Owing to the emergence of drug resistance and high morbidity,the need for novel antiviral drugs with novel targets is highly sought after.Marine-derived compounds mostly possess potent antiviral activity and serve as ...Owing to the emergence of drug resistance and high morbidity,the need for novel antiviral drugs with novel targets is highly sought after.Marine-derived compounds mostly possess potent antiviral activity and serve as a primary source for developing novel antiviral drugs,making the rapid discovery and evaluation of marine antiviral agents particularly crucial.Thus,future research should place greater emphasis on the identification of novel antiviral targets through the combination of artificial intelligence(AI)and structural pharmacology,as well as expanding the marine resource and target databases.展开更多
Pre-chamber ignition technology can address the issue of uneven in-cylinder mixture combustion in large-bore marine engines.The impact of various pre-chamber structures on the formation of the mixture and jet flames w...Pre-chamber ignition technology can address the issue of uneven in-cylinder mixture combustion in large-bore marine engines.The impact of various pre-chamber structures on the formation of the mixture and jet flames within the pre-chamber is explored.This study performed numerical simulations on a large-bore marine ammonia/hydrogen pre-chamber engine prototype,considering pre-chamber volume,throat diameter,the distance between the hydrogen injector and the spark plug,and the hydrogen injector angle.Compared with the original engine,when the pre-chamber volume is 73.4 ml,the throat diameter is 14 mm,the distance ratio is 0.92,and the hydrogen injector angle is 80°.Moreover,the peak pressure in the pre-chamber increased by 23.1%,and that in the main chamber increased by 46.3%.The results indicate that the performance of the original engine is greatly enhanced by altering its fuel and pre-chamber structure.展开更多
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t...Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.展开更多
By reviewing the research progress and exploration practices of shale gas geology in China,analyzing and summarizing the geological characteristics,enrichment laws,and resource potential of different types of shale ga...By reviewing the research progress and exploration practices of shale gas geology in China,analyzing and summarizing the geological characteristics,enrichment laws,and resource potential of different types of shale gas,the following understandings have been obtained:(1)Marine,transitional,and lacustrine shales in China are distributed from old to new in geological age,and the complexity of tectonic reworking and hydrocarbon generation evolution processes gradually decreases.(2)The sedimentary environment controls the type of source-reservoir configuration,which is the basis of“hydrocarbon generation and reservoir formation”.The types of source-reservoir configuration in marine and lacustrine shales are mainly source-reservoir integration,with occasional source-reservoir separation.The configuration types of transitional shale are mainly source-reservoir integration and source-reservoir symbiosis.(3)The resistance of rigid minerals to compression for pore preservation and the overpressure facilitate the enrichment of source-reservoir integrated shale gas.Good source reservoir coupling and preservation conditions are crucial for the shale gas enrichment of source-reservoir symbiosis and source-reservoir separation types.(4)Marine shale remains the main battlefield for increasing shale gas reserves and production in China,while transitional and lacustrine shales are expected to become important replacement areas.It is recommended to carry out the shale gas exploration at three levels:Accelerate the exploration of Silurian,Cambrian,and Permian marine shales in the Upper-Middle Yangtze region;make key exploration breakthroughs in ultra-deep marine shales of the Upper-Middle Yangtze region,the new Ordovician marine shale strata in the North China region,the transitional shales of the Carboniferous and Permian,as well as the Mesozoic lacustrine shale gas in basins such as Sichuan,Ordos and Songliao;explore and prepare for new shale gas exploration areas such as South China and Northwest China,providing technology and resource reserves for the sustainable development of shale gas in China.展开更多
The large-scale use of ample marine energy will be one of the most important ways for human to achieve sustainable development through carbon neutral development plans.As a burgeoning technological method for electrom...The large-scale use of ample marine energy will be one of the most important ways for human to achieve sustainable development through carbon neutral development plans.As a burgeoning technological method for electromechanical conversion,triboelectric nanogenerator(TENG)has significant advantages in marine energy for its low weight,cost-effectiveness,and high efficiency in low-frequency range.It can realize the efficient and economical harvesting of low-frequency blue energy by constructing the floating marine energy harvesting TENG.This paper firstly introduces the power transfer process and structural composition of TENG for marine energy harvesting in detail.In addition,the latest research works of TENG on marine energy harvesting in basic research and structural design are systematically reviewed by category.Finally,the advanced research progress in the power take-off types and engineering study of TENG with the marine energy are comprehensively generalized.Importantly,the challenges and problems faced by TENG in marine energy and in situ electrochemical application are summarized and the corresponding prospects and suggestions are proposed for the subsequent development direction and prospects to look forward to promoting the commercialization process of this field.展开更多
Weathering steel exhibits excellent corrosion resistance and is widely used in bridges,towers,railways,highways,and other engineering projects that are exposed to the atmosphere for long periods of time.However,before...Weathering steel exhibits excellent corrosion resistance and is widely used in bridges,towers,railways,highways,and other engineering projects that are exposed to the atmosphere for long periods of time.However,before the formation of stable rust layers,weathering steel is prone to liquid rust sagging and spattering,leading to environmental pollution and city appearance concerns.These factors limit the application and development of weathering steel.In this study,a rapid and environmentally friendly method was de-veloped by introducing alloying elements,specifically investigating the role of Sn in the rapid stabilization of rust layers in marine atmo-spheric environments.The rust layer formed on weathering low-alloy steel exposed to prolonged outdoor conditions and laboratory im-mersion experiments was explored using electron probe micro-analyzer(EPMA),micro-Raman,X-ray photoelectron spectroscopy(XPS),and electrochemical measurements.Results showed an optimal synergistic effect between Sn and Cr,which facilitated the accelerated densification of the rust layer.This beneficial effect enhanced the capability of the rust layer to resist Cl^(-)erosion and improved the protec-tion performance of the rust layer.展开更多
