This paper investigates the problem of cluster synchronization of master-slave complex net-works with time-varying delay via linear and adaptive feedback pinning controls.We need not non-delayed and delayed coupling m...This paper investigates the problem of cluster synchronization of master-slave complex net-works with time-varying delay via linear and adaptive feedback pinning controls.We need not non-delayed and delayed coupling matrices to be symmetric or irreducible.We have the advantages of using adaptive control method to reduce control gain and pinning control technology to reduce cost.By con-structing Lyapunov function,some sufficient synchronization criteria are established.Finally,numerical examples are employed to illustrate the effectiveness of the proposed approach.展开更多
Upon flaws of current blockchain platforms of heavyweight, large capacity of ledger, and time-consuming of synchronization of data, in this paper, we proposed a new paradigm of master-slave blockchain scheme(MSB) for ...Upon flaws of current blockchain platforms of heavyweight, large capacity of ledger, and time-consuming of synchronization of data, in this paper, we proposed a new paradigm of master-slave blockchain scheme(MSB) for pervasive computing that suitable for general PC, mobile device such as smart phones or PADs to participants in the working of mining and verification, in which we separated traditional blockchain model in 2 layer defined as master node layer and a series of slavery agents layer, then we proposed 2 approaches for partially computing model(PCM) and non-computing of model(NCM) in the MSB blockchain, Finally large amounts of simulations manifest the proposed master-slave blockchain scheme is feasible, extendible and suitable for pervasive computing especially in the 5 G generation environment, and can apply in the DRM-related applications.展开更多
This paper addresses a master-slave synchro- nization strategy for complex dynamic systems based on feedback control. This strategy is applied to 3-DOF pla- nar manipulators in order to obtain synchronization in such ...This paper addresses a master-slave synchro- nization strategy for complex dynamic systems based on feedback control. This strategy is applied to 3-DOF pla- nar manipulators in order to obtain synchronization in such complicated as chaotic motions of end-effectors. A chaotic curve is selected from Duffing equation as the trajectory of master end-effector and a piecewise approximation method is proposed to accurately represent this chaotic trajectory of end-effectors. The dynamical equations of master-slave manipulators with synchronization controller are derived, and the Lyapunov stability theory is used to determine the stability of this controlled synchronization system. In numer- ical experiments, the synchronous motions of end-effectors as well as three joint angles and torques of master-slave manipulators are studied under the control of the proposed synchronization strategy. It is found that the positive gain matrix affects the implementation of synchronization con- trol strategy. This synchronization control strategy proves the synchronization's feasibility and controllability for com- plicated motions generated by master-slave manipulators.展开更多
The networked synchronization problem of a class of master-slave chaotic systems with time-varying communication topologies is investigated in this paper. Based on algebraic graph theory and matrix theory, a simple li...The networked synchronization problem of a class of master-slave chaotic systems with time-varying communication topologies is investigated in this paper. Based on algebraic graph theory and matrix theory, a simple linear state feedback controller is designed to synchronize the master chaotic system and the slave chaotic systems with a time- varying communication topology connection. The exponential stability of the closed-loop networked synchronization error system is guaranteed by applying Lyapunov stability theory. The derived novel criteria are in the form of linear matrix inequalities (LMIs), which are easy to examine and tremendously reduce the computation burden from the feedback matrices. This paper provides an alternative networked secure communication scheme which can be extended conveniently. An illustrative example is given to demonstrate the effectiveness of the proposed networked synchronization method.展开更多
As a key component of injection molding,multi-cavity hot runner(MCHR)system faces the crucial problem of polymer melt filling imbalance among the cavities.The thermal imbalance in the system has been considered as the...As a key component of injection molding,multi-cavity hot runner(MCHR)system faces the crucial problem of polymer melt filling imbalance among the cavities.The thermal imbalance in the system has been considered as the leading cause.Hence,the solution may rest with the synchronization of those heating processes in MCHR system.This paper proposes a’Master-Slave’generalized predictive synchronization control(MS-GPSC)method with’Mr.Slowest’strategy for preheating stage of MCHR system.The core of the proposed method is choosing the heating process with slowest dynamics as the’Master’to track the setpoint,while the other heating processes are treated as‘Slaves’tracking the output of’Master’.This proposed method is shown to have the good ability of temperature synchronization.The corresponding analysis is conducted on parameters tuning and stability,simulations and experiments show the strategy is effective.展开更多
