期刊文献+
共找到4,827篇文章
< 1 2 242 >
每页显示 20 50 100
Quantitative analysis of different SLAM algorithms for geo‑monitoring in an underground test field
1
作者 Jing Li Jörg Benndorf Paweł Trybała 《International Journal of Coal Science & Technology》 2025年第1期166-185,共20页
Geo-monitoring provides quantitative and reliable information to identify hazards and adopt appropriate measures timely.However,this task inherently exposes monitoring staff to hazardous environments,especially in und... Geo-monitoring provides quantitative and reliable information to identify hazards and adopt appropriate measures timely.However,this task inherently exposes monitoring staff to hazardous environments,especially in underground settings.Since 2000s,robots have been widely applied in various fields and many studies have focused on establishing autonomous mobile robotic systems as well as solving the issue of underground navigation and mapping.However,only a few studies have conducted quantitative evaluations of these methods,and almost none have provided a systematic and comprehensive assessment of the suitability of mapping robots for underground geo-monitoring.In this study,a methodology for objective and quantitative assessment of the applicability of SLAM methods in underground geo-monitoring is proposed.This involves the development of an underground test field and some specific metrics,which allow detailed local accuracy analysis of point measurements,line segments,and areas using artificial targets.With this proposed methodology,a series of repeated experimental measurements has been performed with an autonomous driving robot and the selected LiDAR-and visual-based SLAM methods.The resulting point cloud was compared with the reference data measured by a total station and a terrestrial laser scanner.The accuracy and precision of the selected SLAM methods as well as the verifiability and reliability of the results are evaluated and discussed by analysing quantities such as the deviations of the control points coordinates,cloudto-cloud distances between the test and reference point cloud,normal vector,centre point coordinates and area of the planar objects.The results demonstrate that the HDL Graph SLAM achieves satisfactory precision,accuracy,and repeatability with a mean cloud-to-cloud distance of 0.12 m(with a standard deviation of 0.13 m)in an 80 m closed-loop measurement area.Although RTAB-Map exhibits better plane-capturing capabilities,the measurement results reveal instability and inaccuracies. 展开更多
