期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Improving PID Controller Performance in Nonlinear Oscillatory Automatic Generation Control Systems Using a Multi-objective Marine Predator Algorithm with Enhanced Diversity 被引量:1
1
作者 Yang Yang Yuchao Gao +2 位作者 Jinran Wu Zhe Ding Shangrui Zhao 《Journal of Bionic Engineering》 CSCD 2024年第5期2497-2514,共18页
Power systems are pivotal in providing sustainable energy across various sectors.However,optimizing their performance to meet modern demands remains a significant challenge.This paper introduces an innovative strategy... Power systems are pivotal in providing sustainable energy across various sectors.However,optimizing their performance to meet modern demands remains a significant challenge.This paper introduces an innovative strategy to improve the opti-mization of PID controllers within nonlinear oscillatory Automatic Generation Control(AGC)systems,essential for the stability of power systems.Our approach aims to reduce the integrated time squared error,the integrated time absolute error,and the rate of change in deviation,facilitating faster convergence,diminished overshoot,and decreased oscillations.By incorporating the spiral model from the Whale Optimization Algorithm(WOA)into the Multi-Objective Marine Predator Algorithm(MOMPA),our method effectively broadens the diversity of solution sets and finely tunes the balance between exploration and exploitation strategies.Furthermore,the QQSMOMPA framework integrates quasi-oppositional learning and Q-learning to overcome local optima,thereby generating optimal Pareto solutions.When applied to nonlinear AGC systems featuring governor dead zones,the PID controllers optimized by QQSMOMPA not only achieve 14%reduction in the frequency settling time but also exhibit robustness against uncertainties in load disturbance inputs. 展开更多
关键词 Multi-objective optimization Automatic generation control PID controller Multi-objective marine predator algorithm Whale optimization algorithm
在线阅读 下载PDF
Marine Predator Algorithm-based Sliding Mode Control of a Novel Motion Simulator for High Column Sloshing Experiments
2
作者 DU Zun-feng CHEN Xiang-yu +2 位作者 BAI Hao ZHU Hai-ming HAN Mu-xuan 《船舶力学》 EI CSCD 北大核心 2024年第12期1835-1848,共14页
Sloshing experiment is crucial to determine the reaction performance of regeneration columns on an offshore floating platform.A novel type of column motion simulating device and a Marine Predator Algorithm-based Slidi... Sloshing experiment is crucial to determine the reaction performance of regeneration columns on an offshore floating platform.A novel type of column motion simulating device and a Marine Predator Algorithm-based Sliding Mode Controller(MPA-SMC)are proposed for such sloshing experiments.The simulator consists of a Stewart platform and a steel framework.The Stewart platform is located at the column's center of gravity(CoG)and supported by the steel framework.The platform's hydraulic servo system is controlled by a sliding mode controller with parameters optimized by MPA to improve robustness and precision.A numerical sloshing experiment is conducted using the proposed device and controller.The results show that the novel motion simulator has lower torque during the column sloshes,and the proposed controller performs better than a well-tuned PID controller in terms of target tracking precision and anti-interference capability. 展开更多
关键词 regeneration column sloshing experiment motion simulator Stewart platform sliding mode control marine predator algorithm
在线阅读 下载PDF
A Tolerant and Energy Optimization Approach for Internet of Things to Enhance the QoS Using Adaptive Blended Marine Predators Algorithm
3
作者 Vijaya Krishna Akula Tan Kuan Tak +2 位作者 Pravin Ramdas Kshirsagar Shrikant Vijayrao Sonekar Gopichand Ginnela 《Computers, Materials & Continua》 2025年第5期2449-2479,共31页
