期刊文献+
共找到4,235篇文章
< 1 2 212 >
每页显示 20 50 100
Power forecasting method of ultra-short-term wind power cluster based on the convergence cross mapping algorithm
1
作者 Yuzhe Yang Weiye Song +5 位作者 Shuang Han Jie Yan Han Wang Qiangsheng Dai Xuesong Huo Yongqian Liu 《Global Energy Interconnection》 2025年第1期28-42,共15页
The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward... The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward-looking information of key wind farms in a cluster under different weather conditions is an effective method to improve the accuracy of ultrashort-term cluster power forecasting.To this end,this paper proposes a refined modeling method for ultrashort-term wind power cluster forecasting based on a convergent cross-mapping algorithm.From the perspective of causality,key meteorological forecasting factors under different cluster power fluctuation processes were screened,and refined training modeling was performed for different fluctuation processes.First,a wind process description index system and classification model at the wind power cluster level are established to realize the classification of typical fluctuation processes.A meteorological-cluster power causal relationship evaluation model based on the convergent cross-mapping algorithm is pro-posed to screen meteorological forecasting factors under multiple types of typical fluctuation processes.Finally,a refined modeling meth-od for a variety of different typical fluctuation processes is proposed,and the strong causal meteorological forecasting factors of each scenario are used as inputs to realize high-precision modeling and forecasting of ultra-short-term wind cluster power.An example anal-ysis shows that the short-term wind power cluster power forecasting accuracy of the proposed method can reach 88.55%,which is 1.57-7.32%higher than that of traditional methods. 展开更多
关键词 Ultra-short-term wind power forecasting Wind power cluster Causality analysis Convergence cross mapping algorithm
在线阅读 下载PDF
基于BP典型相关分析和多变量SOM聚类的区划算法研究
2
作者 吴香华 金芯如 +2 位作者 黎亚少 任苗苗 王巍巍 《南京信息工程大学学报》 北大核心 2025年第3期363-373,共11页
针对目前气候区划变量较少、信息利用不充分、较少考虑气候变化影响等问题,基于机器学习和现代统计方法,提出一种数据驱动的区划算法.首先,基于Mann-Kendall检验和滑动t检验计算主变量的突变点,把研究时期进行分段;然后,基于BP典型相关... 针对目前气候区划变量较少、信息利用不充分、较少考虑气候变化影响等问题,基于机器学习和现代统计方法,提出一种数据驱动的区划算法.首先,基于Mann-Kendall检验和滑动t检验计算主变量的突变点,把研究时期进行分段;然后,基于BP典型相关选取协变量,并建立多变量SOM聚类算法,实现不同阶段的气候区划;最后,结合气候区概况来分析区划结果的实际意义,以及气候变化对气候区划的影响.实验结果表明:所提的区划算法有别于主变量的等值线分区以及人为确定阈值,而是根据SOM聚类,由数据驱动来确定区域个数以及分区,数据利用率高,区划过程更加客观合理;无需在区划过程中考虑气候背景,而是在算法过程中包含多层协变量和气候变化的影响,能够有效提高区划效率和可靠性. 展开更多
关键词 区划 MANN-KENDALL检验 BP典型相关分析 多变量som聚类
在线阅读 下载PDF
Algorithm for Solving Traveling Salesman Problem Based on Self-Organizing Mapping Network 被引量:1
3
作者 朱江辉 叶航航 +1 位作者 姚莉秀 蔡云泽 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第3期463-470,共8页
Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from ... Traveling salesman problem(TSP)is a classic non-deterministic polynomial-hard optimization prob-lem.Based on the characteristics of self-organizing mapping(SOM)network,this paper proposes an improved SOM network from the perspectives of network update strategy,initialization method,and parameter selection.This paper compares the performance of the proposed algorithms with the performance of existing SOM network algorithms on the TSP and compares them with several heuristic algorithms.Simulations show that compared with existing SOM networks,the improved SOM network proposed in this paper improves the convergence rate and algorithm accuracy.Compared with iterated local search and heuristic algorithms,the improved SOM net-work algorithms proposed in this paper have the advantage of fast calculation speed on medium-scale TSP. 展开更多