A 3 DOF master-slave telerobot system is established for study on force telepresence technology. A force feedback and position control scheme is adopted in the bilateral force response control system,and force fidelit...A 3 DOF master-slave telerobot system is established for study on force telepresence technology. A force feedback and position control scheme is adopted in the bilateral force response control system,and force fidelity and controllability experiments demonstrate feasibility of the con-trol system.展开更多
The fluidic oscillator is an instrument that can continuously generate a spatially sweeping jet entirely based on its internal geometry without any moving parts.However,the traditional fluidic oscillator has an inhere...The fluidic oscillator is an instrument that can continuously generate a spatially sweeping jet entirely based on its internal geometry without any moving parts.However,the traditional fluidic oscillator has an inherent limitation,that is,the spreading angle cannot be controlled independently,rather by the jet volume flow rate and internal geometry.Accordingly,two types of fluidic oscillators based on the master-slave design are developed in current study to decouple this correlation.In both designs,the master layer inherits the similar oscillation mechanisms of a sweeping jet,and the slave layer resembles a steady jet channel.The difference between the two designs is that Design A has a short diverging exit in the slave layer,but Design B adds a long interaction chamber in the exit channel to intensify flow instability.The external flow fields and governing oscillation properties of these two designs are experimentally explored with time-resolved Particle Image Velocimetry(PIV),while the internal flow dynamics and driving oscillation mechanisms are numerically investigated.By fixing the total volume flow rate,the jet spreading angle of Design A can be increased smoothly from 0°to above 100°by increasing the proportion of master layer’s flow rate from 0 to 100%.For Design B,the control authority of the master layer is significantly enhanced by adding the interaction chamber in the slave layer.In addition,the added chamber causes notable jet oscillation even when the master layer has none input.展开更多
This paper proposes an adaptive synchronization problem for the master and slave structure of linear systems with nonlinear perturbations and mixed time-varying delays comprising different discrete and distributed tim...This paper proposes an adaptive synchronization problem for the master and slave structure of linear systems with nonlinear perturbations and mixed time-varying delays comprising different discrete and distributed time delays. Using an appropriate Lyapunov-Krasovskii functional, some delay-dependent sufficient conditions and an adaptation law including the master-slave parame- ters are established for designing a delayed synchronization law in terms of linear matrix inequalities(LMIs). The time-varying controller guarantees the H ∞ synchronization of the two coupled master and slave systems regardless of their initial states. Particularly, it is shown that the synchronization speed can be controlled by adjusting the updated gain of the synchronization signal. Two numerical examples are given to demonstrate the effectiveness of the method.展开更多
Welding seam tracking precision was decreased due to human hand tremor during the master-slave welding teleoperation. To solve this problem, a master-slave robot remote welding system was built, the system consisted o...Welding seam tracking precision was decreased due to human hand tremor during the master-slave welding teleoperation. To solve this problem, a master-slave robot remote welding system was built, the system consisted of a master manipulator with six degree of freedom ( DOF ) , an industrial computer control system and a slave Motoman HP3 J robot, and human hand tremor and digital filtering were discussed. An optimal digital filter was designed to clean human tremor signal for improving the welding seam tracking precision. The experimental results show that the digital filter suppresses the operator' s tremor signal.展开更多
Aiming at the weaknesses of LON bus, combining the coexistence of fieldbus and DCS (Distribu ted Control Systems) in control networks, the authors introduce a hierarchical hybrid control network design based on LON an...Aiming at the weaknesses of LON bus, combining the coexistence of fieldbus and DCS (Distribu ted Control Systems) in control networks, the authors introduce a hierarchical hybrid control network design based on LON and master slave RS 422/485 protocol. This design adopts LON as the trunk, master slave RS 422/485 control networks are connected to LON as special subnets by dedicated gateways. It is an implementation method for isomerous control network integration. Data management is ranked according to real time requirements for different network data. The core components, such as control network nodes, router and gateway, are detailed in the paper. The design utilizes both communication advantage of LonWorks technology and the more powerful control ability of universal MCUs or PLCs, thus it greatly increases system response speed and performance cost ratio.展开更多