关键词 Underground geo-monitoring Mobile robot Simultaneous localization and mapping HDL Graph slam RTAB-Map
在线阅读 下载PDF
Power forecasting method of ultra-short-term wind power cluster based on the convergence cross mapping algorithm
2
作者 Yuzhe Yang Weiye Song +5 位作者 Shuang Han Jie Yan Han Wang Qiangsheng Dai Xuesong Huo Yongqian Liu 《Global Energy Interconnection》 2025年第1期28-42,共15页
The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward... The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward-looking information of key wind farms in a cluster under different weather conditions is an effective method to improve the accuracy of ultrashort-term cluster power forecasting.To this end,this paper proposes a refined modeling method for ultrashort-term wind power cluster forecasting based on a convergent cross-mapping algorithm.From the perspective of causality,key meteorological forecasting factors under different cluster power fluctuation processes were screened,and refined training modeling was performed for different fluctuation processes.First,a wind process description index system and classification model at the wind power cluster level are established to realize the classification of typical fluctuation processes.A meteorological-cluster power causal relationship evaluation model based on the convergent cross-mapping algorithm is pro-posed to screen meteorological forecasting factors under multiple types of typical fluctuation processes.Finally,a refined modeling meth-od for a variety of different typical fluctuation processes is proposed,and the strong causal meteorological forecasting factors of each scenario are used as inputs to realize high-precision modeling and forecasting of ultra-short-term wind cluster power.An example anal-ysis shows that the short-term wind power cluster power forecasting accuracy of the proposed method can reach 88.55%,which is 1.57-7.32%higher than that of traditional methods. 展开更多
关键词 Ultra-short-term wind power forecasting Wind power cluster Causality analysis Convergence cross mapping algorithm
在线阅读 下载PDF
基于ORB-SLAM3视觉与惯导融合的煤矿机器人定位算法研究 被引量:3
3
作者 陈伟 巫帅达 +2 位作者 田子建 张帆 刘毅 《煤炭科学技术》 北大核心 2025年第S1期297-307,共11页
