To deal with the global and regional issues including food security, climate change, land degradation, biodiversity loss, water resource management, and ecosystem health, detailed accurate spatial soil information is ...To deal with the global and regional issues including food security, climate change, land degradation, biodiversity loss, water resource management, and ecosystem health, detailed accurate spatial soil information is urgently needed. This drives the worldwide development of digital soil mapping. In recent years, significant progresses have been made in different aspects of digital soil mapping. The main purpose of this paper is to provide a review for the major progresses of digital soil mapping in the last decade. First, we briefly described the rise of digital soil mapping and outlined important milestones and their influence, and main paradigms in digital soil mapping. Then, we reviewed the progresses in legacy soil data, environmental covariates, soil sampling, predictive models and the applications of digital soil mapping products. Finally, we summarized the main trends and future prospect as revealed by studies up to now. We concluded that although the digital soil mapping is now moving towards mature to meet various demands of soil information, challenges including new theories, methodologies and applications of digital soil mapping, especially for highly heterogeneous and human-affected environments, still exist and need to be addressed in the future.展开更多
The use of landscape covariates to variability of soil properties in similar estimate soil properties is not suitable topographic and vegetation conditions. for the areas of low relief due to the high A new method wa...The use of landscape covariates to variability of soil properties in similar estimate soil properties is not suitable topographic and vegetation conditions. for the areas of low relief due to the high A new method was implemented to map regional soil texture (in terms of sand, silt and clay contents) by hypothesizing that the change in the land surface diurnal temperature difference (DTD) is related to soil texture in case of a relatively homogeneous rainfall input. To examine this hypothesis, the DTDs from moderate resolution imagine spectroradiometer (MODIS) during a selected time period, i.e., after a heavy rainfall between autumn harvest and autumn sowing, were classified using fuzzy-c-means (FCM) clustering. Six classes were generated, and for each class, the sand (〉 0.05 mm), silt (0.002-0.05 mm) and clay (〈 0.002 mm) contents at the location of maximum membership value were considered as the typical values of that class. A weighted average model was then used to digitally map soil texture. The results showed that the predicted map quite accurately reflected the regional soil variation. A validation dataset produced estimates of error for the predicted maps of sand, silt and clay contents at root mean of squared error values of 8.4%, 7.8% and 2.3%, respectively, which is satisfactory in a practical context. This study thus provided a methodology that can help improve the accuracy and efficiency of soil texture mapping in plain areas using easily available data sources.展开更多
The Soil Land Inference Model(SoLIM) was primarily proposed by Zhu et al.(Zhu A X, Band L, Vertessy R, Dutton B. 1997. Derivation of soil properties using a soil land inference model(SoLIM). Soil Sci Soc Am J. 61: 523...The Soil Land Inference Model(SoLIM) was primarily proposed by Zhu et al.(Zhu A X, Band L, Vertessy R, Dutton B. 1997. Derivation of soil properties using a soil land inference model(SoLIM). Soil Sci Soc Am J. 61: 523–533.) and was based on the Third Law of Geography. Based on the assumption that the soil property value at a location of interest will be more similar to that of a given soil sample when the environmental condition at the location of interest is more similar to that at the location from which the sample was taken, SoLIM estimates the soil property value of the location of interest using the soil property values of known samples weighted by the similarity between those samples and the location of interest in terms of an attribute domain of environmental conditions. However, the current SoLIM method ignores information about the spatial distances between the location of interest and those of the sample. In this study, we proposed a new method of soil property mapping, So LIM-IDW, which incorporates spatial distance information into the SoLIM method by means of inverse distance weighting(IDW). The proposed method is based on the assumption that the soil property value at a location of interest will be more similar to that of a known sample both when the environmental conditions are more similar and when the distance between the location of interest and the sample location is shorter. Our evaluation experiments on A-horizon soil organic matter mapping in two study areas with independent evaluation samples showed that the proposed SoLIM-IDW method can obtain lower prediction errors than the original SoLIM method, multiple linear regression, geographically weighted regression, and regression-kriging with the same modeling points. Future work mainly includes the determination of optimal power parameter values and the appropriate setting of the parameter under different application contexts.展开更多
Spatial distribution of soil salinity can be estimated based on its environmental factors because soil salinity is strongly affected and indicated by environmental factors. Different with other properties such as soil...Spatial distribution of soil salinity can be estimated based on its environmental factors because soil salinity is strongly affected and indicated by environmental factors. Different with other properties such as soil texture, soil salinity varies with short-term time. Thus, how to choose powerful environmental predictors is especially important for soil salinity. This paper presents a similarity-based prediction approach to map soil salinity and detects powerful environmental predictors for the Huanghe(Yellow) River Delta area in China. The similarity-based approach predicts the soil salinities of unsampled locations based on the environmental similarity between unsampled and sampled locations. A dataset of 92 points with salt data at depth of 30–40 cm was divided into two subsets for prediction and validation. Topographical parameters, soil textures, distances to irrigation channels and to the coastline, land surface temperature from Moderate Resolution Imaging Spectroradiometer(MODIS), Normalized Difference Vegetation Indices(NDVIs) and land surface reflectance data from Landsat Thematic Mapper(TM) imagery were generated. The similarity-based prediction approach was applied on several combinations of different environmental factors. Based on three evaluation indices including the correlation coefficient(CC) between observed and predicted values, the mean absolute error and the root mean squared error we found that elevation, distance to irrigation channels, soil texture, night land surface temperature, NDVI, and land surface reflectance Band 5 are the optimal combination for mapping soil salinity at the 30–40 cm depth in the study area(with a CC value of 0.69 and a root mean squared error value of 0.38). Our results indicated that the similarity-based prediction approach could be a vital alternative to other methods for mapping soil salinity, especially for area with limited observation data and could be used to monitor soil salinity distributions in the future.展开更多