Polyurethane-fluorinated polysiloxane(PU-^(F)PDMS)with high-strength,high-bonding and low surface en-ergy is synthesized as the matrix,and the PU-^(F)PDMS/MCs/Ag marine anti-fouling coating on the sur-face of imitatio...Polyurethane-fluorinated polysiloxane(PU-^(F)PDMS)with high-strength,high-bonding and low surface en-ergy is synthesized as the matrix,and the PU-^(F)PDMS/MCs/Ag marine anti-fouling coating on the sur-face of imitation crab shells is constructed by assembling butenolide@1,1-stilbene-modified hydrolyzed polyglycidyl methacrylate/graphene oxide microcapsules(Bu@PGMAm/GO MCs)with compact multi-shell structure and Ag nanoparticles(AgNPs)step by step on the PU-^(F)PDMS matrix.The PU-^(F)PDMS/MCs/Ag bionic anti-fouling coatings achieve long-term and stable anti-fouling effect under the combination of robust low-surface-energy PU-^(F)PDMS matrix,steady-state sustained release of butenolide encapsulated by the compact multi-shell,bionic surface formed by the microcapsules and AgNPs,and the release of Ag^(+).The shear strength,tensile strength,and elongation at break of the PU-^(F)PDMS/MCs/Ag are 3.53 MPa,6.7 MPa,and 192.83%,respectively.Its static contact angle and sliding angle are 161.8°and 3.6°,respectively.The antibacterial rate of PU-^(F)PDMS/MCs/Ag against Escherichia coli,Staphylococcus aureus,and Candida albicans can reach 100%.Compared with glass blank,PU,PU-^(F)PDMS,PU-^(F)PDMS/Ag,and PU-^(F)PDMS/MCs,both the adhesion number and coverage percentage of chlorella adhere to PU-^(F)PDMS/MCs/Ag are the minimum values,which are 600 cell mm^(-2) and 1.53%,respectively.After 6 months of marine field test,the primer blank,PU,PU-^(F)PDMS all show different degrees of attachment by shellfish,spirorbis,al-gae and other biofouling,while the PU-^(F)PDMS/MCs/Ag coating is still not covered with biofouling,while the PU-^(F)PDMS/MCs/Ag coatings still exhibit little attachment of marine fouling.The PU-^(F)PDMS/MCs/Ag bionic anti-fouling coatings are expected to be widely used in the fields of anti-fouling,anti-icing,anti-fogging,drag reduction,self-cleaning,and antibacterial.展开更多
With increasing water depth,marine drilling conductors exhibit higher slenderness ratios,significantly reducing their resistance to environmental loads in Arctic waters.These conductors,when subjected to combined wind...With increasing water depth,marine drilling conductors exhibit higher slenderness ratios,significantly reducing their resistance to environmental loads in Arctic waters.These conductors,when subjected to combined wind,current,and ice loads,may experience substantial horizontal displacements and bending moments,potentially compromising off-shore operational safety and wellhead stability.Additionally,soil disturbance near the mudline diminishes the conductor’s bearing capacity,potentially rendering it inadequate for wellhead support and increasing operational risks.This study introduces a static analysis model based on plastic hinge theory to evaluate conductor survivability.The conductor analysis divides the structure into three segments:above waterline,submerged,and embedded below mudline.An idealized elastic-plastic p-y curve model characterizes soil behavior beneath the mudline,while the finite difference method(FDM)analyzes the conductor’s mechanical response under complex pile-head boundary conditions.Numerical simulations using ABAQUS validate the plastic hinge approach against conventional methods,confirming its accuracy in predicting structural performance.These results provide valuable insights for optimizing installation depths and bearing capacity designs of marine drilling conductors in ice-prone regions.展开更多
This study examines the adaptive boundary control problem of flexible marine riser with internal flow coupling.The dynamic model of the flexible marine riser system with internal flow coupling is derived using the Ham...This study examines the adaptive boundary control problem of flexible marine riser with internal flow coupling.The dynamic model of the flexible marine riser system with internal flow coupling is derived using the Hamiltonian principle.An analysis of internal flow’s influence on the vibration characteristics of flexible marine risers is conducted.Then,for the uncertain environmental disturbance,the adaptive fuzzy logic system is introduced to dynamically approximate the boundary disturbance,and a robust adaptive fuzzy boundary control is proposed.The uniform boundedness of the closed-loop system is proved based on Lyapunov theory.The well-posedness of the closed-loop system is proved by operator semigroup theory.The proposed control’s effectiveness is validated through comparison with existing control methods.展开更多
Synergy strategy of photocatalysts and polymer resins are promising technology for marine antifouling.However,it is still a main challenge to obtain a green,safe,and efficient antifouling coatings.Herein,carbon(graphe...Synergy strategy of photocatalysts and polymer resins are promising technology for marine antifouling.However,it is still a main challenge to obtain a green,safe,and efficient antifouling coatings.Herein,carbon(graphene or CNT)modified Ti O_(2)photocatalyst was synthesized via hydrothermal and annealing process and has successfully applied in acrylate fluoroboron polymer(ABFP)composite coating.Morphology and chemical composition were detailed characterized.The graphene or CNT acted as a bridge with supplemental spatial structures(petal gaps,entanglement)and new functional groups(C-O,C-Ti-O,etc.)on Ti O_(2)particle.Carbon nanotube(CNT)modified TiO_(2)-ABFP coatings(BTCP)achieved excellent antibacterial and anti-diatom adhesion rate of 89.3%-96.70%and 99.00%-99.50%,which was 1.84-4.94-fold more than that of the single ABFP.CNT or graphene served as electronic bridges was considered as the crucial mechanism,which significantly improved the light absorption range and capacity,conductivity,and photoelectric response of Ti O_(2),and further accelerated the generation and transfer of free radicals to the surface of BTCP or FTGP.Moreover,the improvement of catalyst activity synergizes with the smooth surface,hydrophilicity,and slow hydrolysis of composite coatings,achieved long-term and efficient antifouling performance.This work provides a new insight into the modification of Ti O_(2)and antifouling mechanism of polymer coating.展开更多