针对煤矿井下空间狭窄、光线昏暗且严重不均匀使矿井图像存在照度低、纹理稀疏、颜色失真等缺陷,严重影响了视觉SLAM特征点提取匹配结果,导致定位性能急剧下降,提出1种基于改进ORB-SLAM3算法的煤矿移动机器人单目视觉定位算法。首先对OR... 针对煤矿井下空间狭窄、光线昏暗且严重不均匀使矿井图像存在照度低、纹理稀疏、颜色失真等缺陷,严重影响了视觉SLAM特征点提取匹配结果,导致定位性能急剧下降,提出1种基于改进ORB-SLAM3算法的煤矿移动机器人单目视觉定位算法。首先对ORB-SLAM3定位算法进行改进,在前端特征点提取(ORB)算法的基础上引入了直方图均衡化、非极大值抑制法、自适应阈值法以及基于四叉树策略的特征点均匀化性质;然后在特征点匹配工作中,引入了基于图像金字塔的LK光流法,减少优化的迭代次数,在特征点匹配完成后加入RANSAC算法去除误匹配的特征点,提高特征点的匹配准确率。在后端通过三角测量的方法,得到像素的深度信息,将2D-2D位姿求解问题转化成3D-2D(pnp)位姿求解问题。根据视觉惯导紧耦合的原理,通过融合视觉残差和IMU残差构建整个定位系统的残差函数,并使用基于非线性优化的滑动窗口BA算法不断迭代优化残差函数,获取精确的移动机器人位姿估计。将改进后的算法在4个数据集下与ORB-SLAM3算法以及VINSMono算法进行了充分的对比实验。研究表明:(1)相比于ORB-SLAM3算法以及VINS-Mono算法,提出定位系统的运动轨迹和真值轨迹最接近;(2)提出定位系统的APE各项指标均优于ORB-SLAM3算法以及VINS-Mono算法;(3)提出定位系统均方根误差为0.049 m(4次实验平均值),相较于ORBSLAM3均方根误差降低了31.1%(四次实验平均值)。 展开更多
关键词 单目视觉 惯性导航 移动机器人 视觉slam(即时定位与地图构建)定位 LK光流法
在线阅读 下载PDF
基于点线特征的煤矿井下机器人视觉SLAM算法 被引量:2
4
作者 王莉 臧天祥 苏波 《煤炭科学技术》 北大核心 2025年第5期325-337,共13页
煤矿井下视觉同步定位与地图构建SLAM(Simultaneous Localization and Mapping)应用中,光照变化与低纹理场景严重影响特征点的提取和匹配结果,导致位姿估计失败,影响定位精度。提出一种基于改进定向快速旋转二值描述符ORB(Oriented Fast... 煤矿井下视觉同步定位与地图构建SLAM(Simultaneous Localization and Mapping)应用中,光照变化与低纹理场景严重影响特征点的提取和匹配结果,导致位姿估计失败,影响定位精度。提出一种基于改进定向快速旋转二值描述符ORB(Oriented Fast and Rotated Brief)-SLAM3算法的煤矿井下移动机器人双目视觉定位算法SL-SLAM。针对光照变化场景,在前端使用光照稳定性的Super-Point特征点提取网络替换原始ORB特征点提取算法,并提出一种特征点网格限定法,有效剔除无效特征点区域,增加位姿估计稳定性。针对低纹理场景,在前端引入稳定的线段检测器LSD(Line Segment Detector)线特征提取算法,并提出一种点线联合算法,按照特征点网格对线特征进行分组,根据特征点的匹配结果进行线特征匹配,降低线特征匹配复杂度,节约位姿估计时间。构建了点特征和线特征的重投影误差模型,在线特征残差模型中添加角度约束,通过点特征和线特征的位姿增量雅可比矩阵建立点线特征重投影误差统一成本函数。局部建图线程使用ORB-SLAM3经典的局部优化方法调整点、线特征和关键帧位姿,并在后端线程中进行回环修正、子图融合和全局捆绑调整BA(Bundle Adjustment)。在EuRoC数据集上的试验结果表明,SL-SLAM的绝对位姿误差APE(Absolute Pose Error)指标优于其他对比算法,并取得了与真值最接近的轨迹预测结果:均方根误差相较于ORB-SLAM3降低了17.3%。在煤矿井下模拟场景中的试验结果表明,SL-SLAM能适应光照变化和低纹理场景,可以满足煤矿井下移动机器人的定位精度和稳定性要求。 展开更多
关键词 井下机器人 视觉slam 双目视觉 SuperPoint特征 LSD线特征
在线阅读 下载PDF
面向复杂光照场景的异质SLAM融合方法
5
作者 孙荣川 高水镕 +2 位作者 张鑫 郁树梅 孙立宁 《机器人》 北大核心 2025年第4期508-516,共9页
针对低光照、弱纹理等复杂光照环境中同步定位与地图构建(SLAM)面临的闭环检测失败和机器人轨迹精度低的问题,将传统视觉SLAM方法的高精度地图构建和精确定位能力与仿生SLAM方法在复杂光照环境下的强场景识别能力相结合,提出了一种基于... 针对低光照、弱纹理等复杂光照环境中同步定位与地图构建(SLAM)面临的闭环检测失败和机器人轨迹精度低的问题,将传统视觉SLAM方法的高精度地图构建和精确定位能力与仿生SLAM方法在复杂光照环境下的强场景识别能力相结合,提出了一种基于模糊神经网络的异质SLAM融合方法,包括基于标准型模糊神经网络的闭环决策方法以提升复杂光照场景下闭环检测的成功率,以及基于T-S(Takagi-Sugeno)模糊神经网络的轨迹优化方法以提升机器人轨迹估计的精准性,从而实现在复杂光照环境中更准确的定位和更可靠的环境建模。实验结果表明,相较于ORB-SLAM2和RatSLAM方法,提出的异质SLAM融合方法在自采集数据集和公开数据集上能获得更高的闭环检测召回率和更低的绝对轨迹误差(ATE),在复杂场景下展现出较强的鲁棒性,对提升复杂光照场景下机器人自主作业的精准性及稳定导航定位能力具有积极意义。 展开更多
关键词 视觉slam(同步定位与地图构建) 仿生slam 模糊神经网络 多模态数据融合
原文传递
交叉注意力驱动的室外双目视觉SLAM稠密建图算法研究
6
作者 王立勇 刘毅政 +2 位作者 苏清华 宋越 谢智昊 《重庆理工大学学报(自然科学)》 北大核心 2025年第9期38-44,共7页
