Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening pa...Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening particles also deteriorates the processability and it is of great importance to establish accurate processing maps to guide the thermomechanical processes to enhance the formability.In this study,we performed particle swarm optimization-based back propagation artificial neural network model to predict the high temperature flow behavior of 0.25wt%Al2O3 particle-reinforced Cu alloys,and compared the accuracy with that of derived by Arrhenius-type constitutive model and back propagation artificial neural network model.To train these models,we obtained the raw data by fabricating ODS Cu alloys using the internal oxidation and reduction method,and conducting systematic hot compression tests between 400 and800℃with strain rates of 10^(-2)-10 S^(-1).At last,processing maps for ODS Cu alloys were proposed by combining processing parameters,mechanical behavior,microstructure characterization,and the modeling results achieved a coefficient of determination higher than>99%.展开更多
目的基于T2^(*)mapping定量分析业余马拉松运动员足踝部关节软骨的T2^(*)值,并分析其与性别、年龄、身体质量指数(body mass index,BMI)、跑龄、跑量之间的相关性。材料与方法于2023年7月份至2023年9月份招募重庆市长跑运动爱好者48名,...目的基于T2^(*)mapping定量分析业余马拉松运动员足踝部关节软骨的T2^(*)值,并分析其与性别、年龄、身体质量指数(body mass index,BMI)、跑龄、跑量之间的相关性。材料与方法于2023年7月份至2023年9月份招募重庆市长跑运动爱好者48名,其中跑量<300 km/月的36例(中低跑量组),跑量≥300 km/月的12例(高跑量组)。所有受试者均进行单侧无症状踝关节的MRI扫描,扫描序列包括T2^(*)mapping多回波自旋回波(spin echo,SE)序列矢状位、质子密度加权成像脂肪抑制(proton density-weighted imaging fat-saturated,PDWI-FS)序列矢状位、冠状位、横轴位以及T1加权脂肪抑制成像(T1-weighted imaging fat-saturated,T1WI-FS)序列横轴位。沿关节软骨轮廓边缘勾画距骨穹窿、跟骰关节跟骨面、骰骨面及后距下关节跟骨面、距骨面软骨作为感兴趣区(region of interest,ROI),获得相应的T2^(*)值。采用线性回归分析软骨T2^(*)值与年龄、BMI、跑龄的相关性,采用独立样本t检验分析不同跑量及不同性别间的软骨T2^(*)值差异。结果(1)距骨穹窿、跟骰关节跟骨面及骰骨面、后距下关节跟骨面及距骨面软骨T2^(*)值在性别上的差异均具有统计学意义(P=0.001、P<0.001、P=0.002、P=0.008、P=0.004);(2)高跑量组的距骨穹窿、后距下关节跟骨面软骨T2^(*)值高于中低跑量组(P=0.014、0.023),不同跑量的跟骰关节跟骨面及骰骨面、后距下关节距骨面软骨T2^(*)值的差异均无统计学意义(P=0.987、0.072、0.724);(3)距骨穹窿、跟骰关节跟骨面及骰骨面、后距下关节跟骨面、距骨面软骨T2^(*)值均与BMI呈正相关(r=0.376、0.384、0.300、0.422、0.455,P=0.005、0.004、0.019、0.001、0.001)。结论在业余马拉松运动员这一跑步群体中,与中低跑量相比,高跑量更有可能导致距骨穹窿、后距下关节跟骨面软骨损伤;而与较低的BMI相比,高BMI增加了距骨穹窿、跟骰关节跟骨面、骰骨面及后距下关节跟骨面、距骨面软骨损伤的风险。展开更多
基金financial support of the National Natural Science Foundation of China(No.52371103)the Fundamental Research Funds for the Central Universities,China(No.2242023K40028)+1 种基金the Open Research Fund of Jiangsu Key Laboratory for Advanced Metallic Materials,China(No.AMM2023B01).financial support of the Research Fund of Shihezi Key Laboratory of AluminumBased Advanced Materials,China(No.2023PT02)financial support of Guangdong Province Science and Technology Major Project,China(No.2021B0301030005)。
文摘Oxide dispersion strengthened(ODS)alloys are extensively used owing to high thermostability and creep strength contributed from uniformly dispersed fine oxides particles.However,the existence of these strengthening particles also deteriorates the processability and it is of great importance to establish accurate processing maps to guide the thermomechanical processes to enhance the formability.In this study,we performed particle swarm optimization-based back propagation artificial neural network model to predict the high temperature flow behavior of 0.25wt%Al2O3 particle-reinforced Cu alloys,and compared the accuracy with that of derived by Arrhenius-type constitutive model and back propagation artificial neural network model.To train these models,we obtained the raw data by fabricating ODS Cu alloys using the internal oxidation and reduction method,and conducting systematic hot compression tests between 400 and800℃with strain rates of 10^(-2)-10 S^(-1).At last,processing maps for ODS Cu alloys were proposed by combining processing parameters,mechanical behavior,microstructure characterization,and the modeling results achieved a coefficient of determination higher than>99%.