Selecting a proper set of covariates is one of the most important factors that influence the accuracy of digital soil mapping(DSM).The statistical or machine learning methods for selecting DSM covariates are not avail...Selecting a proper set of covariates is one of the most important factors that influence the accuracy of digital soil mapping(DSM).The statistical or machine learning methods for selecting DSM covariates are not available for those situations with limited samples.To solve the problem,this paper proposed a case-based method which could formalize the covariate selection knowledge contained in practical DSM applications.The proposed method trained Random Forest(RF)classifiers with DSM cases extracted from the practical DSM applications and then used the trained classifiers to determine whether each one potential covariate should be used in a new DSM application.In this study,we took topographic covariates as examples of covariates and extracted 191 DSM cases from 56 peer-reviewed journal articles to evaluate the performance of the proposed case-based method by Leave-One-Out cross validation.Compared with a novices’commonly-used way of selecting DSM covariates,the proposed case-based method improved more than 30%accuracy according to three quantitative evaluation indices(i.e.,recall,precision,and F1-score).The proposed method could be also applied to selecting the proper set of covariates for other similar geographical modeling domains,such as landslide susceptibility mapping,and species distribution modeling.展开更多
Detailed knowledge about the estimates and spatial patterns of soil organic carbon(SOC) and total nitrogen(TN) stocks is fundamental for sustainable land management and climate change mitigation.This study aimed at:(1...Detailed knowledge about the estimates and spatial patterns of soil organic carbon(SOC) and total nitrogen(TN) stocks is fundamental for sustainable land management and climate change mitigation.This study aimed at:(1) mapping the spatial patterns,and(2) quantifying SOC and TN stocks to 30 cm depth in the Eastern Mau Forest Reserve using field,remote sensing,geographical information systems(GIS),and statistical modelling approaches.This is a critical ecosystem offering essential services,but its sustainability is threatened by deforestation and degradation.Results revealed that elevation,silt content,TN concentration,and Landsat 8 Operational Land Imager band 11 explained 72% of the variability in SOC stocks,while the same factors(except silt content) explained 71% of the variability in TN stocks.The results further showed that soil properties,particularly TN and SOC concentrations,were more important than that other environmental factors in controlling the observed patterns of SOC and TN stocks,respectively.Forests stored the highest amounts of SOC and TN(3.78 Tg C and 0.38 Tg N) followed by croplands(2.46 Tg C and 0.25 Tg N) and grasslands(0.57 Tg C and 0.06 Tg N).Overall,the Eastern Mau Forest Reserve stored approximately 6.81 Tg C and 0.69 Tg N.The highest estimates of SOC and TN stocks(hotspots) occurred on the western and northwestern parts where forests dominated,while the lowest estimates(coldspots) occurred on the eastern side where croplands had been established.Therefore,the hotspots need policies that promote conservation,while the coldspots need those that support accumulation of SOC and TN stocks.展开更多
Soil type maps at the scale of I Z 1 000 000 are used extensively to provide soil spatial distribution information for soil erosion assessment and watershed management models in China. However, the soil property maps ...Soil type maps at the scale of I Z 1 000 000 are used extensively to provide soil spatial distribution information for soil erosion assessment and watershed management models in China. However, the soil property maps produced through conventional direct linking method usually suffer low accuracy as well as the lack of spatial details within a soil type polygon. This paper presents an effective method to produce detailed soil property map based on representative samples which were extracted from each polygon on the 1 : 1 000 000 soil type map. The representative sample of each polygon is defined as the location that can represent the largest area within the polygon. The representativeness of a candidate sample is determined by calculating the soil-forming environment condition similarities between the sample and other locations. Once the representative sample of each polygon has been chosen, the property values of the existing typical samples are assigned to the corresponding representative samples with the same soil type. Finally, based on these representative samples, the detailed soil property map could be produced by using existing digital soil mapping methods. The case study in XuanCheng City, Anhui Province of China, demonstrated the proposed method could produce soil property map at a higher level of spatial details and accuracy: 1) The soil organic matter (SOM) map produced based on the representative samples can not only depict the detailed spatial distribution of SOM within a soil type polygon but also largely reduce the abrupt change of soil property at the boundaries of two adjacent polygons. 2) The Root Mean Squared Error (RMSE) of the SOM map based on the representative samples is 1.61, and it is 1.37 for the SOM map produced by using conventional direct linking method. Therefore, the proposed method is an effective approach to produce spatial detailed soil property map with higher accuracy for environment simulation models.展开更多
Soil salinization is one of the most important causes of land degradation and desertification,especially in arid and semi-arid areas.The dynamic monitoring of soil salinization is of great significance to land managem...Soil salinization is one of the most important causes of land degradation and desertification,especially in arid and semi-arid areas.The dynamic monitoring of soil salinization is of great significance to land management,agricultural activities,water quality,and sustainable development.The remote sensing images taken by the synthetic aperture radar(SAR)Sentinel-1 and the multispectral satellite Sentinel-2 with high resolution and short revisit period have the potential to monitor the spatial distribution of soil attribute information on a large area;however,there are limited studies on the combination of Sentinel-1 and Sentinel-2 for digital mapping of soil salinization.Therefore,in this study,we used topography indices derived from digital elevation model(DEM),SAR indices generated by Sentinel-1,and vegetation indices generated by Sentinel-2 to map soil salinization in the Ogan-Kuqa River Oasis located in the central and northern Tarim Basin in Xinjiang of China,and evaluated the potential of multi-source sensors to predict soil salinity.Using the soil electrical conductivity(EC)values of 70 ground sampling sites as the target variable and the optimal environmental factors as the predictive variable,we constructed three soil salinity inversion models based on classification and regression tree(CART),random forest(RF),and extreme gradient boosting(XGBoost).Then,we evaluated the prediction ability of different models through the five-fold cross validation.The prediction accuracy of XGBoost model is better than those of CART and RF,and soil salinity predicted by the three models has similar spatial distribution characteristics.Compared with the combination of topography indices and vegetation indices,the addition of SAR indices effectively improves the prediction accuracy of the model.In general,the method of soil salinity prediction based on multi-source sensor combination is better than that based on a single sensor.In addition,SAR indices,vegetation indices,and topography indices are all effective variables for soil salinity prediction.Weighted Difference Vegetation Index(WDVI)is designated as the most important variable in these variables,followed by DEM.The results showed that the high-resolution radar Sentinel-1 and multispectral Sentinel-2 have the potential to develop soil salinity prediction model.展开更多
