The rising number of electronic control units (ECUs) in vehicles and the decreasing time to market have led to the need for advanced methods of calibration. A multi-ECU calibration system was developed based on the ...The rising number of electronic control units (ECUs) in vehicles and the decreasing time to market have led to the need for advanced methods of calibration. A multi-ECU calibration system was developed based on the explicit calibration protocol (XCP) and J1939 communication protocol to satisfy the need of calibrating multiple ECUs simultaneously. The messages in the controller area network (CAN) are defined in the J1939 protocol. Each CAN node can get its own calibration messages and information from other ECUs, and block other messages by qualifying the CAN messages with priority, source or destination address. The data field of the calibration message is designed with the XCP, with CAN acting as the transport layer. The calibration sessions are setup with the event-triggered XCP driver in the master node and the responding XCP driver in the slave nodes. Mirroring calibration variables from ROM to RAM enables the user to calibrate ECUs online. The application example shows that the multi-ECU calibration system can calibrate multiple ECUs simultaneously, and the main program can also accomplish its calculation and send commands to the actuators in time. By the multi-ECU calibration system, the calibration effort and time can be reduced and the variables in ECU can get a better match with the variables of other ECUs.展开更多
A hardware-in-the-loop simulating platform is developed to avoid designing defects caused by the complicated logical structure and multiple-functional buildup of the dectronic control unit(ECU)in modem diesel engine...A hardware-in-the-loop simulating platform is developed to avoid designing defects caused by the complicated logical structure and multiple-functional buildup of the dectronic control unit(ECU)in modem diesel engines, and to diminish potential damages on components or human exposure to dangers in R&D en- deavor. This plat-form consists of a computer installed with software Matlab/Simulink/RTW and dSPACE/ ControlDesk; a diesel engine ECU, and a dSPACE autobox which runs a real-time diesel engine model. A typical model of diesel engine with turbocharger and intercooler is presented. Based on this model our research is carried out with a real ECU to test its software control strategies. Results show that by using the diesel engine model downloaded inside, the hardware-in-the-loop platform can simulate diesel engine's working conditions and generate all kinds of sensor signals which ECU needs on a real-time basis. So the ECU control strategies can be validated and relevant parameters roughly calibrated.展开更多
The high working junction temperature of power component is the most common reason of its failure. So the thermal design is of vital importance in electronic control unit (ECU) design. By means of circuit simulation...The high working junction temperature of power component is the most common reason of its failure. So the thermal design is of vital importance in electronic control unit (ECU) design. By means of circuit simulation, the thermal design of ECU for electronic unit pump (EUP) fuel system is applied. The power dissipation model of each power component in the ECU is created and simulated. According to the analyses of simulation results, the factors which affect the power dissipation of components are analyzed. Then the ways for reducing the power dissipation of power components are carried out. The power dissipation of power components at different engine state is calculated and analyzed. The maximal power dissipation of each power component in all possible engine state is also carried out based on these simulations. A cooling system is designed based on these studies. The tests show that the maximum total power dissipation of ECU drops from 43.2 W to 33.84 W after these simulations and optimizations. These applications of simulations in thermal design of ECU can greatly increase the quality of the design, save the design cost and shorten design time展开更多
This paper is concerned with the development of electronic controller for turbine POwer units. In order to increase the reliability of the POwer unit, three control loops working in the hi-backup mode have been employ...This paper is concerned with the development of electronic controller for turbine POwer units. In order to increase the reliability of the POwer unit, three control loops working in the hi-backup mode have been employed. This control strategy is able to satisfy the demands of the application of the power unit to the aviation fields.展开更多