Bacterial contamination and marine biofouling are directly or indirectly impacting the economy,environment,and human health worldwide.Photocatalytic sterilization and antifouling technology is an effective method to p...Bacterial contamination and marine biofouling are directly or indirectly impacting the economy,environment,and human health worldwide.Photocatalytic sterilization and antifouling technology is an effective method to prevent microbial contamination and corrosion.Due to its eco-friendly nature,broad-spectrum bactericidal properties,and high efficiency,this method has recently received much attention.In this review,we have comprehensively discussed the photoinduced charge carriers transfer,main reactive oxygen species(ROS),the interactions among photocatalysts and microorganisms,as well as various antibacterial mechanisms such as oxidative stress,physical/mechanical destruction,photothermal effect,piezoelectric field effect,and triboelectric field.Different types of semiconductors,including TiO_(2),ZnO,CeO_(2),Cu-based semiconductors,Bi-based semiconductors,Ag-based semiconductors,g-C_(3)N_(4),MOF,and containing phosphorus photocatalysts are summarized in photocatalytic sterilization and antifouling activity.Besides,various improvement methods including morphological control,crystallizing,doping engineering,loading cocatalyst,and constructing heterojunction are discussed.Furthermore,a strategy for dramatically improving practice applications is proposed for the possibility of further antifouling applications.Challenges and prospects for the photocatalytic sterilization and antifouling method are also discussed to highlight design considerations.展开更多
A remarkable marine heatwave,known as the“Blob”,occurred in the Northeast Pacific Ocean from late 2013 to early 2016,which displayed strong warm anomalies extending from the surface to a depth of 300 m.This study em...A remarkable marine heatwave,known as the“Blob”,occurred in the Northeast Pacific Ocean from late 2013 to early 2016,which displayed strong warm anomalies extending from the surface to a depth of 300 m.This study employed two assimilation schemes based on the global Climate Forecast System of Nanjing University of Information Science(NUIST-CFS 1.0)to investigate the impact of ocean data assimilation on the seasonal prediction of this extreme marine heatwave.The sea surface temperature(SST)nudging scheme assimilates SST only,while the deterministic ensemble Kalman filter(EnKF)scheme assimilates observations from the surface to the deep ocean.The latter notably improves the forecasting skill for subsurface temperature anomalies,especially at the depth of 100-300 m(the lower layer),outperforming the SST nudging scheme.It excels in predicting both horizontal and vertical heat transport in the lower layer,contributing to improved forecasts of the lower-layer warming during the Blob.These improvements stem from the assimilation of subsurface observational data,which are important in predicting the upper-ocean conditions.The results suggest that assimilating ocean data with the EnKF scheme significantly enhances the accuracy in predicting subsurface temperature anomalies during the Blob and offers better understanding of its underlying mechanisms.展开更多
As climate change,international trade,and human activities increasingly disrupt traditional geographic barriers in the oceans,non-indigenous species(NIS)have successfully established themselves outside their native ra...As climate change,international trade,and human activities increasingly disrupt traditional geographic barriers in the oceans,non-indigenous species(NIS)have successfully established themselves outside their native ranges.Outbreaks of NIS can pose significant threats to local ecosystems and economies,making them a critical issue for marine biodiversity and biosecurity.Biological invasions in marine habitats differ significantly from those on land or in freshwater.Detection and identification of NIS in marine habitats is particularly challenging due to difficulties in sampling,morphological identification,and visualization in the early stages of outbreaks.Environmental DNA(eDNA)approaches have emerged as reliable and cost-effective methods for both qualitative and quantitative detection of marine NIS,particularly in the introductory phase.In this review,we summarize recent applications and advances in eDNA-based detection of marine NIS.We emphasize that innovations in eDNA sampling equipment,improvements in detection methods,and further refinement of the reference genomic database for marine species are crucial for the future development of this field.展开更多
This study used non-invasive evaluation methods measured six skin physiological parameters of the lower lip in 180 subjects,including moisture content,transepidermal water loss(TEWL),smoothness(SESM),scaliness of the ...This study used non-invasive evaluation methods measured six skin physiological parameters of the lower lip in 180 subjects,including moisture content,transepidermal water loss(TEWL),smoothness(SESM),scaliness of the skin(SESC),wrinkles(SEW),and red area of the lip skin,and compared the effects of 6 groups of lip balms(no-additive group,marine oligosaccharides group,ceramides group,glycyrrhizinic acid group,allantoin group,and mixed group;30 each)on the skin physiological parameters of dry,flaking,and cracked lip subjects.The results showed that the lip mositure content of the subjects in the marine oligosaccharide group,glycyrrhetinic acid group,and allantoin group increased significantly by 44.40%,42.84%and 58.08%after 7 days of lip balm(P<0.05).The TEWL in the ceramide group and the allantoin group was significantly reduced by 21.83%and 24.72%,respectively,after 7 days of lip paste use(P<0.05).The lip skin smoothness values of subjects in the glycyrrhizic acid group and the allantoin group were significantly reduced by 18.76%and 14.97%,respectively,after 28 days of lip balm application(P<0.05).The lip skin scaling indices of subjects in the marine oligosaccharide group,the ceramides group,and the allantoin group were significantly reduced by 33.77%,42.69%,and 38.07%,respectively,after 28 days of lip balm application(P<0.05).The wrinkle parameters of the lip skin of the subjects in the marine oligosaccharide,glycyrrhizinic acid and allantoin groups were significantly reduced by 23.06%,23.29%and 25.98%,respectively,after 28 days of lip balm application(P<0.05).And the area of the red zone of the lip skin of the subjects in the allantoin group was significantly reduced by 4.27%,after 28 days of lip balm application(P<0.05).Combining the effects of the four active ingredients on the secretion of hyaluronic acid(moisturizing effect)and inflammatory factor(IL-6)in HSF cells,it suggests that marine oligosaccharides and allantoin have a perfect impact on enhancing the water content of the skin on the lips of the subjects,and further improve the symptoms of flaking and wrinkles on the lips of the subjects.The ceramide and allantoin can repair the skin barrier well and have a good effect on the chapped and flaky lips of the subjects.After 28 days of using lip balm,the water content of lips in the mixed group increased,the skin barrier was repaired and became smoother,and the wrinkles,scale index,and red zone value were reduced,which could well relieve chronic lip inflammation and lay a foundation for developing lip products for the treatment of chronic cheilitis.展开更多