This study aims to address the feasibility of planned islanding operation and to investigate the effect of unplanned islanding using the master-slave islanding method for controlling the distributed generation units d...This study aims to address the feasibility of planned islanding operation and to investigate the effect of unplanned islanding using the master-slave islanding method for controlling the distributed generation units during grid-connected and islanding operation. Neplan desktop power simulation tool was used for the modelling and simulation of a realistic MV network with four different distributed generation technologies (diesel, gas, hydro and wind) along with their excitation and governor control systems, while an exponential model was used to represent the loads in the network. The dynamic and steady state behavior of the four distributed generation technologies were investigated during grid-connected operation and two transition modes to the islanding situation, planned and unplanned. The obtained results that validated through various case studies have shown that a suitable planned islanding transition could provide support to critical loads at the event of electricity utility outages.展开更多
Content Addressable Memory (CAM) is a type of memory used for high-speed search applications. Due to parallel comparison feature, the CAM memory leads to large power consumption which is caused by frequent pre-charge ...Content Addressable Memory (CAM) is a type of memory used for high-speed search applications. Due to parallel comparison feature, the CAM memory leads to large power consumption which is caused by frequent pre-charge or discharge of match line. In this paper, CAM for automatic charge balancing with self-control mechanism is proposed to control the voltage swing of ML for reducing the power consumption of CAM. Another technique to reduce the power dissipation is to use MSML, it combines the master-slave architecture with charge minimization technique. Unlike the conventional design, only one match line (ML) is used, whereas in Master-Slave Match Line (MSML) one master ML and several slave MLs are used to reduce the power dissipation in CAM caused by match lines (MLs). Theoretically, the match line (ML) reduces the power consumption up to 50% which is independent of search and match case. The simulation results using Cadence tool of MSML show the reduced power consumption in CAM and modified CAM cell.展开更多
High-entropy polymer blends composed of polypropylene(PP),polystyrene(PS),polyamide 6(PA6),poly(lactic acid)(PLA),and styrene-ethylene-butylene-styrene(SEBS)were successfully fabricated using maleic anhydride-grafted ...High-entropy polymer blends composed of polypropylene(PP),polystyrene(PS),polyamide 6(PA6),poly(lactic acid)(PLA),and styrene-ethylene-butylene-styrene(SEBS)were successfully fabricated using maleic anhydride-grafted SEBS(SEBS-g-MAH)as a compatibilizer.Dynamic mechanical analysis(DMA),differential scanning calorimetry(DSC),scanning electron microscopy(SEM),and mechanical testing demonstrated that SEBS-g-MAH significantly enhanced the compatibility between the polar(PA6,PLA)and nonpolar(PP,PS,SEBS)components.The compatibilizer effectively refined the microstructure,substantially reduced the domain sizes,and blurred the phase boundaries,indicating enhanced interfacial interactions among all the components.The optimal compatibilizer content(15 wt%)notably increased tensile ductility(elongation at break from 5.0%to 23.7%)while maintaining balanced crystallization behavior,despite slightly decreasing modulus.This work not only demonstrates the broad applicability of high-entropy polymer blends as a sustainable strategy for converting complex,unsorted plastic waste into high-performance value-added materials that significantly contribute to plastic upcycling efforts,but also highlights intriguing physical phenomena emerging from such complex polymer systems.展开更多
This article explores in-class practice of blended teaching of Chinese-English(C-E)translation for English as a Foreign Language(EFL)majors in the era of artificial intelligence(AI).It examines the opportunities and c...This article explores in-class practice of blended teaching of Chinese-English(C-E)translation for English as a Foreign Language(EFL)majors in the era of artificial intelligence(AI).It examines the opportunities and challenges AI presents in enhancing translation education,particularly in fostering student engagement,improving teaching efficiency,and promoting self-motivated learning.Case study suggests that AI can enhance the flexibility of teaching and motivate students,yet challenges such as over-reliance on AI and diminished critical thinking need to be addressed.While acknowledging the indispensability of human translators,the article concludes that effective blended teaching requires purposeful curriculum design,proper integration of AI,and a collaborative effort of teachers and students to maximize the potential of AI while ensuring high-quality,independent learning outcomes.展开更多