This paper presents a systematic method of designing the calibration toolbox of automotive electronic control unit(ECU)based on real-time workshop(RTW).To break the strong coupling of each functional layer,the hie...This paper presents a systematic method of designing the calibration toolbox of automotive electronic control unit(ECU)based on real-time workshop(RTW).To break the strong coupling of each functional layer,the hierarchical architecture of the calibration system is divided into the bottom driver layer,the intermediate interface layer and the top application layer.The driver functions meeting the specification of the automotive open system are sent and received in the intermediate interface layer.To reduce the development costs,the portable user codes are generated by RTW which provides a development environment from system simulation to hardware implementation.Specifically,the calibration codes yielded from the controller area network(CAN)calibration protocol(CCP)module are integrated into the control codes,called by a compiler in the daemons to build a corresponding project,and then downloaded into the object board to provide the A2L file.The experiments illustrate that the different drive modules are only needed to be replaced for the implementation of the calibration system applied in different hardware platforms.展开更多
The performance of the electronic unit pump (EUP) diesel engine is studied, it will be used in the integrated powertrain and its multi parameters are controllable. Both the theoretical analysis and experiment research...The performance of the electronic unit pump (EUP) diesel engine is studied, it will be used in the integrated powertrain and its multi parameters are controllable. Both the theoretical analysis and experiment research are taken. A control unit for the fuel quantity and timing in crankshaft domain is designed on this basis and the engine experiment test has been done. For the constant speed camshaft driving EUP system, the fuel quantity will increase as the supply angle goes up and injection timing has no effect. The control precision can reach 1°CA. The full injection timing MAP and engine peak performance curves are made successfully.展开更多
The Cooling Storage Ring of the Heavy Ion Research Facility in Lanzhou(HIRFL-CSR)was constructed to study nuclear physics,atomic physics,interdisciplinary science,and related applications.The External Target Facility(...The Cooling Storage Ring of the Heavy Ion Research Facility in Lanzhou(HIRFL-CSR)was constructed to study nuclear physics,atomic physics,interdisciplinary science,and related applications.The External Target Facility(ETF)is located in the main ring of the HIRFL-CSR.The gamma detector of the ETF is built to measure emitted gamma rays with energies below 5 MeV in the center-of-mass frame and is planned to measure light fragments with energies up to 300 MeV.The readout electronics for the gamma detector were designed and commissioned.The readout electronics consist of thirty-two front-end cards,thirty-two readout control units(RCUs),one common readout unit,one synchronization&clock unit,and one sub-trigger unit.By using the real-time peak-detection algorithm implemented in the RCU,the data volume can be significantly reduced.In addition,trigger logic selection algorithms are implemented to improve the selection of useful events and reduce the data size.The test results show that the integral nonlinearity of the readout electronics is less than 1%,and the energy resolution for measuring the 60 Co source is better than 5.5%.This study discusses the design and performance of the readout electronics.展开更多
The difficult problem of automatically welding nipples onto the header is first analyzed in this paper, and then the overall structure and operating principle of the robot working unit are introduced. The robot and th...The difficult problem of automatically welding nipples onto the header is first analyzed in this paper, and then the overall structure and operating principle of the robot working unit are introduced. The robot and the measuring device are located by employing the traveling lorry, and this unit enables the robot to adjust the tracks according to the errors received from the measuring device, and then the nipples are welded properly. This paper emphases on the development of the master-slave control system, in which the prograrmmable Logic Controller (PLC) is used as the master computer.展开更多
