Municipality (Operations Research & Cybernetics, No. S30104)the Shanghai Leading Academic Discipline Project (No. J50101)
文摘In the paper, we extend the implicit iterative method for linear ill-posed operator equations to solve nonlinear ill-posed problems. We show that under some conditions the error sequence of solutions of the nonlinear implicit iterative method is monotonically decreasing and, with this monotonicity, prove convergence of the new method for both the exact and perturbed equations.