Due to the almost homogeneous topography in low relief areas, it is usually difficult to make accurate predictions of soil properties using topographic covariates. In this study, we examined how time series of field s...Due to the almost homogeneous topography in low relief areas, it is usually difficult to make accurate predictions of soil properties using topographic covariates. In this study, we examined how time series of field soil moisture observations can be used to estimate soil texture in an oasis agricultural area with low relief in the semi-arid region of northwest China. Time series of field-observed soil moisture variations were recorded for 132 h beginning at the end of an irrigation event during which the surface soil was saturated.Spatial correlation between two time-adjacent soil moisture conditions was used to select the factors for fuzzy c-means clustering. In each of the ten generated clusters, soil texture of the soil sample with the maximum fuzzy membership value was taken as the cluster centroid. Finally, a linearly weighted average was used to predict soil texture from the centroids. The results showed that soil moisture increased with the increase of clay and silt contents, but decreased with the increase of sand content. The spatial patterns of soil moisture changed during the entire soil drying phase. We assumed that these changes were mainly caused by spatial heterogeneity of soil texture. A total of 64 independent samples were used to evaluate the prediction accuracy. The root mean square error(RMSE)values of clay, silt and sand were 1.63, 2.81 and 3.71, respectively. The mean relative error(RE) values were 9.57% for clay, 3.77% for silt and 12.83% for sand. It could be concluded that the method used in this study was effective for soil texture mapping in the low-relief oasis agricultural area and could be applicable in other similar irrigation agricultural areas.展开更多
Gully feature mapping is an indispensable prerequisite for the motioning and control of gully erosion which is a widespread natural hazard. The increasing availability of high-resolution Digital Elevation Model(DEM) a...Gully feature mapping is an indispensable prerequisite for the motioning and control of gully erosion which is a widespread natural hazard. The increasing availability of high-resolution Digital Elevation Model(DEM) and remote sensing imagery, combined with developed object-based methods enables automatic gully feature mapping. But still few studies have specifically focused on gully feature mapping on different scales. In this study, an object-based approach to two-level gully feature mapping, including gully-affected areas and bank gullies, was developed and tested on 1-m DEM and Worldview-3 imagery of a catchment in the Chinese Loess Plateau. The methodology includes a sequence of data preparation, image segmentation, metric calculation, and random forest based classification. The results of the two-level mapping were based on a random forest model after investigating the effects of feature selection and class-imbalance problem. Results show that the segmentation strategy adopted in this paper which considers the topographic information and optimal parameter combination can improve the segmentation results. The distribution of the gully-affected area is closely related to topographic information, however, the spectral features are more dominant for bank gully mapping. The highest overall accuracy of the gully-affected area mapping was 93.06% with four topographic features. The highest overall accuracy of bank gully mapping is 78.5% when all features are adopted. The proposed approach is a creditable option for hierarchical mapping of gully feature information, which is suitable for the application in hily Loess Plateau region.展开更多
Antarctic surveying, mapping and remote sensing is one of the important aspects of the Chinese Antarctic geoscience research program that stretch back over 25 years, since the first Chinese National Antarctic Research...Antarctic surveying, mapping and remote sensing is one of the important aspects of the Chinese Antarctic geoscience research program that stretch back over 25 years, since the first Chinese National Antarctic Research Expedition (CHINARE) in 1984. During the 1980's, the geodetic datum, height system and absolute gravity datum were established at the Great Wall and Zhongshan Stations. Significant contributions have been made by the construction of the Chinese Great Wall, Zhongshan and Kunlun Stations in Antarctica. Geodetic control and gravity networks were established in the King George Islands, Grove Moun- tains and Dome Argus. An area of more than 200 000 km2 has been mapped using satellite image data, aerial photogrammetry and in situ data. Permanent GPS stations and tide gauges have been established at both the Great Wall and Zhongshan Stations. Studies involving plate motion, precise satellite orbit determination, the gravity field, sea level change, and various GPS applications for atmospheric studies have been carried out. Based on remote sensing techniques, studies have been undertaken on ice sheet and glacier movements, the distributions of blue ice and ice crevasses, and ice mass balance. Polar digital and visual mapping tech- niques have been introduced, and a polar survey space database has been built. The Chinese polar scientific expedition manage- ment information system and Chinese PANDA plan display platform were developed, which provides technical support for Chi- nese polar management. Finally, this paper examines prospects for future Chinese Antarctic surveying, mapping and remote sens- ing.展开更多