By means of circuit simulation,hardware of electronic control unit(ECU)of high pressure common-rail electronic control fuel system for diesel engine is designed.According to the system requirements for hardware of ECU...By means of circuit simulation,hardware of electronic control unit(ECU)of high pressure common-rail electronic control fuel system for diesel engine is designed.According to the system requirements for hardware of ECU,signal-processing circuit of variable reluctance(VR)sensor,filter circuit for input signal,high voltage power circuit and driver and protection circuit of solenoid are simulated as emphases.Difficulties of wide scope of VR sensor output signal,efficiency of high voltage power and reliable and swift driver of solenoid are solved.The results of simulation show that the hardware meets the requirement of the fuel system.At the same time,circuit simulation can greatly increase quality of the design,alleviate design labor and shorten design time.展开更多
The number of electronic devices connected to agricultural machinery is increasing to support new agricultural practices tasks related to the Precision Agriculture such as spatial variability mapping and Variable Rate...The number of electronic devices connected to agricultural machinery is increasing to support new agricultural practices tasks related to the Precision Agriculture such as spatial variability mapping and Variable Rate Technology (VRT). The Distributed Control System (DCS) is a suitable solution for decentralization of the data acquisition system and the Controller Area Network (CAN) is the major trend among the embedded communications protocols for agricultural machinery and vehicles. The application of soil correctives is a typical problem in Brazil. The efficiency of this correction process is highly dependent of the inputs way at soil and the occurrence of errors affects directly the agricultural yield. To handle this problem, this paper presents the development of a CAN-based distributed control system for a VRT system of soil corrective in agricultural machinery. The VRT system is composed by a tractor-implement that applies a desired rate of inputs according to the georeferenced prescription map of the farm field to support PA (Precision Agriculture). The performance evaluation of the CAN-based VRT system was done by experimental tests and analyzing the CAN messages transmitted in the operation of the entire system. The results of the control error according to the necessity of agricultural application allow conclude that the developed VRT system is suitable for the agricultural productions reaching an acceptable response time and application error. The CAN-Based DCS solution applied in the VRT system reduced the complexity of the control system, easing the installation and maintenance. The use of VRT system allowed applying only the required inputs, increasing the efficiency operation and minimizing the environmental impact.展开更多
电磁脉冲(Electromagnetic pulses,EMPs)耦合进入发动机电控单元(Electronic control unit,ECU)的主要方式是通过线束传导,大电流注入(Bulk current injection,BCI)是控制器敏感度测试的标准试验方法。为了在设计阶段对电控单元的电磁...电磁脉冲(Electromagnetic pulses,EMPs)耦合进入发动机电控单元(Electronic control unit,ECU)的主要方式是通过线束传导,大电流注入(Bulk current injection,BCI)是控制器敏感度测试的标准试验方法。为了在设计阶段对电控单元的电磁脉冲防护设计进行优化,提出了基于线束传导规律的虚拟注入方法。该方法由基于一维卷积神经网络(Convolutional neural network,CNN)的线束传导预测模型及仿真电路实现,线束传导预测模型基于一维卷积神经网络,训练模型所用数据集为BCI试验采集的注入电流信号与调理电路输入端口响应信号,仿真电路在软件Multisim中建立。选择注入电流信号输入至预测模型,得到端口的预测信号,将该信号“注入”到仿真电路输入端口,通过监测仿真电路输出端口信号分析发动机电控系统是否发生电磁敏感现象。结果表明,预测信号与实际测量信号的误差不超过5.8%,虚拟注入结果与BCI试验结果一致,并与试验中观测的敏感现象吻合。该方法可以在设计阶段快速分析电控单元各模块的电磁敏感度,为电控单元的电磁脉冲防护设计提供参考依据。展开更多
文摘The rising number of electronic control units (ECUs) in vehicles and the decreasing time to market have led to the need for advanced methods of calibration. A multi-ECU calibration system was developed based on the explicit calibration protocol (XCP) and J1939 communication protocol to satisfy the need of calibrating multiple ECUs simultaneously. The messages in the controller area network (CAN) are defined in the J1939 protocol. Each CAN node can get its own calibration messages and information from other ECUs, and block other messages by qualifying the CAN messages with priority, source or destination address. The data field of the calibration message is designed with the XCP, with CAN acting as the transport layer. The calibration sessions are setup with the event-triggered XCP driver in the master node and the responding XCP driver in the slave nodes. Mirroring calibration variables from ROM to RAM enables the user to calibrate ECUs online. The application example shows that the multi-ECU calibration system can calibrate multiple ECUs simultaneously, and the main program can also accomplish its calculation and send commands to the actuators in time. By the multi-ECU calibration system, the calibration effort and time can be reduced and the variables in ECU can get a better match with the variables of other ECUs.