传统视觉SLAM算法依赖稀疏重建,难以满足自主导航与避障对高精度环境感知的需求。提出一种在传统ORB-SLAM3框架上集成交叉注意力机制的立体匹配稠密建图模型,实现室外稠密地图构建。该模型输出视差图生成彩色深度点云,实现高精度三维稠... 传统视觉SLAM算法依赖稀疏重建,难以满足自主导航与避障对高精度环境感知的需求。提出一种在传统ORB-SLAM3框架上集成交叉注意力机制的立体匹配稠密建图模型,实现室外稠密地图构建。该模型输出视差图生成彩色深度点云,实现高精度三维稠密地图构建,满足自主导航与避障需求。实验结果表明,该算法在KITTI数据集与实车实验室外环境中90%以上的稠密点云误差在0.5 m以内,具有较高的建图精度,可解决传统视觉SLAM系统存在的环境信息不足的问题。 展开更多
关键词 双目视觉slam 立体匹配 稠密建图 三维重建
在线阅读 下载PDF
基于鲁棒自适应ICP的激光SLAM算法
7
作者 朱新宇 杨远航 +1 位作者 韩丹 吴佩汶 《自动化应用》 2025年第10期258-263,共6页
现有激光同步定位与地图构建(SLAM)算法在实际应用中已展现出良好的效果。然而,主流的算法在前端配准阶段通常采用基于K-D树的K近邻(K-NN)搜索以及基于点云特征提取的ICP配准方法,这在一定程度上限制了系统的实时性能。此外,诸如点到线... 现有激光同步定位与地图构建(SLAM)算法在实际应用中已展现出良好的效果。然而,主流的算法在前端配准阶段通常采用基于K-D树的K近邻(K-NN)搜索以及基于点云特征提取的ICP配准方法,这在一定程度上限制了系统的实时性能。此外,诸如点到线、点到面等基于特征的ICP算法不仅高度依赖参数调优,而且在特征不足的场景中容易发生退化,从而难以在不同的应用场景、运动模式和机器人平台(如地面和空中机器人)中保持稳定。针对上述问题,提出了一种结合截断最小二乘法(TLS)与迭代点到点ICP的算法,配合自适应阈值和增量体素结构(iVox)等策略,旨在有效减少SLAM算法对参数调优的依赖,并提升算法的精度和实时性。通过在KITTI和NCLT数据集上的实验验证,与SuMa、F-LOAM等现有方法相比,所提算法不仅在准确性方面具备显著优势,而且在帧率上也有显著提升。 展开更多
关键词 激光雷达 截断最小二乘法 同步定位与地图构建算法
在线阅读 下载PDF
基于SLAM下温室自主导航系统的设计与试验
8
作者 张胜男 《农机化研究》 北大核心 2025年第3期82-88,共7页
传统的温室作业方式依赖于人工操作,工作效率低且难以保证作业的质量和稳定性。温室自主导航系统可以实现温室内自动化导航和作业,提高温室作物的生产效率和品质。因此,设计一种定位与地图构建(Simultaneous Localization And Mapping, ... 传统的温室作业方式依赖于人工操作,工作效率低且难以保证作业的质量和稳定性。温室自主导航系统可以实现温室内自动化导航和作业,提高温室作物的生产效率和品质。因此,设计一种定位与地图构建(Simultaneous Localization And Mapping, SLAM)技术下的温室自主导航系统,可利用激光雷达等传感器实时构建温室内的地图,并利用SLAM算法实现自主定位与导航。为了提高系统的鲁棒性和性能,提出了一种基于改进粒子滤波算法的姿态估计方法。试验结果表明:该温室自主导航系统能够高效准确地实现温室内的自主导航任务,为农业生产提供了一种新的自动化解决方案。 展开更多
关键词 温室自主导航系统 slam技术 粒子滤波算法 姿态估计
在线阅读 下载PDF
基于改进YOLOv5s的动态视觉SLAM算法
9
作者 蒋畅江 刘朋 舒鹏 《北京航空航天大学学报》 北大核心 2025年第3期763-771,共9页
针对室内动态场景中存在的动态目标会降低同步定位与地图构建(SLAM)系统的鲁棒性和相机定位精度问题,提出了一种基于目标检测网络的动态视觉SLAM算法。选择YOLOv5系列中深度和特征图宽度最小的YOLOv5s作为目标检测网络,并将其主干网络... 针对室内动态场景中存在的动态目标会降低同步定位与地图构建(SLAM)系统的鲁棒性和相机定位精度问题,提出了一种基于目标检测网络的动态视觉SLAM算法。选择YOLOv5系列中深度和特征图宽度最小的YOLOv5s作为目标检测网络,并将其主干网络替换为PPLCNet轻量级网络,在VOC2007+VOC2012数据集训练后,由实验结果可知,PP-LCNet-YOLOv5s模型较YOLOv5s模型网络参数量减少了41.89%,运行速度加快了39.13%。在视觉SLAM系统的跟踪线程中引入由改进的目标检测网络和稀疏光流法结合的并行线程,用于剔除动态特征点,仅利用静态特征点进行特征匹配和相机位姿估计。实验结果表明,所提算法在动态场景下的相机定位精度较ORB-SLAM3提升了92.38%。 展开更多
关键词 同步定位与地图构建 目标检测 动态特征点剔除 定位精度 光流法
原文传递
多层ICP闭环检测下的误差状态卡尔曼滤波多模态融合SLAM
10
作者 陈丹 陈浩 +3 位作者 王子晨 张衡 王长青 范林涛 《电子与信息学报》 北大核心 2025年第5期1517-1528,共12页
同步定位与地图构建(SLAM)技术是移动机器人智能导航的基础。该文针对单一传感器SLAM技术存在的问题,提出一种基于激光雷达多层迭代最近点(MICP)点云匹配闭环检测的误差状态卡尔曼滤波(ESKF)多传感器紧耦合2D-SLAM算法。在完成视觉与激... 同步定位与地图构建(SLAM)技术是移动机器人智能导航的基础。该文针对单一传感器SLAM技术存在的问题,提出一种基于激光雷达多层迭代最近点(MICP)点云匹配闭环检测的误差状态卡尔曼滤波(ESKF)多传感器紧耦合2D-SLAM算法。在完成视觉与激光雷达多模态数据的时空同步后,建立了里程计误差模型以及激光雷达与机器视觉点云匹配误差模型,并将其应用于误差状态卡尔曼滤波进行多模态数据融合,以提高SLAM的准确性和实时性。在公共数据集KITTI下进行的Gazebo环境仿真结果表明,该所提算法能够完整还原单一激光2D-SLAM无法获取到的环境障碍物信息,并能显著提高机器人轨迹估计和相对位姿估计精度。最后,采用Turtlebot2机器人在复杂实际大场景下进行了SLAM实验验证,结果表明所提多模态融合SLAM方法可以完整复原环境信息,实现实时的高精度2D地图构建。 展开更多
