This paper considers the following Marcinkiewicz type integrals■which can be regarded as an extension of the classical Marcinkiewicz integral po introduced by Stein in[Trans Amer Math Soc,88(1958):159-172],where Ω i...This paper considers the following Marcinkiewicz type integrals■which can be regarded as an extension of the classical Marcinkiewicz integral po introduced by Stein in[Trans Amer Math Soc,88(1958):159-172],where Ω is a homogeneous function of degree zero on R^(n)with mean value zero in the unit sphere S^(n-1),Under the assumption that Ω∈L^(∞)(S^(n-1)),the authors establish the L^(q)-estimate and weak(1,1)type estimate as well as the corresponding weighted estimates for po.s with 1<q<∞ and 0<β(q-1)n/q.Moreover,the bounds do not depend on β and the strong(q,q)type and weak(1,1)type estimates for the classical Marcinkiewicz integral po can be recovered from the above estimates of μΩ,β whenβ→0.展开更多
文摘This paper considers the following Marcinkiewicz type integrals■which can be regarded as an extension of the classical Marcinkiewicz integral po introduced by Stein in[Trans Amer Math Soc,88(1958):159-172],where Ω is a homogeneous function of degree zero on R^(n)with mean value zero in the unit sphere S^(n-1),Under the assumption that Ω∈L^(∞)(S^(n-1)),the authors establish the L^(q)-estimate and weak(1,1)type estimate as well as the corresponding weighted estimates for po.s with 1<q<∞ and 0<β(q-1)n/q.Moreover,the bounds do not depend on β and the strong(q,q)type and weak(1,1)type estimates for the classical Marcinkiewicz integral po can be recovered from the above estimates of μΩ,β whenβ→0.