关键词 traveling salesman problem(TSP) self-organizing mapping(som) combinatorial optimization neu-ral network
原文传递
自组织神经映射网络(SOM)结合PMF模型解析某湿地公园沉积物金属来源
4
作者 韩晨露 胡恭任 +2 位作者 于瑞莲 赵大伟 吴雅清 《环境科学》 北大核心 2025年第8期5070-5081,共12页
评价湿地沉积物金属污染现状及生态风险并分析其来源,对保障湿地的正常生态功能和可持续发展具有重要意义.为研究由围堰养殖场和农田改建而来的某滨海湿地公园是否存在金属污染问题,在公园内采集26个表层沉积物样品,分析测定金属元素(Li... 评价湿地沉积物金属污染现状及生态风险并分析其来源,对保障湿地的正常生态功能和可持续发展具有重要意义.为研究由围堰养殖场和农田改建而来的某滨海湿地公园是否存在金属污染问题,在公园内采集26个表层沉积物样品,分析测定金属元素(Li、Be、V、Cr、Co、Cu、Zn、Cd、Pb、As和Mn)的含量,结合空间分布特征,采用地累积指数、污染负荷指数以及潜在生态风险指数对研究区域进行金属污染评价,利用相关性-聚类分析、自组织神经映射网络(SOM)和正定矩阵因子分解(PMF)解析金属元素的来源及其贡献率.结果表明:(1)研究区表层沉积物中金属元素含量平均值均超过福建省土壤元素背景值,Cd和Zn的变异性较强,受人为影响显著;(2)地累积指数、污染负荷指数和潜在生态风险指数评价结果表明,该公园整体处于低、中污染等级,其中Li和Zn的积累程度较大,而Cd的潜在生态风险达到了较高水平;(3)综合相关性-聚类、SOM和PMF分析表明11种金属污染来源可划分为3类,其中Cr、Cu、Zn和Pb主要源于交通源(29.72%),Li、Be、Mn、V、Co和As主要源于自然源(44.89%),Cd和Zn则主要来源于农业活动(25.39%). 展开更多
关键词 滨海湿地公园 表层沉积物 金属污染评价 自组织神经映射网络(som) 正定矩阵因子分解(PMF) 来源解析
原文传递
Differential Spatial Modulation Mapping Algorithms
5
作者 WANG Chanfei CHAI Jianxin XU Yamei 《ZTE Communications》 2024年第3期116-122,共7页
Differential spatial modulation(DSM)is a multiple-input multiple-output(MIMO)transmission scheme.It has attracted extensive research interest due to its ability to transmit additional data without increasing any radio... Differential spatial modulation(DSM)is a multiple-input multiple-output(MIMO)transmission scheme.It has attracted extensive research interest due to its ability to transmit additional data without increasing any radio frequency chain.In this paper,DSM is investigated using two mapping algorithms:Look-Up Table Order(LUTO)and Permutation Method(PM).Then,the bit error rate(BER)performance and complexity of the two mapping algorithms in various antennas and modulation methods are verified by simulation experiments.The results show that PM has a lower BER than the LUTO mapping algorithm,and the latter has lower complexity than the former. 展开更多
关键词 spatial modulation(SM) multiple-input multiple-output(MIMO) Look-Up Table Order(LUTO) Permutation Method(PM) mapping algorithm
在线阅读 下载PDF
基于SOM-BP级联神经网络的电驱离心泵健康状态识别方法 被引量:1
6
作者 江新星 吴杰 +1 位作者 薛一冰 彭世亮 《油气储运》 北大核心 2025年第3期350-359,共10页
【目的】离心泵预测性维护是提升设备可靠性与运行效率的核心技术之一,在该过程中,对离心泵设备的健康状态识别是关键环节。然而,传统的健康状态识别方法多依赖于机器学习技术,高度依赖足量标记数据,难以直观清晰地表征监测数据与健康... 【目的】离心泵预测性维护是提升设备可靠性与运行效率的核心技术之一,在该过程中,对离心泵设备的健康状态识别是关键环节。然而,传统的健康状态识别方法多依赖于机器学习技术,高度依赖足量标记数据,难以直观清晰地表征监测数据与健康状态之间的对应关系,使其在实际复杂工况中的应用效果受限,亟需开发更精准、高效且适应性更强的健康状态识别方法。【方法】提出一种基于自组织映射(Self-Organization Map, SOM)神经网络与BP(Back Propagation)神经网络级联的电驱离心泵健康状态识别方法。首先采用SOM神经网络方法对离心泵全生命周期振动数据进行预处理,提取时域、频域及时频域的多种统计特征与熵特征,从而全面表征设备的运行状态;其次,采用主成分分析法(Principal Component Analysis, PCA)对已提取的轴承振动信号特征进行降维与融合,有效减少冗余信息和计算复杂度,优化输入参数的模式,提升建模效率;最后,综合SOM神经网络与BP神经网络的优点,建立了基于SOM-BP级联神经网络的电驱离心泵健康状态识别模型。【结果】以某电驱离心泵的健康状态监测数据集为算例,对比了SOM-BP模型与常见的机器学习方法(随机森林模型、XG-boost模型)识别电驱离心泵健康状态的准确率,以R^(2)、MSE、RMSE为模型评价指标,结果表明:基于SOM-BP级联神经网络模型的R^(2)值、MSE值、RMSE值分别为0.901、0.8×10^(-6)m^(2)/s^(4)、9.12×10^(-4)m/s^(2),显著优于传统的机器学习方法,展现出良好的鲁棒性与适应性。【结论】基于SOM-BP级联神经网络计算方法不仅提升了离心泵健康状态识别的精度,还可为离心泵故障诊断与剩余寿命预测提供数据支撑,同时为其他旋转机械的健康状态管理与诊断提供了新思路。 展开更多