关键词 移动机器人 多传感器融合 同步定位与地图构建 误差状态卡尔曼滤波 闭环检测
在线阅读 下载PDF
融合视觉显著性的无人机SLAM导航定位
11
作者 黄龙杨 王致远 +2 位作者 屈若锟 熊乾凯 李诚龙 《计算机工程与设计》 北大核心 2025年第2期562-569,共8页
为解决无人机在室外复杂环境中飞行利用单目视觉同时定位与地图构建算法进行导航定位时选取特征点质量不高、噪声干扰,存在位姿估计误差过大的问题,提出一种加入图像多尺度分解进行双向迭代的视觉显著性处理线程,引入特征点稀疏性约束... 为解决无人机在室外复杂环境中飞行利用单目视觉同时定位与地图构建算法进行导航定位时选取特征点质量不高、噪声干扰,存在位姿估计误差过大的问题,提出一种加入图像多尺度分解进行双向迭代的视觉显著性处理线程,引入特征点稀疏性约束提高选取特征点的质量来提高计算精度。通过仿真实验分析该算法的鲁棒性与实时性。将无人机室外飞行实验结果与其它算法进行比较,验证了该算法在室外复杂环境中大幅提高了无人机位姿估计的准确度。 展开更多
关键词 无人机视觉导航定位 同步定位与地图构建 视觉显著性 稀疏性约束 单目视觉 室外场景 噪声干扰 算法鲁棒性
在线阅读 下载PDF
内河无人艇SLAM模型与轨迹跟踪算法研究
12
作者 方诚 张广斌 +3 位作者 王向阳 陈兴伟 薛舜 鲍克者 《浙江交通职业技术学院学报》 2025年第1期13-17,共5页
水面无人艇已经成为热点研究,内河无人艇在GPS信号较弱、精度不足、误差较大的水域,如何实现自主定位导航是关键问题。本文通过构建多物理场耦合的六自由度运动模型,在搭建硬件设备、开发软件系统基础上,构建无人艇试验平台,提出内河无... 水面无人艇已经成为热点研究,内河无人艇在GPS信号较弱、精度不足、误差较大的水域,如何实现自主定位导航是关键问题。本文通过构建多物理场耦合的六自由度运动模型,在搭建硬件设备、开发软件系统基础上,构建无人艇试验平台,提出内河无人艇SLAM数学模型,并采用非线性模型预测控制方法,提出样本信息下的无人艇轨迹跟踪算法,为受限水域无人艇智能导航研究开发提供参考。 展开更多
关键词 内河无人艇 slam模型 轨迹跟踪算法
在线阅读 下载PDF
RRT Autonomous Detection Algorithm Based on Multiple Pilot Point Bias Strategy and Karto SLAM Algorithm 被引量:1
13
作者 Lieping Zhang Xiaoxu Shi +3 位作者 Liu Tang Yilin Wang Jiansheng Peng Jianchu Zou 《Computers, Materials & Continua》 SCIE EI 2024年第2期2111-2136,共26页
A Rapid-exploration Random Tree(RRT)autonomous detection algorithm based on the multi-guide-node deflection strategy and Karto Simultaneous Localization and Mapping(SLAM)algorithm was proposed to solve the problems of... A Rapid-exploration Random Tree(RRT)autonomous detection algorithm based on the multi-guide-node deflection strategy and Karto Simultaneous Localization and Mapping(SLAM)algorithm was proposed to solve the problems of low efficiency of detecting frontier boundary points and drift distortion in the process of map building in the traditional RRT algorithm in the autonomous detection strategy of mobile robot.Firstly,an RRT global frontier boundary point detection algorithm based on the multi-guide-node deflection strategy was put forward,which introduces the reference value of guide nodes’deflection probability into the random sampling function so that the global search tree can detect frontier boundary points towards the guide nodes according to random probability.After that,a new autonomous detection algorithm for mobile robots