The thermal state of seawater is a fundamental property of the ocean.Extreme changes in the ocean's thermal conditions can significantly impact the marine environment,climate system,ecosystems,and economic activit...The thermal state of seawater is a fundamental property of the ocean.Extreme changes in the ocean's thermal conditions can significantly impact the marine environment,climate system,ecosystems,and economic activities.Marine heatwaves(MHWs)are extreme high-temperature events occurring in the ocean at weather or short-to-medium-term climate scales,representing extreme variations in oceanic conditions(Pearce et al.,2011;Feng et al.,2013;Hobday et al.,2016).展开更多
Marine pollution is a well-recognized phenomenon that has many negative effects on the marine environment.The effects of marine pollution are due to the discharge of hazardous materials,toxins,or other pollutants into...Marine pollution is a well-recognized phenomenon that has many negative effects on the marine environment.The effects of marine pollution are due to the discharge of hazardous materials,toxins,or other pollutants into the marine environment,which includes seas,estuaries,oceans,and other water bodies,and this unwanted input affects the blue economy.The blue economy,which includes industries and research associated with marine and ocean resources,is often affected by marine pollution on multiple levels,such as economic costs,direct resource impacts,health risks,and infrastructure damage.In one report,the pollution-related issues in many countries were estimated at 9 t/inh and clean-up costs between$12 to$160/t.More extensive pollution mitigation projects might take up to 15 years to conclude and cost up to$500/t.To better understand the role of marine pollution and its impact on the blue economy,some key parameters are discussed as follows:the role of biofouling,volatile organic compounds,the impact of metals,anionic pollutants,and antifouling coatings.The review findings also highlight the impact of marine pollution on ecosystems and associated economic activities,which could be reduced through measures such as better international cooperation,waste management,and the development of sustainable practices.Related information on the strategies and policies that could be adopted for sustainable blue economy are stated after each section.展开更多
The Journal of Ocean University of China(Oceanic and Coastal Sea Research)is a comprehensive academic quarterly sponsored by the Ocean University of China,published one volume per year.This journal is devoted to the p...The Journal of Ocean University of China(Oceanic and Coastal Sea Research)is a comprehensive academic quarterly sponsored by the Ocean University of China,published one volume per year.This journal is devoted to the publication of the theoretical and applied research results on oceanography and marine fisheries.The fields covered include the physical,chemical,biological,geo-logical,environmental,engineering and technological aspects of these sciences.The types of papers include research papers,notes,technical reports,science and technology letters,reviews and overviews,etc.It has been indexed by SCI-E since 2012.展开更多
With the increasing exploration of oil and gas into deep waters,the necessity for material development increases for lighter conduits such as composite marine risers,in the oil and gas industry.To understand the resea...With the increasing exploration of oil and gas into deep waters,the necessity for material development increases for lighter conduits such as composite marine risers,in the oil and gas industry.To understand the research knowledge on this novel area,there is a need to have a bibliometric analysis on composite marine risers.A research methodology was developed whereby the data retrieval was from SCOPUS database from 1977–2023.Then,VOSviewer was used to visualize the knowledge maps.This study focuses on the progress made by conducting knowledge mapping and scientometric review on composite marine risers.This scientometric analysis on the subject shows current advances,geographical activities by countries,authorship records,collaborations,funders,affiiliations,co‑occurrences,and future research areas.It was observed that the research trends recorded the highest publication volume in the U.S.A.,but less cluster affiiliated,as it was followed by countries like the U.K.,China,Nigeria,Australia and Singapore.Also,thisfiield has more conference papers than journal papers due to the challenge of adaptability,acceptance,qualifiication,and application of composite marine risers in the marine industry.Hence,there is a need for more collaborations on composite marine risers and more funding to enhance the research trend.展开更多
The use of antifouling agents is suggested to be a promising method for protecting oceanic instruments from biological contamination.We developed a novel antifouling material doped with capsaicin(CAP)as a filler and m...The use of antifouling agents is suggested to be a promising method for protecting oceanic instruments from biological contamination.We developed a novel antifouling material doped with capsaicin(CAP)as a filler and montmorillonite(MMT)as a carrier for the practical application of CTD(conductivity,temperature,depth)protection.The optimal parameters for preparing the material were established,and the obtained material achieved the maximum CAP loading capacity of 32.74%.The proposed material exhibited great release properties in acidic environments,which is beneficial for reducing bacterial attachment.Furthermore,the optimal conditions(temperature,flow rate,and pressure in the aquatic environment)for a better release rate of the material were determined through a series of simulation tests in lab.It provided good guidance and basis for practical application of the material.The CAP@MMT composite showed excellent efficiency and effectiveness in preventing the attachment of microorganisms during the four-month marine field tests.In the subsequent experiments,the great properties of the antifouling material were further confirmed by retesting the conductivity of four instruments participating in marine field tests.The measuring errors of CTD protected by the antifouling material are both within 0.01 mS/cm,which is far lower than that of the other two instruments.展开更多
文摘Owing to the emergence of drug resistance and high morbidity,the need for novel antiviral drugs with novel targets is highly sought after.Marine-derived compounds mostly possess potent antiviral activity and serve as a primary source for developing novel antiviral drugs,making the rapid discovery and evaluation of marine antiviral agents particularly crucial.Thus,future research should place greater emphasis on the identification of novel antiviral targets through the combination of artificial intelligence(AI)and structural pharmacology,as well as expanding the marine resource and target databases.