关键词 自组织映射 BP神经网络 电驱离心泵 健康状态识别
原文传递
基于SOM聚类的物联网大数据中有效信息挖掘系统 被引量:1
7
作者 邓凯 章荣燕 +3 位作者 郭清 李宇 陈隆晖 徐靖淞 《电子设计工程》 2025年第6期53-56,62,共5页
针对物联网大数据中有效信息挖掘困难的问题,对其根源进行分析,该问题主要是数据资源分配不清晰导致的。因此提出结合粒子群算法对SOM聚类进行改进的物联网大数据有效信息挖掘系统。通过粒子群算法对SOM聚类的权值进行优化,并结合自回... 针对物联网大数据中有效信息挖掘困难的问题,对其根源进行分析,该问题主要是数据资源分配不清晰导致的。因此提出结合粒子群算法对SOM聚类进行改进的物联网大数据有效信息挖掘系统。通过粒子群算法对SOM聚类的权值进行优化,并结合自回归模型对数据特征作出估计,同时对集群进行动态分配。经过实验验证,结果表明改进后的算法的资源利用率更高,对数据特征的预测更加准确,有效信息的挖掘效率更高,整体上的执行延迟在0.2 ms左右。 展开更多
关键词 物联网 数据流 粒子群算法 som聚类 数据特征 数据信息
在线阅读 下载PDF
基于PSO+SOM神经网络的无人机装备故障智能诊断研究
8
作者 沈延安 陈强 杨克泉 《火力与指挥控制》 北大核心 2025年第1期152-159,168,共9页
针对当前无人机装备故障人工诊断效率低、智能诊断方法少、故障识别正确率低以及SOM神经网络收敛速度慢等问题,提出一种基于PSO+SOM神经网络的故障智能诊断方法。通过改进PSO算法优化SOM神经网络和对比PSO、GA、ACO对SOM神经网络的改进... 针对当前无人机装备故障人工诊断效率低、智能诊断方法少、故障识别正确率低以及SOM神经网络收敛速度慢等问题,提出一种基于PSO+SOM神经网络的故障智能诊断方法。通过改进PSO算法优化SOM神经网络和对比PSO、GA、ACO对SOM神经网络的改进效果,以及比较LVQ、BP、传统SOM、PSO+SOM神经网络的故障诊断效果,结果表明PSO+SOM神经网络的故障诊断模型具有适度值小、判别时间短、迭代次数少、准确率高、收敛速度快的优点,为实现无人机装备故障智能诊断提供一种高效的方法。 展开更多
关键词 无人机 som神经网络 PSO算法 智能化 故障诊断
在线阅读 下载PDF
Multi-Strategy Improved Secretary Bird Optimization Algorithm
9
作者 Fengkai Wang Bo Wang 《Journal of Computer and Communications》 2025年第1期90-107,共18页
This paper addresses the shortcomings of the Sparrow and Eagle Optimization Algorithm (SBOA) in terms of convergence accuracy, convergence speed, and susceptibility to local optima. To this end, an improved Sparrow an... This paper addresses the shortcomings of the Sparrow and Eagle Optimization Algorithm (SBOA) in terms of convergence accuracy, convergence speed, and susceptibility to local optima. To this end, an improved Sparrow and Eagle Optimization Algorithm (HS-SBOA) is proposed. Initially, the algorithm employs Iterative Mapping to generate an initial sparrow and eagle population, enhancing the diversity of the population during the global search phase. Subsequently, an adaptive weighting strategy is introduced during the exploration phase of the algorithm to achieve a balance between exploration and exploitation. Finally, to avoid the algorithm falling into local optima, a Cauchy mutation operation is applied to the current best individual. To validate the performance of the HS-SBOA algorithm, it was applied to the CEC2021 benchmark function set and three practical engineering problems, and compared with other optimization algorithms such as the Grey Wolf Optimization (GWO), Particle Swarm Optimization (PSO), and Whale Optimization Algorithm (WOA) to test the effectiveness of the improved algorithm. The simulation experimental results show that the HS-SBOA algorithm demonstrates significant advantages in terms of convergence speed and accuracy, thereby validating the effectiveness of its improved strategies. 展开更多
关键词 Secretary Bird Optimization algorithm Iterative mapping Adaptive Weight Strategy Cauchy Variation Convergence Speed
在线阅读 下载PDF
基于Gmapping算法的智能车建图研究
10
作者 刘慧敏 郑竹安 +1 位作者 谢双健 朱乃宣 《自动化与仪表》 2025年第9期51-55,60,共6页
