Nowadays, asphalt road has dominated highways around the world. Among various defects of asphalt road, crackshave been paid more attention, since cracks often cause major engineering and personnel safety incidents. Cu...Nowadays, asphalt road has dominated highways around the world. Among various defects of asphalt road, crackshave been paid more attention, since cracks often cause major engineering and personnel safety incidents. Currentmanual crack inspection methods are time-consuming and labor-intensive, and most segmentation methods cannot detect cracks at the pixel level. This paper proposes an intelligent segmentation and measurement model basedon the modified Mask R-CNN algorithm to automatically and accurately detect asphalt road cracks. The modelproposed in this paper mainly includes a convolutional neural network (CNN), an optimized region proposalnetwork (RPN), a region of interest (RoI) Align layer, a candidate area classification network and a Mask branch offully convolutional network (FCN). The ratio and size of anchors in the RPN are adjusted to improve the accuracyand efficiency of segmentation. Soft non-maximum suppression (Soft-NMS) algorithm is developed to improvethe segmentation accuracy. A dataset including 8,689 images (512× 512 pixels) of asphalt cracks is established andthe road crack is manually marked. Transfer learning is used to initialize the model parameters in the trainingprocess. To optimize the model training parameters, multiple comparison experiments are performed, and the testresults show that the mean average precision (mAP) value and F1-score of the optimal trained model are 0.952 and0.949. Subsequently, the robustness verification test and comparative test of the trained model are conducted andthe topological features of the crack are extracted. Then, the damage area, length and average width of the crackare measured automatically and accurately at pixel level. More importantly, this paper develops an automatic crackdetection platform for asphalt roads to automatically extract the number, area, length and average width of cracks,which can significantly improve the crack detection efficiency for the road maintenance industry.展开更多
Detecting pavement cracks is critical for road safety and infrastructure management.Traditional methods,relying on manual inspection and basic image processing,are time-consuming and prone to errors.Recent deep-learni...Detecting pavement cracks is critical for road safety and infrastructure management.Traditional methods,relying on manual inspection and basic image processing,are time-consuming and prone to errors.Recent deep-learning(DL)methods automate crack detection,but many still struggle with variable crack patterns and environmental conditions.This study aims to address these limitations by introducing the Masker Transformer,a novel hybrid deep learning model that integrates the precise localization capabilities of Mask Region-based Convolutional Neural Network(Mask R-CNN)with the global contextual awareness of Vision Transformer(ViT).The research focuses on leveraging the strengths of both architectures to enhance segmentation accuracy and adaptability across different pavement conditions.We evaluated the performance of theMaskerTransformer against other state-of-theartmodels such asU-Net,TransformerU-Net(TransUNet),U-NetTransformer(UNETr),SwinU-NetTransformer(Swin-UNETr),You Only Look Once version 8(YoloV8),and Mask R-CNN using two benchmark datasets:Crack500 and DeepCrack.The findings reveal that the MaskerTransformer significantly outperforms the existing models,achieving the highest Dice SimilarityCoefficient(DSC),precision,recall,and F1-Score across both datasets.Specifically,the model attained a DSC of 80.04%on Crack500 and 91.37%on DeepCrack,demonstrating superior segmentation accuracy and reliability.The high precision and recall rates further substantiate its effectiveness in real-world applications,suggesting that the Masker Transformer can serve as a robust tool for automated pavement crack detection,potentially replacing more traditional methods.展开更多
M50轴承钢中主要的碳化物类型为MC、M_(2)C和M_(23)C_(6)。扫描电子显微镜(Scanning Electron Microscopy,SEM)下,3种碳化物的形状、尺寸和在材料中的分布存在明显的区别。有些碳化物的尺寸较大且分布不均匀。轴承受载过程中,这些碳化...M50轴承钢中主要的碳化物类型为MC、M_(2)C和M_(23)C_(6)。扫描电子显微镜(Scanning Electron Microscopy,SEM)下,3种碳化物的形状、尺寸和在材料中的分布存在明显的区别。有些碳化物的尺寸较大且分布不均匀。轴承受载过程中,这些碳化物会成为应力集中的区域,对轴承疲劳性能产生负面影响。为了高效地获得材料中的碳化物信息,提出一种改进的掩膜基于区域的卷积神经网络(Mask Region-based Convolutional Neural Network,Mask R-CNN)模型,可批量鉴别SEM图像中3种碳化物的种类,确定其尺寸大小及分布。网络模型输出的图像和数值结果显示,M50轴承钢中M_(2)C型碳化物尺寸大且分布不均匀,但总体尺寸最大的MC型碳化物和尺寸最小的M_(23)C_(6)型碳化物分布相对均匀。展开更多
基金This research was funded by the National Key Research and Development Program of China(No.2017YFC1501204)the National Natural Science Foundation of China(No.51678536)+4 种基金the Guangdong Innovative and Entrepreneurial Research Team Program(2016ZT06N340)the Program for Science and Technology Innovation Talents in Universities of Henan Province(Grant No.19HASTIT043)the Outstanding Young Talent Research Fund of Zhengzhou University(1621323001)the Program for Innovative Research Team(in Science and Technology)in University of Henan Province(18IRTSTHN007)the Research on NonDestructive Testing(NDT)and Rapid Evaluation Technology for Grouting Quality of Prestressed Ducts(Contract No.HG-GCKY-01-002).The authors would like to thank for these financial supports.