The rapid expansion of Internet of Things(IoT)networks has introduced challenges in network management,primarily in maintaining energy efficiency and robust connectivity across an increasing array of devices.This pape... The rapid expansion of Internet of Things(IoT)networks has introduced challenges in network management,primarily in maintaining energy efficiency and robust connectivity across an increasing array of devices.This paper introduces the Adaptive Blended Marine Predators Algorithm(AB-MPA),a novel optimization technique designed to enhance Quality of Service(QoS)in IoT systems by dynamically optimizing network configurations for improved energy efficiency and stability.Our results represent significant improvements in network performance metrics such as energy consumption,throughput,and operational stability,indicating that AB-MPA effectively addresses the pressing needs ofmodern IoT environments.Nodes are initiated with 100 J of stored energy,and energy is consumed at 0.01 J per square meter in each node to emphasize energy-efficient networks.The algorithm also provides sufficient network lifetime extension to a resourceful 7000 cycles for up to 200 nodes with a maximum Packet Delivery Ratio(PDR)of 99% and a robust network throughput of up to 1800 kbps in more compact node configurations.This study proposes a viable solution to a critical problem and opens avenues for further research into scalable network management for diverse applications. 展开更多
关键词 Internet of things trust energy marine predators algorithm(MPA) differential evolution(DE) NODES throughput lifetime
在线阅读 下载PDF
Marine Predators Algorithm with Deep Learning-Based Leukemia Cancer Classification on Medical Images
4
作者 Sonali Das Saroja Kumar Rout +5 位作者 Sujit Kumar Panda Pradyumna Kumar Mohapatra Abdulaziz S.Almazyad Muhammed Basheer Jasser Guojiang Xiong Ali Wagdy Mohamed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期893-916,共24页
In blood or bone marrow,leukemia is a form of cancer.A person with leukemia has an expansion of white blood cells(WBCs).It primarily affects children and rarely affects adults.Treatment depends on the type of leukemia... In blood or bone marrow,leukemia is a form of cancer.A person with leukemia has an expansion of white blood cells(WBCs).It primarily affects children and rarely affects adults.Treatment depends on the type of leukemia and the extent to which cancer has established throughout the body.Identifying leukemia in the initial stage is vital to providing timely patient care.Medical image-analysis-related approaches grant safer,quicker,and less costly solutions while ignoring the difficulties of these invasive processes.It can be simple to generalize Computer vision(CV)-based and image-processing techniques and eradicate human error.Many researchers have implemented computer-aided diagnosticmethods andmachine learning(ML)for laboratory image analysis,hopefully overcoming the limitations of late leukemia detection and determining its subgroups.This study establishes a Marine Predators Algorithm with Deep Learning Leukemia Cancer Classification(MPADL-LCC)algorithm onMedical Images.The projectedMPADL-LCC system uses a bilateral filtering(BF)technique to pre-process medical images.The MPADL-LCC system uses Faster SqueezeNet withMarine Predators Algorithm(MPA)as a hyperparameter optimizer for feature extraction.Lastly,the denoising autoencoder(DAE)methodology can be executed to accurately detect and classify leukemia cancer.The hyperparameter tuning process using MPA helps enhance leukemia cancer classification performance.Simulation results are compared with other recent approaches concerning various measurements and the MPADL-LCC algorithm exhibits the best results over other recent approaches. 展开更多
关键词 Leukemia cancer medical imaging image classification deep learning marine predators algorithm
在线阅读 下载PDF
Multi-Stage Improvement of Marine Predators Algorithm and Its Application 被引量:1
5
作者 Chuandong Qin Baole Han 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期3097-3119,共23页
The metaheuristic algorithms are widely used in solving the parameters of the optimization problem.The marine predators algorithm(MPA)is a novel population-based intelligent algorithm.Although MPA has shown a talented... The metaheuristic algorithms are widely used in solving the parameters of the optimization problem.The marine predators algorithm(MPA)is a novel population-based intelligent algorithm.Although MPA has shown a talented foraging strategy,it still needs a balance of exploration and exploitation.Therefore,a multi-stage improvement of marine predators algorithm(MSMPA)is proposed in this paper.The algorithm retains the advantage of multistage search and introduces a linear flight strategy in the middle stage to enhance the interaction between predators.Predators further away from the historical optimum are required to move,increasing the exploration capability of the algorithm.In the middle and late stages,the searchmechanism of particle swarmoptimization(PSO)is inserted,which enhances the exploitation capability of the algorithm.This means that the stochasticity is decreased,that is the optimal region where predators jumping out is effectively stifled.At the same time,self-adjusting weight is used to regulate the convergence speed of the algorithm,which can balance the exploration and exploitation capability of the algorithm.The algorithm is applied to different types of CEC2017 benchmark test functions and threemultidimensional nonlinear structure design optimization problems,compared with other recent algorithms.The results show that the convergence speed and accuracy of MSMPA are significantly better than that of the comparison algorithms. 展开更多