基金Sponsored by the Ministerial Level Advanced Research(10660060220)
文摘A hardware-in-the-loop simulating platform is developed to avoid designing defects caused by the complicated logical structure and multiple-functional buildup of the dectronic control unit(ECU)in modem diesel engines, and to diminish potential damages on components or human exposure to dangers in R&D en- deavor. This plat-form consists of a computer installed with software Matlab/Simulink/RTW and dSPACE/ ControlDesk; a diesel engine ECU, and a dSPACE autobox which runs a real-time diesel engine model. A typical model of diesel engine with turbocharger and intercooler is presented. Based on this model our research is carried out with a real ECU to test its software control strategies. Results show that by using the diesel engine model downloaded inside, the hardware-in-the-loop platform can simulate diesel engine's working conditions and generate all kinds of sensor signals which ECU needs on a real-time basis. So the ECU control strategies can be validated and relevant parameters roughly calibrated.
文摘The high working junction temperature of power component is the most common reason of its failure. So the thermal design is of vital importance in electronic control unit (ECU) design. By means of circuit simulation, the thermal design of ECU for electronic unit pump (EUP) fuel system is applied. The power dissipation model of each power component in the ECU is created and simulated. According to the analyses of simulation results, the factors which affect the power dissipation of components are analyzed. Then the ways for reducing the power dissipation of power components are carried out. The power dissipation of power components at different engine state is calculated and analyzed. The maximal power dissipation of each power component in all possible engine state is also carried out based on these simulations. A cooling system is designed based on these studies. The tests show that the maximum total power dissipation of ECU drops from 43.2 W to 33.84 W after these simulations and optimizations. These applications of simulations in thermal design of ECU can greatly increase the quality of the design, save the design cost and shorten design time
文摘This paper is concerned with the development of electronic controller for turbine POwer units. In order to increase the reliability of the POwer unit, three control loops working in the hi-backup mode have been employed. This control strategy is able to satisfy the demands of the application of the power unit to the aviation fields.
基金Supported by the Youth Science and Technology Innovation Talents Project of Chongqing Science&Technology Commission(cstc2013 kjrc-qnrc40005)the Research Project of Chongqing Education Committee(KJ120511)
文摘This paper presents a systematic method of designing the calibration toolbox of automotive electronic control unit(ECU)based on real-time workshop(RTW).To break the strong coupling of each functional layer,the hierarchical architecture of the calibration system is divided into the bottom driver layer,the intermediate interface layer and the top application layer.The driver functions meeting the specification of the automotive open system are sent and received in the intermediate interface layer.To reduce the development costs,the portable user codes are generated by RTW which provides a development environment from system simulation to hardware implementation.Specifically,the calibration codes yielded from the controller area network(CAN)calibration protocol(CCP)module are integrated into the control codes,called by a compiler in the daemons to build a corresponding project,and then downloaded into the object board to provide the A2L file.The experiments illustrate that the different drive modules are only needed to be replaced for the implementation of the calibration system applied in different hardware platforms.
文摘The performance of the electronic unit pump (EUP) diesel engine is studied, it will be used in the integrated powertrain and its multi parameters are controllable. Both the theoretical analysis and experiment research are taken. A control unit for the fuel quantity and timing in crankshaft domain is designed on this basis and the engine experiment test has been done. For the constant speed camshaft driving EUP system, the fuel quantity will increase as the supply angle goes up and injection timing has no effect. The control precision can reach 1°CA. The full injection timing MAP and engine peak performance curves are made successfully.
基金supported by the National Natural Science Foundation of China (Nos. 12222512, 12375193, U2031206, U1831206, and U2032209)the Scientific Instrument Developing Project of the Chinese Academy of Sciences (GJJSTD20210009)+1 种基金the CAS Pioneer Hundred Talent Programthe CAS Light of West China Program
文摘The Cooling Storage Ring of the Heavy Ion Research Facility in Lanzhou(HIRFL-CSR)was constructed to study nuclear physics,atomic physics,interdisciplinary science,and related applications.The External Target Facility(ETF)is located in the main ring of the HIRFL-CSR.The gamma detector of the ETF is built to measure emitted gamma rays with energies below 5 MeV in the center-of-mass frame and is planned to measure light fragments with energies up to 300 MeV.The readout electronics for the gamma detector were designed and commissioned.The readout electronics consist of thirty-two front-end cards,thirty-two readout control units(RCUs),one common readout unit,one synchronization&clock unit,and one sub-trigger unit.By using the real-time peak-detection algorithm implemented in the RCU,the data volume can be significantly reduced.In addition,trigger logic selection algorithms are implemented to improve the selection of useful events and reduce the data size.The test results show that the integral nonlinearity of the readout electronics is less than 1%,and the energy resolution for measuring the 60 Co source is better than 5.5%.This study discusses the design and performance of the readout electronics.