Delineation of hydrocarbon-bearing sands and the extent of accumulation using seismic data is a reoccurring challenge for many fields.This study addressed the existing challenges of delineating a known hydrocarbon reg...Delineation of hydrocarbon-bearing sands and the extent of accumulation using seismic data is a reoccurring challenge for many fields.This study addressed the existing challenges of delineating a known hydrocarbon region for a thin-pay reservoir using conventional attributes extraction methods.The efficacy of applying iso-frequency extraction and spectral frequency blending in identifying thin-pay and thick-pay reservoirs on seismic was tested by utilizing 3D seismic data and well logs data of Terra field in the Western Niger Delta Basin.Well tops of all the reservoirs in the field were picked and two reservoirs that correspond to thin-and thick-pay reservoirs,namely A and F were identified respectively.The gross pay thickness of reservoir A is 18 ft while that of reservoir F is 96 ft.Conventional attribute extraction such as RMS amplitude,minimum amplitude,and average energy can be used to identify the hydrocarbon-bearing region in reservoir F but was not applicable for identifying the thin-pay reservoir A.This prompted the interest of using iso-frequency extractions and spectral frequency blending of three iso-frequency cubes of 12 Hz,30 Hz,and 70 Hz to get a spectral frequency RGB cube.The 12 Hz isofrequency can be used to partially identify hydrocarbon-bearing region in reservoir A while the 30Hz iso-frequency can be used to partially identify hydrocarbon-bearing region in reservoir F.The results show that time slices from the spectral frequency blended cube were able to delineate both the thin-pay and thick-pay hydrocarbon-bearing regions as high amplitude.The extractions also conformed to the structure of the two reservoirs.However,there seems to be a color difference in the amplitude display for both reservoirs.The thick-pay reservoir showed a red color on the time slice while the thin-pay reservoir showed a green color.This study has shown that spectral frequency blending is a more effective tool than conventional attributes extractions in identifying hydrocarbon-bearing region using seismic data.The methodology utilized in this study can be applied to other fields with similar challenges and for identifying prospective hydrocarbon bearing areas.展开更多
Fuel injection properties,including the injection rate(temporal aspects)and spray behavior(spatial aspects),play a crucial role in the combustion efficiency and emissions of diesel engines.This study investigates the ...Fuel injection properties,including the injection rate(temporal aspects)and spray behavior(spatial aspects),play a crucial role in the combustion efficiency and emissions of diesel engines.This study investigates the effects of different ethanol-biodiesel-diesel(EBD)blends on the injection performance in diesel engines.Experimental tests are conducted to examine key injection parameters,such as spray penetration distance,spray cone angle,and droplet size,alongside an analysis of coupling leakage.The main findings are as follows:(1)The injection behavior of ethanol and diesel differs significantly.The addition of ethanol reduces the density,viscosity,and modulus of elasticity of the fuel mixture.While the injection advance angle,penetration distance,and Sauter mean diameter show minimal changes,the spray cone angle and coupling leakage increase notably.These alterations may disrupt the“fuelair-chamber”matching characteristics of the original engine,potentially affecting performance.(2)In contrast,the injection performance of biodiesel ismore similar to that of diesel.As biodiesel content increases,the density,viscosity,and modulus of elasticity of the blended fuel also grow.Though changes in injection timing,penetration distance,and spray cone angle remain minimal,the Sauter mean diameter experiences a slight increase.The“air-fuel chamber”compatibility of the original engine is largely unaffected,though fuel atomization slightly deteriorates.Blending up to 20%biodiesel and 30%ethanol with diesel effectively compensates for the shortcomings of using single fuels,maintaining favorable injection dynamics while enhancing lubrication and sealing performance of engine components.展开更多
College students’safety education is an important part of the fundamental task of fostering virtue through education in colleges and universities.A questionnaire survey at J University shows that the popularization d...College students’safety education is an important part of the fundamental task of fostering virtue through education in colleges and universities.A questionnaire survey at J University shows that the popularization degree and teaching satisfaction of college students’safety education are relatively high,but the teaching content and teaching forms still need improvement.With the rapid development of artificial intelligence technology and considering the char-acteristics of college students’online learning in the new era,carrying out the SPOC+PBL blended teaching reform not only helps to enhance the effectiveness of theoretical and practical teaching but also contributes to optimizing the teach-ing evaluation and feedback mechanism and strengthening students’problem-solving abilities.Therefore,we should adhere to the goal orientation,meticulously design the teaching plan,highlight the student-centered approach,focus on integrating teaching resources,strengthen process management,promptly provide feedback and guidance,empower with data,and continuously improve teaching evaluation.Thus,a student-centered SPOC+PBL blended teaching sys-tem can be constructed to empower the transformation and innovation of talent cultivation in higher education.展开更多