Sampling design(SD) plays a crucial role in providing reliable input for digital soil mapping(DSM) and increasing its efficiency.Sampling design, with a predetermined sample size and consideration of budget and spatia...Sampling design(SD) plays a crucial role in providing reliable input for digital soil mapping(DSM) and increasing its efficiency.Sampling design, with a predetermined sample size and consideration of budget and spatial variability, is a selection procedure for identifying a set of sample locations spread over a geographical space or with a good feature space coverage. A good feature space coverage ensures accurate estimation of regression parameters, while spatial coverage contributes to effective spatial interpolation.First, we review several statistical and geometric SDs that mainly optimize the sampling pattern in a geographical space and illustrate the strengths and weaknesses of these SDs by considering spatial coverage, simplicity, accuracy, and efficiency. Furthermore, Latin hypercube sampling, which obtains a full representation of multivariate distribution in geographical space, is described in detail for its development, improvement, and application. In addition, we discuss the fuzzy k-means sampling, response surface sampling, and Kennard-Stone sampling, which optimize sampling patterns in a feature space. We then discuss some practical applications that are mainly addressed by the conditioned Latin hypercube sampling with the flexibility and feasibility of adding multiple optimization criteria. We also discuss different methods of validation, an important stage of DSM, and conclude that an independent dataset selected from the probability sampling is superior for its free model assumptions. For future work, we recommend: 1) exploring SDs with both good spatial coverage and feature space coverage; 2) uncovering the real impacts of an SD on the integral DSM procedure;and 3) testing the feasibility and contribution of SDs in three-dimensional(3 D) DSM with variability for multiple layers.展开更多
Local terrain attributes,which are derived directly from the digital elevation model,have been widely applied in digital soil mapping.This study aimed to evaluate the mapping accuracy of soil organic carbon(SOC) conce...Local terrain attributes,which are derived directly from the digital elevation model,have been widely applied in digital soil mapping.This study aimed to evaluate the mapping accuracy of soil organic carbon(SOC) concentration in 2 zones of the Heihe River in China,by combining prediction methods with local terrain attributes derived from different polynomial models.The prediction accuracy was used as a benchmark for those who may be more concerned with how accurately the variability of soil properties is modeled in practice,rather than how morphometric variables and their geomorphologic interpretations are understood and calculated.In this study,2 neighborhood types(square and circular) and 6 representative algorithms(Evans-Young,Horn,Zevenbergen-Thorne,Shary,Shi,and Florinsky algorithms) were applied.In general,35 combinations of first-and second-order derivatives were produced as candidate predictors for soil mapping using two mapping methods(i.e.,kriging with an external drift and geographically weighted regression).The results showed that appropriate local terrain attribute algorithms could better capture the spatial variation of SOC concentration in a region where soil properties are strongly influenced by the topography.Among the different combinations of firstand second-order derivatives used,there was a best combination with a more accurate estimate.For different prediction methods,the relative improvement in the two zones varied between 0.30% and 9.68%.The SOC maps resulting from the higher-order algorithms(Zevenbergen-Thorne and Florinsky) yielded less interpolation errors.Therefore,it was concluded that the performance of predictive methods,which incorporated auxiliary variables,could be improved by attempting different terrain analysis algorithms.展开更多
Digital soil mapping (DSM) aims to produce detailed maps of soil properties or soil classes to improve agricultural management and soil quality assessment. Optimized sampling design can reduce the substantial costs an...Digital soil mapping (DSM) aims to produce detailed maps of soil properties or soil classes to improve agricultural management and soil quality assessment. Optimized sampling design can reduce the substantial costs and efforts associated with sampling, profile description, and laboratory analysis. The purpose of this study was to compare common sampling designs for DSM, including grid sampling (GS), grid random sampling (GRS), stratified random sampling (StRS), and conditioned Latin hypercube sampling (cLHS). In an agricultural field (11 ha) in Quebec, Canada, a total of unique 118 locations were selected using each of the four sampling designs (45 locations each), and additional 30 sample locations were selected as an independent testing dataset (evaluation dataset). Soil visible near-infrared (Vis-NIR) spectra were collected in situ at the 148 locations (1 m depth), and soil cores were collected from a subset of 32 locations and subdivided at 10-cm depth intervals, totaling 251 samples. The Cubist model was used to elucidate the relationship between Vis-NIR spectra and soil properties (soil organic matter (SOM) and clay), which was then used to predict the soil properties at all 148 sample locations. Digital maps of soil properties at multiple depths for the entire field (148 sample locations) were prepared using a quantile random forest model to obtain complete model maps (CM-maps). Soil properties were also mapped using the samples from each of the 45 locations for each sampling design to obtain sampling design maps (SD-maps). The SD-maps were evaluated using the independent testing dataset (30 sample locations), and the spatial distribution and model uncertainty of each SD-map were compared with those of the corresponding CM-map. The spatial and feature space coverage were compared across the four sampling designs. The results showed that GS resulted in the most even spatial coverage, cLHS resulted in the best coverage of the feature space, and GS and cLHS resulted in similar prediction accuracies and spatial distributions of soil properties. The SOM content was underestimated using GRS, with large errors at 0–50 cm depth, due to some values not being captured by this sampling design, whereas larger errors for the deeper soil layers were produced using StRS. Predictions of SOM and clay contents had higher accuracy for topsoil (0–30 cm) than for deep subsoil (60–100 cm). It was concluded that the soil sampling designs with either good spatial coverage or feature space coverage can provide good accuracy in 3D DSM, but their performances may be different for different soil properties.展开更多
Soil organic carbon (SOC) pool has the potential to mitigate or enhance climate change by either acting as a sink, or a source of atmospheric carbon dioxide (CO2) and also plays a fundamental role in the health an...Soil organic carbon (SOC) pool has the potential to mitigate or enhance climate change by either acting as a sink, or a source of atmospheric carbon dioxide (CO2) and also plays a fundamental role in the health and proper functioning of soils to sustain life on Earth. As such, the objective of this study was to investigate the applicability of a novel evolutionary genetic optimization-based adaptive neuro-fuzzy inference system (ANFIS-EG) in predicting and mapping the spatial patterns of SOC stocks in the Eastern Mau Forest Reserve, Kenya. Field measurements and auxiliary data reflecting the soil-forming factors were used to design an ANFIS-EG model, which was then implemented to predict and map the areal differentiation of SOC stocks in the Eastern Mau Forest Reserve. This was achieved with a reasonable level of uncertainty (i.e., root mean square error of 15.07 Mg C ha-l), hence demonstrating the applicability of the ANFIS-EG in SOC mapping studies. There is potential for improving the model performance, as indicated by the current ratio of performance to deviation (1.6). The mapping also revealed marginally higher SOC stocks in the forested ecosystems (i.e., an average of 109.78 M C ha-1) than in the aro-ecosvstems (i.e., an average of 95.9 Mg C ha-l).展开更多