基金Supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions under Grant No.014000319/2018-00391.
文摘Pre-chamber ignition technology can address the issue of uneven in-cylinder mixture combustion in large-bore marine engines.The impact of various pre-chamber structures on the formation of the mixture and jet flames within the pre-chamber is explored.This study performed numerical simulations on a large-bore marine ammonia/hydrogen pre-chamber engine prototype,considering pre-chamber volume,throat diameter,the distance between the hydrogen injector and the spark plug,and the hydrogen injector angle.Compared with the original engine,when the pre-chamber volume is 73.4 ml,the throat diameter is 14 mm,the distance ratio is 0.92,and the hydrogen injector angle is 80°.Moreover,the peak pressure in the pre-chamber increased by 23.1%,and that in the main chamber increased by 46.3%.The results indicate that the performance of the original engine is greatly enhanced by altering its fuel and pre-chamber structure.
基金Supported by the National Natural Science Foundation of China under Grant No.51975138the High-Tech Ship Scientific Research Project from the Ministry of Industry and Information Technology under Grant No.CJ05N20the National Defense Basic Research Project under Grant No.JCKY2023604C006.
文摘Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.
基金Supported by the National Natural Science Foundation of China(42172165,42272143)Project of SINOPEC Science and Technology Department(P24181,KLP24017).
文摘By reviewing the research progress and exploration practices of shale gas geology in China,analyzing and summarizing the geological characteristics,enrichment laws,and resource potential of different types of shale gas,the following understandings have been obtained:(1)Marine,transitional,and lacustrine shales in China are distributed from old to new in geological age,and the complexity of tectonic reworking and hydrocarbon generation evolution processes gradually decreases.(2)The sedimentary environment controls the type of source-reservoir configuration,which is the basis of“hydrocarbon generation and reservoir formation”.The types of source-reservoir configuration in marine and lacustrine shales are mainly source-reservoir integration,with occasional source-reservoir separation.The configuration types of transitional shale are mainly source-reservoir integration and source-reservoir symbiosis.(3)The resistance of rigid minerals to compression for pore preservation and the overpressure facilitate the enrichment of source-reservoir integrated shale gas.Good source reservoir coupling and preservation conditions are crucial for the shale gas enrichment of source-reservoir symbiosis and source-reservoir separation types.(4)Marine shale remains the main battlefield for increasing shale gas reserves and production in China,while transitional and lacustrine shales are expected to become important replacement areas.It is recommended to carry out the shale gas exploration at three levels:Accelerate the exploration of Silurian,Cambrian,and Permian marine shales in the Upper-Middle Yangtze region;make key exploration breakthroughs in ultra-deep marine shales of the Upper-Middle Yangtze region,the new Ordovician marine shale strata in the North China region,the transitional shales of the Carboniferous and Permian,as well as the Mesozoic lacustrine shale gas in basins such as Sichuan,Ordos and Songliao;explore and prepare for new shale gas exploration areas such as South China and Northwest China,providing technology and resource reserves for the sustainable development of shale gas in China.
基金supported by the Talent Fund of Beijing Jiaotong University(2023XKRC034)China National Postdoctoral Program for Innovative Talents(BX20230037)+3 种基金China Postdoctoral Science Foundation(2023M730205)National key research and development program(2021YFB3203202)Beijing Municipal Natural Science Foundation(4232074)Fundamental Research Funds for the Central Universities(2020JBZD011)。
文摘The large-scale use of ample marine energy will be one of the most important ways for human to achieve sustainable development through carbon neutral development plans.As a burgeoning technological method for electromechanical conversion,triboelectric nanogenerator(TENG)has significant advantages in marine energy for its low weight,cost-effectiveness,and high efficiency in low-frequency range.It can realize the efficient and economical harvesting of low-frequency blue energy by constructing the floating marine energy harvesting TENG.This paper firstly introduces the power transfer process and structural composition of TENG for marine energy harvesting in detail.In addition,the latest research works of TENG on marine energy harvesting in basic research and structural design are systematically reviewed by category.Finally,the advanced research progress in the power take-off types and engineering study of TENG with the marine energy are comprehensively generalized.Importantly,the challenges and problems faced by TENG in marine energy and in situ electrochemical application are summarized and the corresponding prospects and suggestions are proposed for the subsequent development direction and prospects to look forward to promoting the commercialization process of this field.
基金support of the National Natural Science Foundation of China(No.52171063).
文摘Weathering steel exhibits excellent corrosion resistance and is widely used in bridges,towers,railways,highways,and other engineering projects that are exposed to the atmosphere for long periods of time.However,before the formation of stable rust layers,weathering steel is prone to liquid rust sagging and spattering,leading to environmental pollution and city appearance concerns.These factors limit the application and development of weathering steel.In this study,a rapid and environmentally friendly method was de-veloped by introducing alloying elements,specifically investigating the role of Sn in the rapid stabilization of rust layers in marine atmo-spheric environments.The rust layer formed on weathering low-alloy steel exposed to prolonged outdoor conditions and laboratory im-mersion experiments was explored using electron probe micro-analyzer(EPMA),micro-Raman,X-ray photoelectron spectroscopy(XPS),and electrochemical measurements.Results showed an optimal synergistic effect between Sn and Cr,which facilitated the accelerated densification of the rust layer.This beneficial effect enhanced the capability of the rust layer to resist Cl^(-)erosion and improved the protec-tion performance of the rust layer.