文摘This paper investigates the problem of cluster synchronization of master-slave complex net-works with time-varying delay via linear and adaptive feedback pinning controls.We need not non-delayed and delayed coupling matrices to be symmetric or irreducible.We have the advantages of using adaptive control method to reduce control gain and pinning control technology to reduce cost.By con-structing Lyapunov function,some sufficient synchronization criteria are established.Finally,numerical examples are employed to illustrate the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China under Grant 61272519the Research Funds of Blockchain Joint Lab between BUPT and BCTthe joint Blockchain and Security Lab between BUPT and CAPSTONE
文摘Upon flaws of current blockchain platforms of heavyweight, large capacity of ledger, and time-consuming of synchronization of data, in this paper, we proposed a new paradigm of master-slave blockchain scheme(MSB) for pervasive computing that suitable for general PC, mobile device such as smart phones or PADs to participants in the working of mining and verification, in which we separated traditional blockchain model in 2 layer defined as master node layer and a series of slavery agents layer, then we proposed 2 approaches for partially computing model(PCM) and non-computing of model(NCM) in the MSB blockchain, Finally large amounts of simulations manifest the proposed master-slave blockchain scheme is feasible, extendible and suitable for pervasive computing especially in the 5 G generation environment, and can apply in the DRM-related applications.
基金supported by the Key Project of Chinese Ministry of Education(108037)the National Natural Science Foundation of China(10402008 and 50535010)
文摘This paper addresses a master-slave synchro- nization strategy for complex dynamic systems based on feedback control. This strategy is applied to 3-DOF pla- nar manipulators in order to obtain synchronization in such complicated as chaotic motions of end-effectors. A chaotic curve is selected from Duffing equation as the trajectory of master end-effector and a piecewise approximation method is proposed to accurately represent this chaotic trajectory of end-effectors. The dynamical equations of master-slave manipulators with synchronization controller are derived, and the Lyapunov stability theory is used to determine the stability of this controlled synchronization system. In numer- ical experiments, the synchronous motions of end-effectors as well as three joint angles and torques of master-slave manipulators are studied under the control of the proposed synchronization strategy. It is found that the positive gain matrix affects the implementation of synchronization con- trol strategy. This synchronization control strategy proves the synchronization's feasibility and controllability for com- plicated motions generated by master-slave manipulators.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60904046, 60972164, 60974071, and 60804006)the Special Fund for Basic Scientific Research of Central Colleges, Northeastern University, China (Grant No. 090604005)+2 种基金the Science and Technology Program of Shenyang (Grant No. F11-264-1-70)the Program for Liaoning Excellent Talents in University (Grant No. LJQ2011137)the Program for Liaoning Innovative Research Team in University (Grant No. LT2011019)
文摘The networked synchronization problem of a class of master-slave chaotic systems with time-varying communication topologies is investigated in this paper. Based on algebraic graph theory and matrix theory, a simple linear state feedback controller is designed to synchronize the master chaotic system and the slave chaotic systems with a time- varying communication topology connection. The exponential stability of the closed-loop networked synchronization error system is guaranteed by applying Lyapunov stability theory. The derived novel criteria are in the form of linear matrix inequalities (LMIs), which are easy to examine and tremendously reduce the computation burden from the feedback matrices. This paper provides an alternative networked secure communication scheme which can be extended conveniently. An illustrative example is given to demonstrate the effectiveness of the proposed networked synchronization method.
基金supported in part by National Natural Science Foundation of China(62203127)Basic and Applied Basic Research Project of Guangzhou City(2023A04J1712)+1 种基金The Foshan-HKUST Projects Program(FSUST19-FYTRI01)GDAS’Project of Science and Technology Development(2020GDASYL-20200202001).