Soil diagnostic horizons, which each have a set of quantified properties, play a key role in soil classification. However, they are difficult to predict, and few attempts have been made to map their spatial occurrence...Soil diagnostic horizons, which each have a set of quantified properties, play a key role in soil classification. However, they are difficult to predict, and few attempts have been made to map their spatial occurrence. We evaluated and compared four machine learning algorithms, namely, the classification and regression tree(CART), random forest(RF), boosted regression trees(BRT), and support vector machine(SVM), to map the occurrence of the soil mattic horizon in the northeastern Qinghai-Tibetan Plateau using readily available ancillary data. The mechanisms of resampling and ensemble techniques significantly improved prediction accuracies(measured based on area under the receiver operator characteristic curve score(AUC)) and produced more stable results for the BRT(AUC of 0.921 ± 0.012, mean ± standard deviation) and RF(0.908 ± 0.013) algorithms compared to the CART algorithm(0.784 ± 0.012), which is the most commonly used machine learning method. Although the SVM algorithm yielded a comparable AUC value(0.906 ± 0.006) to the RF and BRT algorithms, it is sensitive to parameter settings, which are extremely time-consuming.Therefore, we consider it inadequate for occurrence-distribution modeling. Considering the obvious advantages of high prediction accuracy, robustness to parameter settings, the ability to estimate uncertainty in prediction, and easy interpretation of predictor variables, BRT seems to be the most desirable method. These results provide an insight into the use of machine learning algorithms to map the mattic horizon and potentially other soil diagnostic horizons.展开更多
Ice and snow domint the land features in Antarctica. The great brightness and poorcontrast of ice and snow and streaking noise in satellite image make the procedure of image processing difficult. On the other hand ho...Ice and snow domint the land features in Antarctica. The great brightness and poorcontrast of ice and snow and streaking noise in satellite image make the procedure of image processing difficult. On the other hand however, the contrast between bare rock land/sea water and ice/snow is so high that the details of image will be overcompressed.In the light of characteristics of satellite image in Antarctica, a filtering to remove streaking noise has adn discussed. Based on automatic identify classification to enhance the details of objects and the method and theory of digital rectification of satellite image with ground control points measured from field survey are also presented.展开更多
Digital geological mapping fundamentally broke through the traditional working pattern,successfully carried out the geological mapping digitalization.By using the RGMAP system to field digital geological mapping,the a...Digital geological mapping fundamentally broke through the traditional working pattern,successfully carried out the geological mapping digitalization.By using the RGMAP system to field digital geological mapping,the authors summarized the method of work and the work flow of the RGMAPGIS during the field geological survey.First,we prepared material,set up the PRB gallery,then put the geographic base map under the background maplayer and organizing the field hand map,forming the field factual datum map.At last,the geological space database is formed.展开更多
The components of map information are analyzed theoretically in this paper,and the map information includes mainly the spatial information,attributive information and temporal characteristics information.Then the digi...The components of map information are analyzed theoretically in this paper,and the map information includes mainly the spatial information,attributive information and temporal characteristics information.Then the digital map entity is defined according to construction characteristics of the map information.Finally,on the basis of the analyses of the construction characteristics of digital map entity and present conceptual model of digital map database,an abstracted conceptual model of digital map database is presented.And the Normal Form theory of relational database is discussed particularly.展开更多
In order to realize an optimal balance between the efficiency and reliability requirements ofroad models,a road modeling method for digital maps based on cardinal spline is studied.First,the cardinal spline is chosen ...In order to realize an optimal balance between the efficiency and reliability requirements ofroad models,a road modeling method for digital maps based on cardinal spline is studied.First,the cardinal spline is chosen to establish an initial road model,which is specified by a series of control points and tension parameters.Then,in view of the initial road model,a gradual optimization algorithm,which can determine the reasonable control points and optimal tension parameters according to the degree of the change of road curvature,is proposed to determine the final road model.Finally,the proposed road modeling method is verified a d evaluated through experiments,and it is compared with the conventional method for digital maps based on the B-spline.The results show that the proposed method can resize a neaoptimal balance between the efficiency and reliability requirements.Compared with the conventional method based on the B-spline,this method occupies less data storage and achieves higher accuracy.展开更多
基金supported by the National Natural Science Foundation of China (91325301, 41571130051)
文摘To deal with the global and regional issues including food security, climate change, land degradation, biodiversity loss, water resource management, and ecosystem health, detailed accurate spatial soil information is urgently needed. This drives the worldwide development of digital soil mapping. In recent years, significant progresses have been made in different aspects of digital soil mapping. The main purpose of this paper is to provide a review for the major progresses of digital soil mapping in the last decade. First, we briefly described the rise of digital soil mapping and outlined important milestones and their influence, and main paradigms in digital soil mapping. Then, we reviewed the progresses in legacy soil data, environmental covariates, soil sampling, predictive models and the applications of digital soil mapping products. Finally, we summarized the main trends and future prospect as revealed by studies up to now. We concluded that although the digital soil mapping is now moving towards mature to meet various demands of soil information, challenges including new theories, methodologies and applications of digital soil mapping, especially for highly heterogeneous and human-affected environments, still exist and need to be addressed in the future.