was proposed by combining the graph optimization-based Karto SLAM algorithm with the previously improved RRT algorithm.The algorithm simulation platform based on the Gazebo platform was built.The simulation results show that compared with the traditional RRT algorithm,the proposed RRT autonomous detection algorithm can effectively reduce the time of autonomous detection,plan the length of detection trajectory under the condition of high average detection coverage,and complete the task of autonomous detection mapping more efficiently.Finally,with the help of the ROS-based mobile robot experimental platform,the performance of the proposed algorithm was verified in the real environment of different obstacles.The experimental results show that in the actual environment of simple and complex obstacles,the proposed RRT autonomous detection algorithm was superior to the traditional RRT autonomous detection algorithm in the time of detection,length of detection trajectory,and average coverage,thus improving the efficiency and accuracy of autonomous detection. 展开更多
关键词 Autonomous detection RRT algorithm mobile robot ROS Karto slam algorithm
在线阅读 下载PDF
SLAM技术在复杂农房环境下房地一体调查的应用
14
作者 李冠 《北京测绘》 2025年第7期1076-1080,共5页
近年来,在固定站式扫描技术稳步发展的基础上,随着同步定位和映射(SLAM)技术的发展,出现了以手持式、背包穿戴式为代表的便携移动式三维扫描技术,数据采集流程进一步简化,作业效率显著提高。基于此,本文结合房地一体调查中不动产测绘工... 近年来,在固定站式扫描技术稳步发展的基础上,随着同步定位和映射(SLAM)技术的发展,出现了以手持式、背包穿戴式为代表的便携移动式三维扫描技术,数据采集流程进一步简化,作业效率显著提高。基于此,本文结合房地一体调查中不动产测绘工作特点及基于SLAM的三维激光扫描技术特点,先对房地一体采集应用的关键点进行分析总结,然后利用数据实例,重点对复杂场景下的农村房地一体调查工作的应用效果进行精度验证。 展开更多
关键词 三维激光扫描 同步定位和映射(slam)技术 复杂农房环境 房地一体 调查
在线阅读 下载PDF
结合目标检测和特征点关联的动态视觉SLAM算法 被引量:2
15
作者 文诗佳 金世俊 《计算机应用》 北大核心 2025年第2期610-615,共6页
针对动态物体严重干扰同时定位与建图(SLAM)系统正常运行的问题,提出一种基于目标检测和特征点关联的动态视觉SLAM算法。首先,利用YOLOv5目标检测网络得到环境中潜在动态物体的信息,并基于简易目标跟踪对图像漏检进行补偿;其次,为解决... 针对动态物体严重干扰同时定位与建图(SLAM)系统正常运行的问题,提出一种基于目标检测和特征点关联的动态视觉SLAM算法。首先,利用YOLOv5目标检测网络得到环境中潜在动态物体的信息,并基于简易目标跟踪对图像漏检进行补偿;其次,为解决单一特征点的几何约束方法易出现误判的问题,依据图像的位置信息和光流信息建立特征点关联,再结合极线约束判断关系网的动态性;再次,结合两种方法剔除图像中的动态特征点,并用剩余的静态特征点加权估计位姿;最后,对静态环境建立稠密点云地图。在TUM(Technical University of Munich)公开数据集上的对比和消融实验的结果表明,与ORB-SLAM2和DS-SLAM(Dynamic Semantic SLAM)相比,所提算法在高动态场景下的绝对轨迹误差(ATE)中的均方根误差(RMSE)分别至少降低了95.22%和5.61%。可见,所提算法在保证实时性的同时提高了准确性和鲁棒性。 展开更多
关键词 动态环境 目标检测 同时定位与建图 稠密点云地图 光流法
在线阅读 下载PDF
基于体积结构重建网格地图的激光SLAM算法 被引量:1
16
作者 李维刚 陈宇飞 王永强 《武汉科技大学学报》 北大核心 2025年第4期300-308,共9页