关键词 marine predators algorithm multi-stage strategy structural design optimization
在线阅读 下载PDF
Hybrid Marine Predators Optimization and Improved Particle Swarm Optimization-Based Optimal Cluster Routing in Wireless Sensor Networks(WSNs) 被引量:1
6
作者 A.Balamurugan Sengathir Janakiraman +1 位作者 M.Deva Priya A.Christy Jeba Malar 《China Communications》 SCIE CSCD 2022年第6期219-247,共29页
Wireless Sensor Networks(WSNs)play an indispensable role in the lives of human beings in the fields of environment monitoring,manufacturing,education,agriculture etc.,However,the batteries in the sensor node under dep... Wireless Sensor Networks(WSNs)play an indispensable role in the lives of human beings in the fields of environment monitoring,manufacturing,education,agriculture etc.,However,the batteries in the sensor node under deployment in an unattended or remote area cannot be replaced because of their wireless existence.In this context,several researchers have contributed diversified number of cluster-based routing schemes that concentrate on the objective of extending node survival time.However,there still exists a room for improvement in Cluster Head(CH)selection based on the integration of critical parameters.The meta-heuristic methods that concentrate on guaranteeing both CH selection and data transmission for improving optimal network performance are predominant.In this paper,a hybrid Marine Predators Optimization and Improved Particle Swarm Optimizationbased Optimal Cluster Routing(MPO-IPSO-OCR)is proposed for ensuring both efficient CH selection and data transmission.The robust characteristic of MPOA is used in optimized CH selection,while improved PSO is used for determining the optimized route to ensure sink mobility.In specific,a strategy of position update is included in the improved PSO for enhancing the global searching efficiency of MPOA.The high-speed ratio,unit speed rate and low speed rate strategy inherited by MPOA facilitate better exploitation by preventing solution from being struck into local optimality point.The simulation investigation and statistical results confirm that the proposed MPOIPSO-OCR is capable of improving the energy stability by 21.28%,prolonging network lifetime by 18.62%and offering maximum throughput by 16.79%when compared to the benchmarked cluster-based routing schemes. 展开更多
关键词 marine predators Optimization algorithm(MPOA) Particle Swarm Optimization(PSO) Optimal Cluster-based Routing Cluster Head(CH)selection Wireless Sensor Networks(WSNs)
在线阅读 下载PDF
Adaptive Marine Predator Optimization Algorithm(AOMA)-Deep Supervised Learning Classification(DSLC)based IDS framework for MANET security
7
作者 M.Sahaya Sheela A.Gnana Soundari +4 位作者 Aditya Mudigonda C.Kalpana K.Suresh K.Somasundaram Yousef Farhaoui 《Intelligent and Converged Networks》 EI 2024年第1期1-18,共18页
Due to the dynamic nature and node mobility,assuring the security of Mobile Ad-hoc Networks(MANET)is one of the difficult and challenging tasks today.In MANET,the Intrusion Detection System(IDS)is crucial because it a... Due to the dynamic nature and node mobility,assuring the security of Mobile Ad-hoc Networks(MANET)is one of the difficult and challenging tasks today.In MANET,the Intrusion Detection System(IDS)is crucial because it aids in the identification and detection of malicious attacks that impair the network’s regular operation.Different machine learning and deep learning methodologies are used for this purpose in the conventional works to ensure increased security of MANET.However,it still has significant flaws,including increased algorithmic complexity,lower system performance,and a higher rate of misclassification.Therefore,the goal of this paper is to create an intelligent IDS framework for significantly enhancing MANET security through the use of deep learning models.Here,the min-max normalization model is applied to preprocess the given cyber-attack datasets for normalizing the attributes or fields,which increases the overall intrusion detection performance of classifier.Then,a novel Adaptive Marine Predator Optimization Algorithm(AOMA)is implemented to choose the optimal features for improving the speed and intrusion detection performance of classifier.Moreover,the Deep Supervise Learning Classification(DSLC)mechanism is utilized to predict and categorize the type of intrusion based on proper learning and training operations.During evaluation,the performance and results of the proposed AOMA-DSLC based IDS methodology is validated and compared using various performance measures and benchmarking datasets. 展开更多