文摘As a key component of injection molding,multi-cavity hot runner(MCHR)system faces the crucial problem of polymer melt filling imbalance among the cavities.The thermal imbalance in the system has been considered as the leading cause.Hence,the solution may rest with the synchronization of those heating processes in MCHR system.This paper proposes a’Master-Slave’generalized predictive synchronization control(MS-GPSC)method with’Mr.Slowest’strategy for preheating stage of MCHR system.The core of the proposed method is choosing the heating process with slowest dynamics as the’Master’to track the setpoint,while the other heating processes are treated as‘Slaves’tracking the output of’Master’.This proposed method is shown to have the good ability of temperature synchronization.The corresponding analysis is conducted on parameters tuning and stability,simulations and experiments show the strategy is effective.
文摘A 3 DOF master-slave telerobot system is established for study on force telepresence technology. A force feedback and position control scheme is adopted in the bilateral force response control system,and force fidelity and controllability experiments demonstrate feasibility of the con-trol system.
基金financial support from the National Natural Science Foundation of China(Nos.12072196 and 11702172)Science and Technology Commission of Shanghai Municipality(No.19JC1412900)+1 种基金Aeronautics Power Foundation(No.6141B09050393)Key Laboratory of Aerodynamic Noise Control(No.ANCL20190106)extended to this study。
文摘The fluidic oscillator is an instrument that can continuously generate a spatially sweeping jet entirely based on its internal geometry without any moving parts.However,the traditional fluidic oscillator has an inherent limitation,that is,the spreading angle cannot be controlled independently,rather by the jet volume flow rate and internal geometry.Accordingly,two types of fluidic oscillators based on the master-slave design are developed in current study to decouple this correlation.In both designs,the master layer inherits the similar oscillation mechanisms of a sweeping jet,and the slave layer resembles a steady jet channel.The difference between the two designs is that Design A has a short diverging exit in the slave layer,but Design B adds a long interaction chamber in the exit channel to intensify flow instability.The external flow fields and governing oscillation properties of these two designs are experimentally explored with time-resolved Particle Image Velocimetry(PIV),while the internal flow dynamics and driving oscillation mechanisms are numerically investigated.By fixing the total volume flow rate,the jet spreading angle of Design A can be increased smoothly from 0°to above 100°by increasing the proportion of master layer’s flow rate from 0 to 100%.For Design B,the control authority of the master layer is significantly enhanced by adding the interaction chamber in the slave layer.In addition,the added chamber causes notable jet oscillation even when the master layer has none input.
文摘This paper proposes an adaptive synchronization problem for the master and slave structure of linear systems with nonlinear perturbations and mixed time-varying delays comprising different discrete and distributed time delays. Using an appropriate Lyapunov-Krasovskii functional, some delay-dependent sufficient conditions and an adaptation law including the master-slave parame- ters are established for designing a delayed synchronization law in terms of linear matrix inequalities(LMIs). The time-varying controller guarantees the H ∞ synchronization of the two coupled master and slave systems regardless of their initial states. Particularly, it is shown that the synchronization speed can be controlled by adjusting the updated gain of the synchronization signal. Two numerical examples are given to demonstrate the effectiveness of the method.
基金This research is supported by National Natural Science Foundation of China (No. 50905043).
文摘Welding seam tracking precision was decreased due to human hand tremor during the master-slave welding teleoperation. To solve this problem, a master-slave robot remote welding system was built, the system consisted of a master manipulator with six degree of freedom ( DOF ) , an industrial computer control system and a slave Motoman HP3 J robot, and human hand tremor and digital filtering were discussed. An optimal digital filter was designed to clean human tremor signal for improving the welding seam tracking precision. The experimental results show that the digital filter suppresses the operator' s tremor signal.
文摘Aiming at the weaknesses of LON bus, combining the coexistence of fieldbus and DCS (Distribu ted Control Systems) in control networks, the authors introduce a hierarchical hybrid control network design based on LON and master slave RS 422/485 protocol. This design adopts LON as the trunk, master slave RS 422/485 control networks are connected to LON as special subnets by dedicated gateways. It is an implementation method for isomerous control network integration. Data management is ranked according to real time requirements for different network data. The core components, such as control network nodes, router and gateway, are detailed in the paper. The design utilizes both communication advantage of LonWorks technology and the more powerful control ability of universal MCUs or PLCs, thus it greatly increases system response speed and performance cost ratio.