在激光同步定位和建图(SLAM)中,网格地图因蕴含丰富的几何信息且内存消耗相对较低,已成为备受关注的地图表示结构。构建网格地图常用的截断带符号距离函数(TSDF)重建法虽然效率较高,但其需要通过先验知识估测无界点云的空间,从而局限了... 在激光同步定位和建图(SLAM)中,网格地图因蕴含丰富的几何信息且内存消耗相对较低,已成为备受关注的地图表示结构。构建网格地图常用的截断带符号距离函数(TSDF)重建法虽然效率较高,但其需要通过先验知识估测无界点云的空间,从而局限了网格结构的范围。为此提出一种基于体积结构重建网格地图的激光SLAM算法。首先,采用计算机图形学中对无界体积进行建模的VDB体积结构,将其作为点云对应TSDF的无界映射载体,以解决TSDF重建的网格固定问题;然后,基于VDB体积的体素结构提出邻近网格搜索和配准算法;最后,采用截断射线法完成VDB体积的更新,并基于体元法重建网格地图。在KITTI数据集多个数据序列上进行实验,结果表明,本文算法的重建地图相较原始点云节省了60%的内存空间,重建精度和定位精度均优于对比SLAM算法。 展开更多
关键词 slam 网格地图 VDB体积 表面重建 TSDF 点云配准
在线阅读 下载PDF
特征退化环境下车辆多源融合SLAM技术研究 被引量:1
17
作者 赵鑫 田池 徐启敏 《仪表技术与传感器》 北大核心 2025年第2期68-74,115,共8页
针对激光SLAM在特征退化环境中位姿估计与地图构建不准确的问题,在传统LiDAR/IMU融合的基础上引入UWB传感器,并对BALM技术进行改进,以实现实时准确的位姿估计与地图构建。首先,利用IMU/UWB信息进行局部因子图优化来获得初始位姿,在此基... 针对激光SLAM在特征退化环境中位姿估计与地图构建不准确的问题,在传统LiDAR/IMU融合的基础上引入UWB传感器,并对BALM技术进行改进,以实现实时准确的位姿估计与地图构建。首先,利用IMU/UWB信息进行局部因子图优化来获得初始位姿,在此基础上,LiDAR关键帧里程计根据“边缘点-直线”的约束进一步优化上述位姿,随后利用优化的位姿构建IMU/UWB/LiDAR紧耦合里程计。然后,为了进一步减小位姿误差,提出了基于改进BALM的后端批量位姿优化与建图技术,其通过自适应体素来对非地面边缘点云和地面平面点云进行线面拟合,并根据2步LM方法对BA模型进行迭代求解,以达到优化批量位姿并构建地图的目的。最后,使用实车数据集MyDataset1和MyDataset2进行了相关实验,实验结果表明,所提出方法能够在保证实时性的同时,有效提升特征退化环境中位姿估计与地图构建的精度。 展开更多
关键词 特征退化 同步定位与建图 多源融合 因子图优化 捆绑调整
在线阅读 下载PDF
SLAM新机遇—高斯溅射技术 被引量:1
18
作者 谭臻 牛中颜 +2 位作者 张津浦 陈谢沅澧 胡德文 《中国图象图形学报》 北大核心 2025年第6期1792-1807,共16页
同步定位与建图(simultaneous localization and mapping,SLAM)是指在未知环境中同时实现自主移动机器人的定位和环境地图构建,其在机器人技术和自动驾驶等领域有着重要价值。本文首先回顾SLAM技术的发展历程,从早期的手工特征提取方法... 同步定位与建图(simultaneous localization and mapping,SLAM)是指在未知环境中同时实现自主移动机器人的定位和环境地图构建,其在机器人技术和自动驾驶等领域有着重要价值。本文首先回顾SLAM技术的发展历程,从早期的手工特征提取方法到现代的深度学习驱动的解决方案。其中,基于神经辐射场(neural radiance fields,NeRF)的SLAM方法利用神经网络进行场景表征,进一步提高了建图的可视化效果。然而,这类方法在渲染速度上仍然面临挑战,限制了其实时应用的可能性。相比之下,基于高斯溅射(Gaussian splatting,GS)的SLAM方法以其实时的渲染速度和照片级的场景渲染效果,为SLAM领域带来新的研究热点和机遇。接着,按照RGB/RGBD、多模态数据以及语义信息3种不同应用类型对基于高斯溅射的SLAM方法进行分类和总结,并针对每种情况讨论相应SLAM方法的优势和局限性。最后,针对当前基于高斯溅射的SLAM方法面临的实时性、基准一致化、大场景的扩展性以及灾难性遗忘等问题进行分析,并对未来研究方向进行展望。通过这些探讨和分析,旨在为SLAM领域的研究人员和工程师提供全面的视角和启发,帮助分析和理解当前SLAM系统面临的关键问题,推动该领域的技术进步和应用拓展。 展开更多
关键词 同步定位与建图(slam) 神经辐射场(NeRF) 高斯溅射(GS) RGB-(D) 多模态 语义信息
原文传递
Robust Iterated Sigma Point FastSLAM Algorithm for Mobile Robot Simultaneous Localization and Mapping 被引量:2
19
作者 SONG Yu SONG Yongduan LI Qingling 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第4期693-700,共8页