基金Supported by the Basic Research Program of Jiangsu Province,China (No. BK2008058)the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-409)
文摘The use of landscape covariates to variability of soil properties in similar estimate soil properties is not suitable topographic and vegetation conditions. for the areas of low relief due to the high A new method was implemented to map regional soil texture (in terms of sand, silt and clay contents) by hypothesizing that the change in the land surface diurnal temperature difference (DTD) is related to soil texture in case of a relatively homogeneous rainfall input. To examine this hypothesis, the DTDs from moderate resolution imagine spectroradiometer (MODIS) during a selected time period, i.e., after a heavy rainfall between autumn harvest and autumn sowing, were classified using fuzzy-c-means (FCM) clustering. Six classes were generated, and for each class, the sand (〉 0.05 mm), silt (0.002-0.05 mm) and clay (〈 0.002 mm) contents at the location of maximum membership value were considered as the typical values of that class. A weighted average model was then used to digitally map soil texture. The results showed that the predicted map quite accurately reflected the regional soil variation. A validation dataset produced estimates of error for the predicted maps of sand, silt and clay contents at root mean of squared error values of 8.4%, 7.8% and 2.3%, respectively, which is satisfactory in a practical context. This study thus provided a methodology that can help improve the accuracy and efficiency of soil texture mapping in plain areas using easily available data sources.
基金funded by the National Natural Science Foundation of China (Nos.41871300,41422109,and 41431177)the National Basic Research Program of China (No.2015CB954102)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions,China (No.164320H116)the Outstanding Innovation Team in Colleges and Universities in Jiangsu Province,China the support from the Innovation Project of State Key Laboratory of Resources and Environmental Information System of China (No.O88RA20CYA)。
文摘The Soil Land Inference Model(SoLIM) was primarily proposed by Zhu et al.(Zhu A X, Band L, Vertessy R, Dutton B. 1997. Derivation of soil properties using a soil land inference model(SoLIM). Soil Sci Soc Am J. 61: 523–533.) and was based on the Third Law of Geography. Based on the assumption that the soil property value at a location of interest will be more similar to that of a given soil sample when the environmental condition at the location of interest is more similar to that at the location from which the sample was taken, SoLIM estimates the soil property value of the location of interest using the soil property values of known samples weighted by the similarity between those samples and the location of interest in terms of an attribute domain of environmental conditions. However, the current SoLIM method ignores information about the spatial distances between the location of interest and those of the sample. In this study, we proposed a new method of soil property mapping, So LIM-IDW, which incorporates spatial distance information into the SoLIM method by means of inverse distance weighting(IDW). The proposed method is based on the assumption that the soil property value at a location of interest will be more similar to that of a known sample both when the environmental conditions are more similar and when the distance between the location of interest and the sample location is shorter. Our evaluation experiments on A-horizon soil organic matter mapping in two study areas with independent evaluation samples showed that the proposed SoLIM-IDW method can obtain lower prediction errors than the original SoLIM method, multiple linear regression, geographically weighted regression, and regression-kriging with the same modeling points. Future work mainly includes the determination of optimal power parameter values and the appropriate setting of the parameter under different application contexts.
基金Under the auspices of Special Fund for Ocean Public Welfare Profession Scientific Research(No.201105020)National Natural Science Foundation of China(No.41471178,41023010,41431177)National Key Technology Innovation Project for Water Pollution Control and Remediation(No.2013ZX07103006)
文摘Spatial distribution of soil salinity can be estimated based on its environmental factors because soil salinity is strongly affected and indicated by environmental factors. Different with other properties such as soil texture, soil salinity varies with short-term time. Thus, how to choose powerful environmental predictors is especially important for soil salinity. This paper presents a similarity-based prediction approach to map soil salinity and detects powerful environmental predictors for the Huanghe(Yellow) River Delta area in China. The similarity-based approach predicts the soil salinities of unsampled locations based on the environmental similarity between unsampled and sampled locations. A dataset of 92 points with salt data at depth of 30–40 cm was divided into two subsets for prediction and validation. Topographical parameters, soil textures, distances to irrigation channels and to the coastline, land surface temperature from Moderate Resolution Imaging Spectroradiometer(MODIS), Normalized Difference Vegetation Indices(NDVIs) and land surface reflectance data from Landsat Thematic Mapper(TM) imagery were generated. The similarity-based prediction approach was applied on several combinations of different environmental factors. Based on three evaluation indices including the correlation coefficient(CC) between observed and predicted values, the mean absolute error and the root mean squared error we found that elevation, distance to irrigation channels, soil texture, night land surface temperature, NDVI, and land surface reflectance Band 5 are the optimal combination for mapping soil salinity at the 30–40 cm depth in the study area(with a CC value of 0.69 and a root mean squared error value of 0.38). Our results indicated that the similarity-based prediction approach could be a vital alternative to other methods for mapping soil salinity, especially for area with limited observation data and could be used to monitor soil salinity distributions in the future.
基金supported by grants from the National Natural Science Foundation of China(41431177 and 41871300)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China+4 种基金the Innovation Project of State Key Laboratory of Resources and Environmental Information System(LREIS),China(O88RA20CYA)the Outstanding Innovation Team in Colleges and Universities in Jiangsu Province,ChinaSupports to A-Xing Zhu through the Vilas Associate Awardthe Hammel Faculty Fellow Awardthe Manasse Chair Professorship from the University of Wisconsin-Madison。
文摘Selecting a proper set of covariates is one of the most important factors that influence the accuracy of digital soil mapping(DSM).The statistical or machine learning methods for selecting DSM covariates are not available for those situations with limited samples.To solve the problem,this paper proposed a case-based method which could formalize the covariate selection knowledge contained in practical DSM applications.The proposed method trained Random Forest(RF)classifiers with DSM cases extracted from the practical DSM applications and then used the trained classifiers to determine whether each one potential covariate should be used in a new DSM application.In this study,we took topographic covariates as examples of covariates and extracted 191 DSM cases from 56 peer-reviewed journal articles to evaluate the performance of the proposed case-based method by Leave-One-Out cross validation.Compared with a novices’commonly-used way of selecting DSM covariates,the proposed case-based method improved more than 30%accuracy according to three quantitative evaluation indices(i.e.,recall,precision,and F1-score).The proposed method could be also applied to selecting the proper set of covariates for other similar geographical modeling domains,such as landslide susceptibility mapping,and species distribution modeling.