文摘The difficult problem of automatically welding nipples onto the header is first analyzed in this paper, and then the overall structure and operating principle of the robot working unit are introduced. The robot and the measuring device are located by employing the traveling lorry, and this unit enables the robot to adjust the tracks according to the errors received from the measuring device, and then the nipples are welded properly. This paper emphases on the development of the master-slave control system, in which the prograrmmable Logic Controller (PLC) is used as the master computer.
文摘By means of circuit simulation,hardware of electronic control unit(ECU)of high pressure common-rail electronic control fuel system for diesel engine is designed.According to the system requirements for hardware of ECU,signal-processing circuit of variable reluctance(VR)sensor,filter circuit for input signal,high voltage power circuit and driver and protection circuit of solenoid are simulated as emphases.Difficulties of wide scope of VR sensor output signal,efficiency of high voltage power and reliable and swift driver of solenoid are solved.The results of simulation show that the hardware meets the requirement of the fuel system.At the same time,circuit simulation can greatly increase quality of the design,alleviate design labor and shorten design time.
文摘The number of electronic devices connected to agricultural machinery is increasing to support new agricultural practices tasks related to the Precision Agriculture such as spatial variability mapping and Variable Rate Technology (VRT). The Distributed Control System (DCS) is a suitable solution for decentralization of the data acquisition system and the Controller Area Network (CAN) is the major trend among the embedded communications protocols for agricultural machinery and vehicles. The application of soil correctives is a typical problem in Brazil. The efficiency of this correction process is highly dependent of the inputs way at soil and the occurrence of errors affects directly the agricultural yield. To handle this problem, this paper presents the development of a CAN-based distributed control system for a VRT system of soil corrective in agricultural machinery. The VRT system is composed by a tractor-implement that applies a desired rate of inputs according to the georeferenced prescription map of the farm field to support PA (Precision Agriculture). The performance evaluation of the CAN-based VRT system was done by experimental tests and analyzing the CAN messages transmitted in the operation of the entire system. The results of the control error according to the necessity of agricultural application allow conclude that the developed VRT system is suitable for the agricultural productions reaching an acceptable response time and application error. The CAN-Based DCS solution applied in the VRT system reduced the complexity of the control system, easing the installation and maintenance. The use of VRT system allowed applying only the required inputs, increasing the efficiency operation and minimizing the environmental impact.
文摘电磁脉冲(Electromagnetic pulses,EMPs)耦合进入发动机电控单元(Electronic control unit,ECU)的主要方式是通过线束传导,大电流注入(Bulk current injection,BCI)是控制器敏感度测试的标准试验方法。为了在设计阶段对电控单元的电磁脉冲防护设计进行优化,提出了基于线束传导规律的虚拟注入方法。该方法由基于一维卷积神经网络(Convolutional neural network,CNN)的线束传导预测模型及仿真电路实现,线束传导预测模型基于一维卷积神经网络,训练模型所用数据集为BCI试验采集的注入电流信号与调理电路输入端口响应信号,仿真电路在软件Multisim中建立。选择注入电流信号输入至预测模型,得到端口的预测信号,将该信号“注入”到仿真电路输入端口,通过监测仿真电路输出端口信号分析发动机电控系统是否发生电磁敏感现象。结果表明,预测信号与实际测量信号的误差不超过5.8%,虚拟注入结果与BCI试验结果一致,并与试验中观测的敏感现象吻合。该方法可以在设计阶段快速分析电控单元各模块的电磁敏感度,为电控单元的电磁脉冲防护设计提供参考依据。