文摘Nowadays, asphalt road has dominated highways around the world. Among various defects of asphalt road, crackshave been paid more attention, since cracks often cause major engineering and personnel safety incidents. Currentmanual crack inspection methods are time-consuming and labor-intensive, and most segmentation methods cannot detect cracks at the pixel level. This paper proposes an intelligent segmentation and measurement model basedon the modified Mask R-CNN algorithm to automatically and accurately detect asphalt road cracks. The modelproposed in this paper mainly includes a convolutional neural network (CNN), an optimized region proposalnetwork (RPN), a region of interest (RoI) Align layer, a candidate area classification network and a Mask branch offully convolutional network (FCN). The ratio and size of anchors in the RPN are adjusted to improve the accuracyand efficiency of segmentation. Soft non-maximum suppression (Soft-NMS) algorithm is developed to improvethe segmentation accuracy. A dataset including 8,689 images (512× 512 pixels) of asphalt cracks is established andthe road crack is manually marked. Transfer learning is used to initialize the model parameters in the trainingprocess. To optimize the model training parameters, multiple comparison experiments are performed, and the testresults show that the mean average precision (mAP) value and F1-score of the optimal trained model are 0.952 and0.949. Subsequently, the robustness verification test and comparative test of the trained model are conducted andthe topological features of the crack are extracted. Then, the damage area, length and average width of the crackare measured automatically and accurately at pixel level. More importantly, this paper develops an automatic crackdetection platform for asphalt roads to automatically extract the number, area, length and average width of cracks,which can significantly improve the crack detection efficiency for the road maintenance industry.
文摘Detecting pavement cracks is critical for road safety and infrastructure management.Traditional methods,relying on manual inspection and basic image processing,are time-consuming and prone to errors.Recent deep-learning(DL)methods automate crack detection,but many still struggle with variable crack patterns and environmental conditions.This study aims to address these limitations by introducing the Masker Transformer,a novel hybrid deep learning model that integrates the precise localization capabilities of Mask Region-based Convolutional Neural Network(Mask R-CNN)with the global contextual awareness of Vision Transformer(ViT).The research focuses on leveraging the strengths of both architectures to enhance segmentation accuracy and adaptability across different pavement conditions.We evaluated the performance of theMaskerTransformer against other state-of-theartmodels such asU-Net,TransformerU-Net(TransUNet),U-NetTransformer(UNETr),SwinU-NetTransformer(Swin-UNETr),You Only Look Once version 8(YoloV8),and Mask R-CNN using two benchmark datasets:Crack500 and DeepCrack.The findings reveal that the MaskerTransformer significantly outperforms the existing models,achieving the highest Dice SimilarityCoefficient(DSC),precision,recall,and F1-Score across both datasets.Specifically,the model attained a DSC of 80.04%on Crack500 and 91.37%on DeepCrack,demonstrating superior segmentation accuracy and reliability.The high precision and recall rates further substantiate its effectiveness in real-world applications,suggesting that the Masker Transformer can serve as a robust tool for automated pavement crack detection,potentially replacing more traditional methods.