文摘Detailed knowledge about the estimates and spatial patterns of soil organic carbon(SOC) and total nitrogen(TN) stocks is fundamental for sustainable land management and climate change mitigation.This study aimed at:(1) mapping the spatial patterns,and(2) quantifying SOC and TN stocks to 30 cm depth in the Eastern Mau Forest Reserve using field,remote sensing,geographical information systems(GIS),and statistical modelling approaches.This is a critical ecosystem offering essential services,but its sustainability is threatened by deforestation and degradation.Results revealed that elevation,silt content,TN concentration,and Landsat 8 Operational Land Imager band 11 explained 72% of the variability in SOC stocks,while the same factors(except silt content) explained 71% of the variability in TN stocks.The results further showed that soil properties,particularly TN and SOC concentrations,were more important than that other environmental factors in controlling the observed patterns of SOC and TN stocks,respectively.Forests stored the highest amounts of SOC and TN(3.78 Tg C and 0.38 Tg N) followed by croplands(2.46 Tg C and 0.25 Tg N) and grasslands(0.57 Tg C and 0.06 Tg N).Overall,the Eastern Mau Forest Reserve stored approximately 6.81 Tg C and 0.69 Tg N.The highest estimates of SOC and TN stocks(hotspots) occurred on the western and northwestern parts where forests dominated,while the lowest estimates(coldspots) occurred on the eastern side where croplands had been established.Therefore,the hotspots need policies that promote conservation,while the coldspots need those that support accumulation of SOC and TN stocks.
基金Under the auspices of Program of International Science & Technology Cooperation,Ministry of Science and Technology of China(No.2010DFB24140)National Natural Science Foundation of China(No.41023010,41001298)National High Technology Research and Development Program of China(No.2011AA120305)
文摘Soil type maps at the scale of I Z 1 000 000 are used extensively to provide soil spatial distribution information for soil erosion assessment and watershed management models in China. However, the soil property maps produced through conventional direct linking method usually suffer low accuracy as well as the lack of spatial details within a soil type polygon. This paper presents an effective method to produce detailed soil property map based on representative samples which were extracted from each polygon on the 1 : 1 000 000 soil type map. The representative sample of each polygon is defined as the location that can represent the largest area within the polygon. The representativeness of a candidate sample is determined by calculating the soil-forming environment condition similarities between the sample and other locations. Once the representative sample of each polygon has been chosen, the property values of the existing typical samples are assigned to the corresponding representative samples with the same soil type. Finally, based on these representative samples, the detailed soil property map could be produced by using existing digital soil mapping methods. The case study in XuanCheng City, Anhui Province of China, demonstrated the proposed method could produce soil property map at a higher level of spatial details and accuracy: 1) The soil organic matter (SOM) map produced based on the representative samples can not only depict the detailed spatial distribution of SOM within a soil type polygon but also largely reduce the abrupt change of soil property at the boundaries of two adjacent polygons. 2) The Root Mean Squared Error (RMSE) of the SOM map based on the representative samples is 1.61, and it is 1.37 for the SOM map produced by using conventional direct linking method. Therefore, the proposed method is an effective approach to produce spatial detailed soil property map with higher accuracy for environment simulation models.
基金This work was financially supported by the National Natural Science Foundation of China(41771470)the China Postdoctoral Science Foundation(2020M672776).
文摘Soil salinization is one of the most important causes of land degradation and desertification,especially in arid and semi-arid areas.The dynamic monitoring of soil salinization is of great significance to land management,agricultural activities,water quality,and sustainable development.The remote sensing images taken by the synthetic aperture radar(SAR)Sentinel-1 and the multispectral satellite Sentinel-2 with high resolution and short revisit period have the potential to monitor the spatial distribution of soil attribute information on a large area;however,there are limited studies on the combination of Sentinel-1 and Sentinel-2 for digital mapping of soil salinization.Therefore,in this study,we used topography indices derived from digital elevation model(DEM),SAR indices generated by Sentinel-1,and vegetation indices generated by Sentinel-2 to map soil salinization in the Ogan-Kuqa River Oasis located in the central and northern Tarim Basin in Xinjiang of China,and evaluated the potential of multi-source sensors to predict soil salinity.Using the soil electrical conductivity(EC)values of 70 ground sampling sites as the target variable and the optimal environmental factors as the predictive variable,we constructed three soil salinity inversion models based on classification and regression tree(CART),random forest(RF),and extreme gradient boosting(XGBoost).Then,we evaluated the prediction ability of different models through the five-fold cross validation.The prediction accuracy of XGBoost model is better than those of CART and RF,and soil salinity predicted by the three models has similar spatial distribution characteristics.Compared with the combination of topography indices and vegetation indices,the addition of SAR indices effectively improves the prediction accuracy of the model.In general,the method of soil salinity prediction based on multi-source sensor combination is better than that based on a single sensor.In addition,SAR indices,vegetation indices,and topography indices are all effective variables for soil salinity prediction.Weighted Difference Vegetation Index(WDVI)is designated as the most important variable in these variables,followed by DEM.The results showed that the high-resolution radar Sentinel-1 and multispectral Sentinel-2 have the potential to develop soil salinity prediction model.