该研究旨在解决智能车在室内环境中高效建图的问题,以提高车辆的自主导航能力。基于机器人操作系统(ROS)平台进行实现,对2种广泛使用的地图构建算法—Gmapping和Cartographer进行了实现与评估,并在相同的室内场景下进行了对比实验。通... 该研究旨在解决智能车在室内环境中高效建图的问题,以提高车辆的自主导航能力。基于机器人操作系统(ROS)平台进行实现,对2种广泛使用的地图构建算法—Gmapping和Cartographer进行了实现与评估,并在相同的室内场景下进行了对比实验。通过量化分析建图精度、地图完整性及算法稳定性等关键指标,全面评估了2种算法的性能。实验结果表明,Gmapping的测量误差为3%,优于Cartographer的4%误差;在室内环境中,Gmapping生成的地图与真实环境更为吻合,展现出更高的精度和稳定性;Gmapping在室内地图构建中具有更强的鲁棒性,为提升自主导航系统性能提供了重要参考。 展开更多
关键词 智能车 建图算法 ROS Gmapping Cartographer
在线阅读 下载PDF
UAV 3D Path Planning Based on Improved Chimp Optimization Algorithm
11
作者 Wenli Lei Xinghao Wu +1 位作者 KunJia Jinping Han 《Computers, Materials & Continua》 2025年第6期5679-5698,共20页
Aiming to address the limitations of the standard Chimp Optimization Algorithm(ChOA),such as inadequate search ability and susceptibility to local optima in Unmanned Aerial Vehicle(UAV)path planning,this paper propose... Aiming to address the limitations of the standard Chimp Optimization Algorithm(ChOA),such as inadequate search ability and susceptibility to local optima in Unmanned Aerial Vehicle(UAV)path planning,this paper proposes a three-dimensional path planning method for UAVs based on the Improved Chimp Optimization Algorithm(IChOA).First,this paper models the terrain and obstacle environments spatially and formulates the total UAV flight cost function according to the constraints,transforming the path planning problem into an optimization problem with multiple constraints.Second,this paper enhances the diversity of the chimpanzee population by applying the Sine chaos mapping strategy and introduces a nonlinear convergence factor to improve the algorithm’s search accuracy and convergence speed.Finally,this paper proposes a dynamic adjustment strategy for the number of chimpanzee advance echelons,which effectively balances global exploration and local exploitation,significantly optimizing the algorithm’s search performance.To validate the effectiveness of the IChOA algorithm,this paper conducts experimental comparisons with eight different intelligent algorithms.The experimental results demonstrate that the IChOA outperforms the selected comparison algorithms in terms of practicality and robustness in UAV 3D path planning.It effectively solves the issues of efficiency in finding the shortest path and ensures high stability during execution. 展开更多
关键词 UAV path planning chimp optimization algorithm chaotic mapping adaptive weighting
在线阅读 下载PDF
Improved Multi-Fusion Black-Winged Kite Algorithm for Optimizing Stochastic Configuration Networks for Lithium Battery Remaining Life Prediction
12
作者 Yuheng Yin Lin Wang 《Energy Engineering》 2025年第7期2845-2864,共20页
The accurate estimation of lithium battery state of health(SOH)plays an important role in the health management of battery systems.In order to improve the prediction accuracy of SOH,this paper proposes a stochastic co... The accurate estimation of lithium battery state of health(SOH)plays an important role in the health management of battery systems.In order to improve the prediction accuracy of SOH,this paper proposes a stochastic configuration network based on a multi-converged black-winged kite search algorithm,called SBKA-CLSCN.Firstly,the indirect health index(HI)of the battery is extracted by combining it with Person correlation coefficients in the battery charging and discharging cycle point data.Secondly,to address the problem that the black-winged kite optimization algorithm(BKA)falls into the local optimum