关键词 Intrusion Detection System(IDS) Security Mobile Ad-hoc Network(MANET) min-max normalization Adaptive marine predator Optimization algorithm(AOMA) Deep Supervise Learning Classification(DSLC)
原文传递
Fault prediction model in wind turbines using deep learning structure with enhanced optimisation algorithm
8
作者 Mahendra Bhatu Gawali Swapnali Sunil Gawali Megharani Patil 《Journal of Control and Decision》 2025年第3期471-488,共18页
Digital Twin(DT)is used for lifetime monitoring of the drive train and can be a costly option.This proposal adopts the predictive modelling of wind turbines by digital twins by deep learning strategies.Initially,the d... Digital Twin(DT)is used for lifetime monitoring of the drive train and can be a costly option.This proposal adopts the predictive modelling of wind turbines by digital twins by deep learning strategies.Initially,the data is acquired from publicly available wind turbine datasets.Next,the deep features and statistical features are extracted,and the autoencoder is adapted to get the deep features.Then,the Enhanced Marine Predators Algorithm(EMPA)is to select the optimal weighted fused features,where the EMPA would tune the weights used for fusion and the features selection.Finally,the predictive modelling is done via a newly recommended Adaptive Deep Temporal Convolution Network with an Attention Mechanism(ADTCN-AM).It is tuned for precise outcomes with the help of EMPA for forecasting the wind speed and predicting the generated power.The comparative performance analysis of the recently used wind prediction system model shows better efficient results. 展开更多
关键词 Twin predictive model in wind turbines feature extraction enhanced marine predators algorithm adaptive deep temporal convolution network with attention mechanism optimal weighted fused features
原文传递
A Robust Single-Sensor MPPT Strategy for Shaded Photovoltaic-Battery System
9
作者 A.N.M.Alahmadi Hegazy Rezk 《Computer Systems Science & Engineering》 SCIE EI 2021年第4期63-71,共9页
A robust single-sensor global maximum power point tracking(MPPT)strategy based on modern optimization for photovoltaic systems considering shading conditions is proposed in this work.The proposed strategy is designed ... A robust single-sensor global maximum power point tracking(MPPT)strategy based on modern optimization for photovoltaic systems considering shading conditions is proposed in this work.The proposed strategy is designed for battery charging applications and direct current(DC)microgrids.Under normal operation,the curve of photovoltaic(PV)output power versus PV voltage contains only a single peak point.This point can be simply captured using any traditional tracking method like perturb and observe.However,this situation is completely different during the shadowing effect where several peaks appear on the power voltage curve.Most of these peaks are local with only a single global.This condition leads to the incapability of traditional tracking approaches to extract the global peak power due to their inability to distinguish between the local and global peak points.They are trapped in the first peak point even when the point is local.Therefore,global tracking approaches based on modern optimization are highly required.A recent marine predators algorithm(MPA)has been used to solve the problem of tracking the global MPP under shadowing influence.Different shadowing scenarios are used to test and evaluate the performance of MPA based tracker.The obtained results are compared with particle swarm optimization(PSO)and ant lion optimizer(ALO).The results of the comparison con-firmed the effectiveness and robustness of the proposed global MPPT-MPA based tracker over PSO and ALO. 展开更多
关键词 Optimization marine predators algorithm photovoltaic system battery charging applications partial shading condition MPPT
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部