基金supported by the National Natural Science Foundation of China(Nos.52003148 and 52261045)the State Key Laboratory of Marine Resource Utilization in South China Sea,Hainan University(No.MRUKF2021023)+3 种基金the Key Research and Development Project of Shaanxi Province(No.2023-YBGY-475)the Key Scientific Research Project of Education Department of Shaanxi Province(No.22JS003)the Industrialization Project of the State Key Laboratory of Biological Resources and Ecological Environment(Cultivation)of Qinba Region(No.SXC-2310)the key cultivation project funds of Shaanxi University of Technology(No.SLGKYXM2201).
文摘Polyurethane-fluorinated polysiloxane(PU-^(F)PDMS)with high-strength,high-bonding and low surface en-ergy is synthesized as the matrix,and the PU-^(F)PDMS/MCs/Ag marine anti-fouling coating on the sur-face of imitation crab shells is constructed by assembling butenolide@1,1-stilbene-modified hydrolyzed polyglycidyl methacrylate/graphene oxide microcapsules(Bu@PGMAm/GO MCs)with compact multi-shell structure and Ag nanoparticles(AgNPs)step by step on the PU-^(F)PDMS matrix.The PU-^(F)PDMS/MCs/Ag bionic anti-fouling coatings achieve long-term and stable anti-fouling effect under the combination of robust low-surface-energy PU-^(F)PDMS matrix,steady-state sustained release of butenolide encapsulated by the compact multi-shell,bionic surface formed by the microcapsules and AgNPs,and the release of Ag^(+).The shear strength,tensile strength,and elongation at break of the PU-^(F)PDMS/MCs/Ag are 3.53 MPa,6.7 MPa,and 192.83%,respectively.Its static contact angle and sliding angle are 161.8°and 3.6°,respectively.The antibacterial rate of PU-^(F)PDMS/MCs/Ag against Escherichia coli,Staphylococcus aureus,and Candida albicans can reach 100%.Compared with glass blank,PU,PU-^(F)PDMS,PU-^(F)PDMS/Ag,and PU-^(F)PDMS/MCs,both the adhesion number and coverage percentage of chlorella adhere to PU-^(F)PDMS/MCs/Ag are the minimum values,which are 600 cell mm^(-2) and 1.53%,respectively.After 6 months of marine field test,the primer blank,PU,PU-^(F)PDMS all show different degrees of attachment by shellfish,spirorbis,al-gae and other biofouling,while the PU-^(F)PDMS/MCs/Ag coating is still not covered with biofouling,while the PU-^(F)PDMS/MCs/Ag coatings still exhibit little attachment of marine fouling.The PU-^(F)PDMS/MCs/Ag bionic anti-fouling coatings are expected to be widely used in the fields of anti-fouling,anti-icing,anti-fogging,drag reduction,self-cleaning,and antibacterial.
基金financially supported by the National Natural Science Foundation of China(Grant No.U22B20126)the National Key Research and Development Program of China(Grant No.2022YFC2806100).
文摘With increasing water depth,marine drilling conductors exhibit higher slenderness ratios,significantly reducing their resistance to environmental loads in Arctic waters.These conductors,when subjected to combined wind,current,and ice loads,may experience substantial horizontal displacements and bending moments,potentially compromising off-shore operational safety and wellhead stability.Additionally,soil disturbance near the mudline diminishes the conductor’s bearing capacity,potentially rendering it inadequate for wellhead support and increasing operational risks.This study introduces a static analysis model based on plastic hinge theory to evaluate conductor survivability.The conductor analysis divides the structure into three segments:above waterline,submerged,and embedded below mudline.An idealized elastic-plastic p-y curve model characterizes soil behavior beneath the mudline,while the finite difference method(FDM)analyzes the conductor’s mechanical response under complex pile-head boundary conditions.Numerical simulations using ABAQUS validate the plastic hinge approach against conventional methods,confirming its accuracy in predicting structural performance.These results provide valuable insights for optimizing installation depths and bearing capacity designs of marine drilling conductors in ice-prone regions.
基金financially supported by Sichuan Science and Technology Program(Grant No.2023NSFSC1980).
文摘This study examines the adaptive boundary control problem of flexible marine riser with internal flow coupling.The dynamic model of the flexible marine riser system with internal flow coupling is derived using the Hamiltonian principle.An analysis of internal flow’s influence on the vibration characteristics of flexible marine risers is conducted.Then,for the uncertain environmental disturbance,the adaptive fuzzy logic system is introduced to dynamically approximate the boundary disturbance,and a robust adaptive fuzzy boundary control is proposed.The uniform boundedness of the closed-loop system is proved based on Lyapunov theory.The well-posedness of the closed-loop system is proved by operator semigroup theory.The proposed control’s effectiveness is validated through comparison with existing control methods.
基金supported by the National Natural Science Foundation of China(Nos.42277315,22066009)the Scientific Research Startup Fund of Hainan University(Nos.XJ2300005916,kyqd(zr)22185)+1 种基金supported by Scientific Research Project of Hainan Higher Education Institutions(No.Hnky2023-9)Innovational Fund for Scientific and Technological Personnel of Hainan Province(No.KJRC2023C12)。
文摘Synergy strategy of photocatalysts and polymer resins are promising technology for marine antifouling.However,it is still a main challenge to obtain a green,safe,and efficient antifouling coatings.Herein,carbon(graphene or CNT)modified Ti O_(2)photocatalyst was synthesized via hydrothermal and annealing process and has successfully applied in acrylate fluoroboron polymer(ABFP)composite coating.Morphology and chemical composition were detailed characterized.The graphene or CNT acted as a bridge with supplemental spatial structures(petal gaps,entanglement)and new functional groups(C-O,C-Ti-O,etc.)on Ti O_(2)particle.Carbon nanotube(CNT)modified TiO_(2)-ABFP coatings(BTCP)achieved excellent antibacterial and anti-diatom adhesion rate of 89.3%-96.70%and 99.00%-99.50%,which was 1.84-4.94-fold more than that of the single ABFP.CNT or graphene served as electronic bridges was considered as the crucial mechanism,which significantly improved the light absorption range and capacity,conductivity,and photoelectric response of Ti O_(2),and further accelerated the generation and transfer of free radicals to the surface of BTCP or FTGP.Moreover,the improvement of catalyst activity synergizes with the smooth surface,hydrophilicity,and slow hydrolysis of composite coatings,achieved long-term and efficient antifouling performance.This work provides a new insight into the modification of Ti O_(2)and antifouling mechanism of polymer coating.