problem and improve the convergence speed,the Sine chaotic black-winged kite search algorithm(SBKA)is designed,which mainly utilizes the Sine mapping and the golden-sine strategy to enhance the algorithm’s global optimality search ability;secondly,the Cauchy distribution and Laplace regularization techniques are used in the SCN model,which is referred to as CLSCN,thereby improving the model’s overall search capability and generalization ability.Finally,the performance of SBKA and SBKA-CLSCN is evaluated using eight benchmark functions and the CALCE battery dataset,respectively,and compared in comparison with the Long Short-Term Memory(LSTM)model and the Gated Recurrent Unit(GRU)model,and the experimental results demonstrate the feasibility and effectiveness of the SBKA-CLSCN algorithm. 展开更多
关键词 Random configuration networks black-winged kite algorithm sine chaotic mapping laplace transform
在线阅读 下载PDF
Localization of Acoustic Emission Source in Rock Using SMIGWO Algorithm
13
作者 Jiong Wei Fuqiang Gao +2 位作者 Jinfu Lou Lei Yang Xiaoqing Wang 《International Journal of Coal Science & Technology》 2025年第2期42-51,共10页
The Grey Wolf Optimization(GWO)algorithm is acknowledged as an effective method for rock acoustic emission localization.However,the conventional GWO algorithm encounters challenges related to solution accuracy and con... The Grey Wolf Optimization(GWO)algorithm is acknowledged as an effective method for rock acoustic emission localization.However,the conventional GWO algorithm encounters challenges related to solution accuracy and convergence speed.To address these concerns,this paper develops a Simplex Improved Grey Wolf Optimizer(SMIGWO)algorithm.The randomly generating initial populations are replaced with the iterative chaotic sequences.The search process is optimized using the convergence factor optimization algorithm based on the inverse incompleteГfunction.The simplex method is utilized to address issues related to poorly positioned grey wolves.Experimental results demonstrate that,compared to the conventional GWO algorithm-based AE localization algorithm,the proposed algorithm achieves a higher solution accuracy and showcases a shorter search time.Additionally,the algorithm demonstrates fewer convergence steps,indicating superior convergence efficiency.These findings highlight that the proposed SMIGWO algorithm offers enhanced solution accuracy,stability,and optimization performance.The benefits of the SMIGWO algorithm extend universally across various materials,such as aluminum,granite,and sandstone,showcasing consistent effectiveness irrespective of material type.Consequently,this algorithm emerges as a highly effective tool for identifying acoustic emission signals and improving the precision of rock acoustic emission localization. 展开更多
关键词 Acoustic emission Source localization Iterative chaotic mapping Simplex method Grey wolf optimizer algorithm
在线阅读 下载PDF
An Improved Multi-objective Artificial Hummingbird Algorithm for Capacity Allocation of Supercapacitor Energy Storage Systems in Urban Rail Transit
14
作者 Xin Wang Jian Feng Yuxin Qin 《Journal of Bionic Engineering》 2025年第2期866-883,共18页