Simultaneous localization and mapping (SLAM) is a key technology for mobile robots operating under unknown environment. While FastSLAM algorithm is a popular solution to the SLAM problem, it suffers from two major d... Simultaneous localization and mapping (SLAM) is a key technology for mobile robots operating under unknown environment. While FastSLAM algorithm is a popular solution to the SLAM problem, it suffers from two major drawbacks: one is particle set degeneracy due to lack of observation information in proposal distribution design of the particle filter; the other is errors accumulation caused by linearization of the nonlinear robot motion model and the nonlinear environment observation model. For the purpose of overcoming the above problems, a new iterated sigma point FastSLAM (ISP-FastSLAM) algorithm is proposed. The main contribution of the algorithm lies in the utilization of iterated sigma point Kalman filter (ISPKF), which minimizes statistical linearization error through Gaussian-Newton iteration, to design an optimal proposal distribution of the particle filter and to estimate the environment landmarks. On the basis of Rao-Blackwellized particle filter, the proposed ISP-FastSLAM algorithm is comprised by two main parts: in the first part, an iterated sigma point particle filter (ISPPF) to localize the robot is proposed, in which the proposal distribution is accurately estimated by the ISPKF; in the second part, a set of ISPKFs is used to estimate the environment landmarks. The simulation test of the proposed ISP-FastSLAM algorithm compared with FastSLAM2.0 algorithm and Unscented FastSLAM algorithm is carried out, and the performances of the three algorithms are compared. The simulation and comparing results show that the proposed ISP-FastSLAM outperforms other two algorithms both in accuracy and in robustness. The proposed algorithm provides reference for the optimization research of FastSLAM algorithm. 展开更多
关键词 mobile robot simultaneous localization and mapping slam particle filter Kalman filter unscented transformation
在线阅读 下载PDF
YGL-SLAM:动态场景下基于点和线的语义SLAM系统
20
作者 戴康佳 徐慧英 +4 位作者 朱信忠 李悉钰 黄晓 陈国强 张志雄 《计算机工程》 北大核心 2025年第3期95-104,共10页
传统的视觉同步定位与建图(SLAM)系统是基于静态环境这一假设的,然而在现实场景中往往存在动态物体,这可能导致SLAM位姿估计和地图构建的精度下降、鲁棒性变差,甚至出现跟踪丢失的情况。针对上述问题,基于ORB-SLAM2提出新的语义SLAM系统... 传统的视觉同步定位与建图(SLAM)系统是基于静态环境这一假设的,然而在现实场景中往往存在动态物体,这可能导致SLAM位姿估计和地图构建的精度下降、鲁棒性变差,甚至出现跟踪丢失的情况。针对上述问题,基于ORB-SLAM2提出新的语义SLAM系统(YGL-SLAM)。该系统首先使用轻量级目标检测算法YOLOv8n追踪动态对象,获得动态对象的语义信息。然后在跟踪线程的同时提取点特征和线特征,根据获取的语义信息利用Z-score和对极几何算法剔除动态特征,以改进SLAM在动态场景中的表现。此外,鉴于轻量级目标检测算法在追踪动态对象时存在连续帧的漏检测问题,设计了基于相邻帧的检测补偿方法。在公开数据集TUM和Bonn上的测试结果表明,相比ORB-SLAM2,YGL-SLAM系统准确率提升超过90%,对比其他动态SLAM,YGL-SLAM也具有较高的准确度和鲁棒性。 展开更多
关键词 动态场景 语义同步定位与建图 线特征 深度学习 YGL-slam系统
在线阅读 下载PDF
上一页 1 2 242 下一页 到第
使用帮助 返回顶部