基金funded by the National Natural Science Foundation of China(No.42076044)the Key Research Program of Frontier Sciences,CAS(No.ZDBS-LY-DQC025)+5 种基金the Key R&D Program of Shandong Province,China(No.2022CXPT027)the Chinese Academy of Sciences President’s International Fellowship Initiative(No.2023VEA0007)the Postdoctoral Fellowship Program of CPSF(No.GZB20230769)the China Postdoctoral Science Foundation(No.2023M743529)the Shandong Postdoctoral Science Foundation(No.SDBX202302014)Excellent Postdoctoral Incentive Program of Chinese Academy of Sciences,and Qingdao Postdoctoral Science Foundation(No.QDBSH20230202117).
文摘Bacterial contamination and marine biofouling are directly or indirectly impacting the economy,environment,and human health worldwide.Photocatalytic sterilization and antifouling technology is an effective method to prevent microbial contamination and corrosion.Due to its eco-friendly nature,broad-spectrum bactericidal properties,and high efficiency,this method has recently received much attention.In this review,we have comprehensively discussed the photoinduced charge carriers transfer,main reactive oxygen species(ROS),the interactions among photocatalysts and microorganisms,as well as various antibacterial mechanisms such as oxidative stress,physical/mechanical destruction,photothermal effect,piezoelectric field effect,and triboelectric field.Different types of semiconductors,including TiO_(2),ZnO,CeO_(2),Cu-based semiconductors,Bi-based semiconductors,Ag-based semiconductors,g-C_(3)N_(4),MOF,and containing phosphorus photocatalysts are summarized in photocatalytic sterilization and antifouling activity.Besides,various improvement methods including morphological control,crystallizing,doping engineering,loading cocatalyst,and constructing heterojunction are discussed.Furthermore,a strategy for dramatically improving practice applications is proposed for the possibility of further antifouling applications.Challenges and prospects for the photocatalytic sterilization and antifouling method are also discussed to highlight design considerations.
基金supported by the National Natural Science Foundation of China [grant number 42030605]the National Key R&D Program of China [grant number 2020YFA0608004]。
文摘A remarkable marine heatwave,known as the“Blob”,occurred in the Northeast Pacific Ocean from late 2013 to early 2016,which displayed strong warm anomalies extending from the surface to a depth of 300 m.This study employed two assimilation schemes based on the global Climate Forecast System of Nanjing University of Information Science(NUIST-CFS 1.0)to investigate the impact of ocean data assimilation on the seasonal prediction of this extreme marine heatwave.The sea surface temperature(SST)nudging scheme assimilates SST only,while the deterministic ensemble Kalman filter(EnKF)scheme assimilates observations from the surface to the deep ocean.The latter notably improves the forecasting skill for subsurface temperature anomalies,especially at the depth of 100-300 m(the lower layer),outperforming the SST nudging scheme.It excels in predicting both horizontal and vertical heat transport in the lower layer,contributing to improved forecasts of the lower-layer warming during the Blob.These improvements stem from the assimilation of subsurface observational data,which are important in predicting the upper-ocean conditions.The results suggest that assimilating ocean data with the EnKF scheme significantly enhances the accuracy in predicting subsurface temperature anomalies during the Blob and offers better understanding of its underlying mechanisms.
文摘As climate change,international trade,and human activities increasingly disrupt traditional geographic barriers in the oceans,non-indigenous species(NIS)have successfully established themselves outside their native ranges.Outbreaks of NIS can pose significant threats to local ecosystems and economies,making them a critical issue for marine biodiversity and biosecurity.Biological invasions in marine habitats differ significantly from those on land or in freshwater.Detection and identification of NIS in marine habitats is particularly challenging due to difficulties in sampling,morphological identification,and visualization in the early stages of outbreaks.Environmental DNA(eDNA)approaches have emerged as reliable and cost-effective methods for both qualitative and quantitative detection of marine NIS,particularly in the introductory phase.In this review,we summarize recent applications and advances in eDNA-based detection of marine NIS.We emphasize that innovations in eDNA sampling equipment,improvements in detection methods,and further refinement of the reference genomic database for marine species are crucial for the future development of this field.
文摘This study used non-invasive evaluation methods measured six skin physiological parameters of the lower lip in 180 subjects,including moisture content,transepidermal water loss(TEWL),smoothness(SESM),scaliness of the skin(SESC),wrinkles(SEW),and red area of the lip skin,and compared the effects of 6 groups of lip balms(no-additive group,marine oligosaccharides group,ceramides group,glycyrrhizinic acid group,allantoin group,and mixed group;30 each)on the skin physiological parameters of dry,flaking,and cracked lip subjects.The results showed that the lip mositure content of the subjects in the marine oligosaccharide group,glycyrrhetinic acid group,and allantoin group increased significantly by 44.40%,42.84%and 58.08%after 7 days of lip balm(P<0.05).The TEWL in the ceramide group and the allantoin group was significantly reduced by 21.83%and 24.72%,respectively,after 7 days of lip paste use(P<0.05).The lip skin smoothness values of subjects in the glycyrrhizic acid group and the allantoin group were significantly reduced by 18.76%and 14.97%,respectively,after 28 days of lip balm application(P<0.05).The lip skin scaling indices of subjects in the marine oligosaccharide group,the ceramides group,and the allantoin group were significantly reduced by 33.77%,42.69%,and 38.07%,respectively,after 28 days of lip balm application(P<0.05).The wrinkle parameters of the lip skin of the subjects in the marine oligosaccharide,glycyrrhizinic acid and allantoin groups were significantly reduced by 23.06%,23.29%and 25.98%,respectively,after 28 days of lip balm application(P<0.05).And the area of the red zone of the lip skin of the subjects in the allantoin group was significantly reduced by 4.27%,after 28 days of lip balm application(P<0.05).Combining the effects of the four active ingredients on the secretion of hyaluronic acid(moisturizing effect)and inflammatory factor(IL-6)in HSF cells,it suggests that marine oligosaccharides and allantoin have a perfect impact on enhancing the water content of the skin on the lips of the subjects,and further improve the symptoms of flaking and wrinkles on the lips of the subjects.The ceramide and allantoin can repair the skin barrier well and have a good effect on the chapped and flaky lips of the subjects.After 28 days of using lip balm,the water content of lips in the mixed group increased,the skin barrier was repaired and became smoother,and the wrinkles,scale index,and red zone value were reduced,which could well relieve chronic lip inflammation and lay a foundation for developing lip products for the treatment of chronic cheilitis.