To address issues such as poor initial population diversity, low stability and local convergence accuracy, and easy local optima in the traditional Multi-Objective Artificial Hummingbird Algorithm (MOAHA), an Improved... To address issues such as poor initial population diversity, low stability and local convergence accuracy, and easy local optima in the traditional Multi-Objective Artificial Hummingbird Algorithm (MOAHA), an Improved MOAHA (IMOAHA) was proposed. The improvements involve Tent mapping based on random variables to initialize the population, a logarithmic decrease strategy for inertia weight to balance search capability, and the improved search operators in the territory foraging phase to enhance the ability to escape from local optima and increase convergence accuracy. The effectiveness of IMOAHA was verified through Matlab/Simulink. The results demonstrate that IMOAHA exhibits superior convergence, diversity, uniformity, and coverage of solutions across 6 test functions, outperforming 4 comparative algorithms. A Wilcoxon rank-sum test further confirmed its exceptional performance. To assess IMOAHA’s ability to solve engineering problems, an optimization model for a multi-track, multi-train urban rail traction power supply system with Supercapacitor Energy Storage Systems (SCESSs) was established, and IMOAHA was successfully applied to solving the capacity allocation problem of SCESSs, demonstrating that it is an effective tool for solving complex Multi-Objective Optimization Problems (MOOPs) in engineering domains. 展开更多
关键词 Multi-objective artificial hummingbird algorithm Tent mapping based on random variables Urban rail transit Supercapacitor energy storage systems Capacity allocation
在线阅读 下载PDF
基于SOM神经网络的变电站高压电气设备自动检测方法研究
15
作者 冯永康 王梦欣 《通信电源技术》 2025年第3期82-84,共3页
当前变电站高压电气设备自动检测节点的部署一般采用定点形式,覆盖区域较小,导致错误检测次数增加,为此提出基于自组织映射(Self-Organizing Maps,SOM)神经网络的变电站高压电气设备自动检测方法。采用多点位的方式扩大自动检测的覆盖区... 当前变电站高压电气设备自动检测节点的部署一般采用定点形式,覆盖区域较小,导致错误检测次数增加,为此提出基于自组织映射(Self-Organizing Maps,SOM)神经网络的变电站高压电气设备自动检测方法。采用多点位的方式扩大自动检测的覆盖区域,实现对多点位自动检测节点的部署,构建SOM神经网络高压电气设备自动检测模型,将数据输入该模型从而得到相关的检测结果。测试结果表明,设计方法的错误检测次数较少,这表明该方法的稳定性与针对性更强,具有较高的实际的应用价值。 展开更多
关键词 自组织映射(som)神经网络 变电站 高压电气设备 自动检测 检测节点部署
在线阅读 下载PDF
基于SOM网络的水温定值控制
16
作者 刘俊鹏 陈永增 《自动化应用》 2025年第2期128-130,134,共4页
以应用于中央热水系统的快速热水器为研究对象,提出了一种新的控制方法。该方法融合回归算法与自组织映射(SOM)网络,具有处理多变量非线性问题、适应时变系统的能力,确保快速热水器能够抵御流量波动的干扰,并在各种工况下维持出水温度... 以应用于中央热水系统的快速热水器为研究对象,提出了一种新的控制方法。该方法融合回归算法与自组织映射(SOM)网络,具有处理多变量非线性问题、适应时变系统的能力,确保快速热水器能够抵御流量波动的干扰,并在各种工况下维持出水温度恒定。 展开更多
关键词 中央热水系统 快速热水器 时变系统 水温定值控制 回归算法 自组织映射网络
在线阅读 下载PDF
Graph Clustering Algorithm for RT Level ALU Technology Mapping
17
作者 周海峰 林争辉 曹炜 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2002年第11期1162-1167,共6页
Register transfer level mapping (RTLM) algorithm for technology mapping at RT level is presented,which supports current design methodologies using high level design and design reuse.The mapping rules implement a sou... Register transfer level mapping (RTLM) algorithm for technology mapping at RT level is presented,which supports current design methodologies using high level design and design reuse.The mapping rules implement a source ALU using target ALU.The source ALUs and the target ALUs are all represented by the general ALUs and the mapping rules are applied in the algorithm.The mapping rules are described in a table fashion.The graph clustering algorithm is a branch and bound algorithm based on the graph formulation of the mapping algorithm.The mapping algorithm suits well mapping of regularly structured data path.Comparisons are made between the experimental results generated by 1 greedy algorithm and graphclustering algorithm,showing the feasibility of presented algorithm. 展开更多