文摘This study aims to address the feasibility of planned islanding operation and to investigate the effect of unplanned islanding using the master-slave islanding method for controlling the distributed generation units during grid-connected and islanding operation. Neplan desktop power simulation tool was used for the modelling and simulation of a realistic MV network with four different distributed generation technologies (diesel, gas, hydro and wind) along with their excitation and governor control systems, while an exponential model was used to represent the loads in the network. The dynamic and steady state behavior of the four distributed generation technologies were investigated during grid-connected operation and two transition modes to the islanding situation, planned and unplanned. The obtained results that validated through various case studies have shown that a suitable planned islanding transition could provide support to critical loads at the event of electricity utility outages.
文摘Content Addressable Memory (CAM) is a type of memory used for high-speed search applications. Due to parallel comparison feature, the CAM memory leads to large power consumption which is caused by frequent pre-charge or discharge of match line. In this paper, CAM for automatic charge balancing with self-control mechanism is proposed to control the voltage swing of ML for reducing the power consumption of CAM. Another technique to reduce the power dissipation is to use MSML, it combines the master-slave architecture with charge minimization technique. Unlike the conventional design, only one match line (ML) is used, whereas in Master-Slave Match Line (MSML) one master ML and several slave MLs are used to reduce the power dissipation in CAM caused by match lines (MLs). Theoretically, the match line (ML) reduces the power consumption up to 50% which is independent of search and match case. The simulation results using Cadence tool of MSML show the reduced power consumption in CAM and modified CAM cell.
基金supported by the National Natural Science Foundation of China(No.52173017)the Project of Introducing Urgently Needed and Scarce Talents in Key Supported Regions of Shandong Province in 2024.
文摘High-entropy polymer blends composed of polypropylene(PP),polystyrene(PS),polyamide 6(PA6),poly(lactic acid)(PLA),and styrene-ethylene-butylene-styrene(SEBS)were successfully fabricated using maleic anhydride-grafted SEBS(SEBS-g-MAH)as a compatibilizer.Dynamic mechanical analysis(DMA),differential scanning calorimetry(DSC),scanning electron microscopy(SEM),and mechanical testing demonstrated that SEBS-g-MAH significantly enhanced the compatibility between the polar(PA6,PLA)and nonpolar(PP,PS,SEBS)components.The compatibilizer effectively refined the microstructure,substantially reduced the domain sizes,and blurred the phase boundaries,indicating enhanced interfacial interactions among all the components.The optimal compatibilizer content(15 wt%)notably increased tensile ductility(elongation at break from 5.0%to 23.7%)while maintaining balanced crystallization behavior,despite slightly decreasing modulus.This work not only demonstrates the broad applicability of high-entropy polymer blends as a sustainable strategy for converting complex,unsorted plastic waste into high-performance value-added materials that significantly contribute to plastic upcycling efforts,but also highlights intriguing physical phenomena emerging from such complex polymer systems.
基金supported by the Industry-Academia Collaboration Project of the Ministry of Education:A Study on the Blended Teaching Model of Chinese-English Translation in the Era of Artificial Intelligence(Project Fund No.231001363084506).
文摘This article explores in-class practice of blended teaching of Chinese-English(C-E)translation for English as a Foreign Language(EFL)majors in the era of artificial intelligence(AI).It examines the opportunities and challenges AI presents in enhancing translation education,particularly in fostering student engagement,improving teaching efficiency,and promoting self-motivated learning.Case study suggests that AI can enhance the flexibility of teaching and motivate students,yet challenges such as over-reliance on AI and diminished critical thinking need to be addressed.While acknowledging the indispensability of human translators,the article concludes that effective blended teaching requires purposeful curriculum design,proper integration of AI,and a collaborative effort of teachers and students to maximize the potential of AI while ensuring high-quality,independent learning outcomes.