基金Supported by the National Natural Science Foundation of China(No.42476016)the Laoshan Laboratory(No.LSKJ202202702)the Indo-Pacific Ocean and Climate Laboratory Project(No.424530)from Hohai University。
文摘The thermal state of seawater is a fundamental property of the ocean.Extreme changes in the ocean's thermal conditions can significantly impact the marine environment,climate system,ecosystems,and economic activities.Marine heatwaves(MHWs)are extreme high-temperature events occurring in the ocean at weather or short-to-medium-term climate scales,representing extreme variations in oceanic conditions(Pearce et al.,2011;Feng et al.,2013;Hobday et al.,2016).
基金Supported by the President’s International Fellowship Initiative of Chinese Academy of Sciences(No.2024 PVC 0010)。
文摘Marine pollution is a well-recognized phenomenon that has many negative effects on the marine environment.The effects of marine pollution are due to the discharge of hazardous materials,toxins,or other pollutants into the marine environment,which includes seas,estuaries,oceans,and other water bodies,and this unwanted input affects the blue economy.The blue economy,which includes industries and research associated with marine and ocean resources,is often affected by marine pollution on multiple levels,such as economic costs,direct resource impacts,health risks,and infrastructure damage.In one report,the pollution-related issues in many countries were estimated at 9 t/inh and clean-up costs between$12 to$160/t.More extensive pollution mitigation projects might take up to 15 years to conclude and cost up to$500/t.To better understand the role of marine pollution and its impact on the blue economy,some key parameters are discussed as follows:the role of biofouling,volatile organic compounds,the impact of metals,anionic pollutants,and antifouling coatings.The review findings also highlight the impact of marine pollution on ecosystems and associated economic activities,which could be reduced through measures such as better international cooperation,waste management,and the development of sustainable practices.Related information on the strategies and policies that could be adopted for sustainable blue economy are stated after each section.
文摘The Journal of Ocean University of China(Oceanic and Coastal Sea Research)is a comprehensive academic quarterly sponsored by the Ocean University of China,published one volume per year.This journal is devoted to the publication of the theoretical and applied research results on oceanography and marine fisheries.The fields covered include the physical,chemical,biological,geo-logical,environmental,engineering and technological aspects of these sciences.The types of papers include research papers,notes,technical reports,science and technology letters,reviews and overviews,etc.It has been indexed by SCI-E since 2012.
基金support of the School of Engineering,Lancaster University,UK,for the Engineering Department Studentship as well as the Engineering and Physical Sciences Research Council(EPSRC)’s Doctoral Training Centre(DTC)。
文摘With the increasing exploration of oil and gas into deep waters,the necessity for material development increases for lighter conduits such as composite marine risers,in the oil and gas industry.To understand the research knowledge on this novel area,there is a need to have a bibliometric analysis on composite marine risers.A research methodology was developed whereby the data retrieval was from SCOPUS database from 1977–2023.Then,VOSviewer was used to visualize the knowledge maps.This study focuses on the progress made by conducting knowledge mapping and scientometric review on composite marine risers.This scientometric analysis on the subject shows current advances,geographical activities by countries,authorship records,collaborations,funders,affiiliations,co‑occurrences,and future research areas.It was observed that the research trends recorded the highest publication volume in the U.S.A.,but less cluster affiiliated,as it was followed by countries like the U.K.,China,Nigeria,Australia and Singapore.Also,thisfiield has more conference papers than journal papers due to the challenge of adaptability,acceptance,qualifiication,and application of composite marine risers in the marine industry.Hence,there is a need for more collaborations on composite marine risers and more funding to enhance the research trend.
基金supported by the directional Foundation of the Key Laboratory of Ocean Observation Technology,MNR(No.2021KlootB06)the National Natural Science Foundation of China(No.52271341)。
文摘The use of antifouling agents is suggested to be a promising method for protecting oceanic instruments from biological contamination.We developed a novel antifouling material doped with capsaicin(CAP)as a filler and montmorillonite(MMT)as a carrier for the practical application of CTD(conductivity,temperature,depth)protection.The optimal parameters for preparing the material were established,and the obtained material achieved the maximum CAP loading capacity of 32.74%.The proposed material exhibited great release properties in acidic environments,which is beneficial for reducing bacterial attachment.Furthermore,the optimal conditions(temperature,flow rate,and pressure in the aquatic environment)for a better release rate of the material were determined through a series of simulation tests in lab.It provided good guidance and basis for practical application of the material.The CAP@MMT composite showed excellent efficiency and effectiveness in preventing the attachment of microorganisms during the four-month marine field tests.In the subsequent experiments,the great properties of the antifouling material were further confirmed by retesting the conductivity of four instruments participating in marine field tests.The measuring errors of CTD protected by the antifouling material are both within 0.01 mS/cm,which is far lower than that of the other two instruments.