关键词 high level synthesis technology mapping register transfer level arithmetic logic units graphclustering algorithm
在线阅读 下载PDF
A New Hybrid Algorithm and Its Numerical Realization for a Quasi-nonexpansive Mapping 被引量:7
18
作者 GAO XING-HUI MA LE-RONG Ji You-qing 《Communications in Mathematical Research》 CSCD 2017年第4期340-346,共7页
The purpose of this article is to propose a new hybrid projection method for a quasi-nonexpansive mapping. The strong convergence of the algorithm is proved in real Hilbert spaces. A numerical experiment is also inclu... The purpose of this article is to propose a new hybrid projection method for a quasi-nonexpansive mapping. The strong convergence of the algorithm is proved in real Hilbert spaces. A numerical experiment is also included to explain the effectiveness of the proposed methods. The results of this paper are interesting extensions of those known results. 展开更多
关键词 quasi-nonexpansive mapping hybrid algorithm strong convergence Hilbert space
在线阅读 下载PDF
基于RCMDE和ISOMAP的行星齿轮传动耦合故障辨识研究 被引量:1
19
作者 苏世卿 王华锋 《机电工程》 CAS 北大核心 2024年第9期1584-1594,共11页
现有针对行星齿轮箱的故障诊断方法一般仅研究单一故障,但实际行星齿轮箱的故障一般由多个故障耦合而成,耦合故障的故障机理比单一故障的故障机理更复杂,振动信号中的非线性因素对特征提取的干扰更严重。针对该问题,提出了一种基于精细... 现有针对行星齿轮箱的故障诊断方法一般仅研究单一故障,但实际行星齿轮箱的故障一般由多个故障耦合而成,耦合故障的故障机理比单一故障的故障机理更复杂,振动信号中的非线性因素对特征提取的干扰更严重。针对该问题,提出了一种基于精细复合多尺度散度熵(RCMDE)、等距特征映射(ISOMAP)和遗传算法优化核极限学习机(GA-KELM)的行星齿轮箱耦合故障诊断方法。首先,利用振动加速度计采集了行星齿轮箱单一故障和耦合故障下运行时的振动信号,构建了故障数据集;随后,利用RCMDE提取了行星齿轮箱振动信号的故障特征,建立了初始的特征样本;接着,利用ISOMAP对故障特征进行了降维,并以可视化的方式获取了低维的特征样本;最后,将新特征输入至GA-KELM分类器中,对行星齿轮箱的不同故障类型进行了识别,并基于行星齿轮箱多点损伤样本,对RCMDE方法的可靠性进行了研究。研究结果表明:基于RCMDE和ISOMAP的故障特征提取方法能够有效提取振动信号中的故障特征,而GA-KELM的故障诊断准确率达到了98.13%,平均诊断准确率达到了96.25%。相较其他故障特征提取方法,基于RCMDE、ISOMAP和GA-KELM的行星齿轮箱耦合故障诊断方法能够更好地诊断行星齿轮箱的耦合故障,具有更高的诊断准确率。 展开更多
关键词 齿轮传动 耦合故障 故障诊断准确率 精细复合多尺度散度熵 等距特征映射 遗传算法优化核极限学习机
在线阅读 下载PDF
Immune evolutionary algorithms with domain knowledge for simultaneous localization and mapping 被引量:4
20
作者 李枚毅 蔡自兴 《Journal of Central South University of Technology》 EI 2006年第5期529-535,共7页
Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were de... Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were designed in algorithms, where the feature of parallel line segments without the problem of data association was used to construct a vaccination operator, and the characters of convex vertices in polygonal obstacle were extended to develop a pulling operator of key point grid. The experimental results of a real mobile robot show that the computational expensiveness of algorithms designed is less than other evolutionary algorithms for simultaneous localization and mapping and the maps obtained are very accurate. Because immune evolutionary algorithms with domain knowledge have some advantages, the convergence rate of designed algorithms is about 44% higher than those of other algorithms. 展开更多
关键词 immune evolutionary algorithms simultaneous localization and mapping domain knowledge
在线阅读 下载PDF
上一页 1 2 212 下一页 到第
使用帮助 返回顶部