文摘Delineation of hydrocarbon-bearing sands and the extent of accumulation using seismic data is a reoccurring challenge for many fields.This study addressed the existing challenges of delineating a known hydrocarbon region for a thin-pay reservoir using conventional attributes extraction methods.The efficacy of applying iso-frequency extraction and spectral frequency blending in identifying thin-pay and thick-pay reservoirs on seismic was tested by utilizing 3D seismic data and well logs data of Terra field in the Western Niger Delta Basin.Well tops of all the reservoirs in the field were picked and two reservoirs that correspond to thin-and thick-pay reservoirs,namely A and F were identified respectively.The gross pay thickness of reservoir A is 18 ft while that of reservoir F is 96 ft.Conventional attribute extraction such as RMS amplitude,minimum amplitude,and average energy can be used to identify the hydrocarbon-bearing region in reservoir F but was not applicable for identifying the thin-pay reservoir A.This prompted the interest of using iso-frequency extractions and spectral frequency blending of three iso-frequency cubes of 12 Hz,30 Hz,and 70 Hz to get a spectral frequency RGB cube.The 12 Hz isofrequency can be used to partially identify hydrocarbon-bearing region in reservoir A while the 30Hz iso-frequency can be used to partially identify hydrocarbon-bearing region in reservoir F.The results show that time slices from the spectral frequency blended cube were able to delineate both the thin-pay and thick-pay hydrocarbon-bearing regions as high amplitude.The extractions also conformed to the structure of the two reservoirs.However,there seems to be a color difference in the amplitude display for both reservoirs.The thick-pay reservoir showed a red color on the time slice while the thin-pay reservoir showed a green color.This study has shown that spectral frequency blending is a more effective tool than conventional attributes extractions in identifying hydrocarbon-bearing region using seismic data.The methodology utilized in this study can be applied to other fields with similar challenges and for identifying prospective hydrocarbon bearing areas.
基金supported by Innovation Research Project for the training of high-level scientific and technological talents(Technical expert talents)of the Armed Police Force ZZKY20222415“13th Five-Year Plan”military key colleges and key disciplines-Equipment Engineering(Power)-17.
文摘Fuel injection properties,including the injection rate(temporal aspects)and spray behavior(spatial aspects),play a crucial role in the combustion efficiency and emissions of diesel engines.This study investigates the effects of different ethanol-biodiesel-diesel(EBD)blends on the injection performance in diesel engines.Experimental tests are conducted to examine key injection parameters,such as spray penetration distance,spray cone angle,and droplet size,alongside an analysis of coupling leakage.The main findings are as follows:(1)The injection behavior of ethanol and diesel differs significantly.The addition of ethanol reduces the density,viscosity,and modulus of elasticity of the fuel mixture.While the injection advance angle,penetration distance,and Sauter mean diameter show minimal changes,the spray cone angle and coupling leakage increase notably.These alterations may disrupt the“fuelair-chamber”matching characteristics of the original engine,potentially affecting performance.(2)In contrast,the injection performance of biodiesel ismore similar to that of diesel.As biodiesel content increases,the density,viscosity,and modulus of elasticity of the blended fuel also grow.Though changes in injection timing,penetration distance,and spray cone angle remain minimal,the Sauter mean diameter experiences a slight increase.The“air-fuel chamber”compatibility of the original engine is largely unaffected,though fuel atomization slightly deteriorates.Blending up to 20%biodiesel and 30%ethanol with diesel effectively compensates for the shortcomings of using single fuels,maintaining favorable injection dynamics while enhancing lubrication and sealing performance of engine components.
基金“Research on Mental Health Education of Poor College Students-Based on the Perspective of‘New Campus’”Philosophy and Social Science Research Project of Universities in Jiangsu Province(2019SJB912)“Research on Mental Health Education of Poor College Students-Based on the Perspective of‘New Campus’”Special Topic of Ideological and Political Education for College Students in 2018(JDXGXB201801)“Research on College English Teaching Strategies from the Perspective of the Theory of Multiple Intelligences”Jiangsu Provincial University Philosophy and Social Sciences Research Project(2023SJYB2216)。
文摘College students’safety education is an important part of the fundamental task of fostering virtue through education in colleges and universities.A questionnaire survey at J University shows that the popularization degree and teaching satisfaction of college students’safety education are relatively high,but the teaching content and teaching forms still need improvement.With the rapid development of artificial intelligence technology and considering the char-acteristics of college students’online learning in the new era,carrying out the SPOC+PBL blended teaching reform not only helps to enhance the effectiveness of theoretical and practical teaching but also contributes to optimizing the teach-ing evaluation and feedback mechanism and strengthening students’problem-solving abilities.Therefore,we should adhere to the goal orientation,meticulously design the teaching plan,highlight the student-centered approach,focus on integrating teaching resources,strengthen process management,promptly provide feedback and guidance,empower with data,and continuously improve teaching evaluation.Thus,a student-centered SPOC+PBL blended teaching sys-tem can be constructed to empower the transformation and innovation of talent cultivation in higher education.