基金supported by the National Natural Science Foundation of China(Nos.41130530,91325301,41201207 and 41571212)the Project of Frontier Fields during the Thirteenth Five-Year Plan Period of the Institute of Soil Science,Chinese Academy of Sciences(ISSASIP1622)
文摘Due to the almost homogeneous topography in low relief areas, it is usually difficult to make accurate predictions of soil properties using topographic covariates. In this study, we examined how time series of field soil moisture observations can be used to estimate soil texture in an oasis agricultural area with low relief in the semi-arid region of northwest China. Time series of field-observed soil moisture variations were recorded for 132 h beginning at the end of an irrigation event during which the surface soil was saturated.Spatial correlation between two time-adjacent soil moisture conditions was used to select the factors for fuzzy c-means clustering. In each of the ten generated clusters, soil texture of the soil sample with the maximum fuzzy membership value was taken as the cluster centroid. Finally, a linearly weighted average was used to predict soil texture from the centroids. The results showed that soil moisture increased with the increase of clay and silt contents, but decreased with the increase of sand content. The spatial patterns of soil moisture changed during the entire soil drying phase. We assumed that these changes were mainly caused by spatial heterogeneity of soil texture. A total of 64 independent samples were used to evaluate the prediction accuracy. The root mean square error(RMSE)values of clay, silt and sand were 1.63, 2.81 and 3.71, respectively. The mean relative error(RE) values were 9.57% for clay, 3.77% for silt and 12.83% for sand. It could be concluded that the method used in this study was effective for soil texture mapping in the low-relief oasis agricultural area and could be applicable in other similar irrigation agricultural areas.
基金Under the auspices of Priority Academic Program Development of Jiangsu Higher Education Institutions,National Natural Science Foundation of China(No.41271438,41471316,41401440,41671389)
文摘Gully feature mapping is an indispensable prerequisite for the motioning and control of gully erosion which is a widespread natural hazard. The increasing availability of high-resolution Digital Elevation Model(DEM) and remote sensing imagery, combined with developed object-based methods enables automatic gully feature mapping. But still few studies have specifically focused on gully feature mapping on different scales. In this study, an object-based approach to two-level gully feature mapping, including gully-affected areas and bank gullies, was developed and tested on 1-m DEM and Worldview-3 imagery of a catchment in the Chinese Loess Plateau. The methodology includes a sequence of data preparation, image segmentation, metric calculation, and random forest based classification. The results of the two-level mapping were based on a random forest model after investigating the effects of feature selection and class-imbalance problem. Results show that the segmentation strategy adopted in this paper which considers the topographic information and optimal parameter combination can improve the segmentation results. The distribution of the gully-affected area is closely related to topographic information, however, the spectral features are more dominant for bank gully mapping. The highest overall accuracy of the gully-affected area mapping was 93.06% with four topographic features. The highest overall accuracy of bank gully mapping is 78.5% when all features are adopted. The proposed approach is a creditable option for hierarchical mapping of gully feature information, which is suitable for the application in hily Loess Plateau region.
基金supported by the National Administration of Surveying, Mapping and Geoinformation (Grant no.1469990324229)the National Natural Science Foundation of China (Grant nos.40806076, 41176172, 41176173)+2 种基金the National High Technology Research and Development Program of China (Grant no. 2008AA121702–5)the National Science and Technology Infrastructure Program of China (Grant no.2006BAB18B01)the Chinese Arctic and Antarctic Administration, SOA(Grant no. 20070206)
文摘Antarctic surveying, mapping and remote sensing is one of the important aspects of the Chinese Antarctic geoscience research program that stretch back over 25 years, since the first Chinese National Antarctic Research Expedition (CHINARE) in 1984. During the 1980's, the geodetic datum, height system and absolute gravity datum were established at the Great Wall and Zhongshan Stations. Significant contributions have been made by the construction of the Chinese Great Wall, Zhongshan and Kunlun Stations in Antarctica. Geodetic control and gravity networks were established in the King George Islands, Grove Moun- tains and Dome Argus. An area of more than 200 000 km2 has been mapped using satellite image data, aerial photogrammetry and in situ data. Permanent GPS stations and tide gauges have been established at both the Great Wall and Zhongshan Stations. Studies involving plate motion, precise satellite orbit determination, the gravity field, sea level change, and various GPS applications for atmospheric studies have been carried out. Based on remote sensing techniques, studies have been undertaken on ice sheet and glacier movements, the distributions of blue ice and ice crevasses, and ice mass balance. Polar digital and visual mapping tech- niques have been introduced, and a polar survey space database has been built. The Chinese polar scientific expedition manage- ment information system and Chinese PANDA plan display platform were developed, which provides technical support for Chi- nese polar management. Finally, this paper examines prospects for future Chinese Antarctic surveying, mapping and remote sens- ing.
基金funded by the Natural Science and Engineering Research Council (NSERC) of Canada (No. RGPIN-2014-04100)
文摘Sampling design(SD) plays a crucial role in providing reliable input for digital soil mapping(DSM) and increasing its efficiency.Sampling design, with a predetermined sample size and consideration of budget and spatial variability, is a selection procedure for identifying a set of sample locations spread over a geographical space or with a good feature space coverage. A good feature space coverage ensures accurate estimation of regression parameters, while spatial coverage contributes to effective spatial interpolation.First, we review several statistical and geometric SDs that mainly optimize the sampling pattern in a geographical space and illustrate the strengths and weaknesses of these SDs by considering spatial coverage, simplicity, accuracy, and efficiency. Furthermore, Latin hypercube sampling, which obtains a full representation of multivariate distribution in geographical space, is described in detail for its development, improvement, and application. In addition, we discuss the fuzzy k-means sampling, response surface sampling, and Kennard-Stone sampling, which optimize sampling patterns in a feature space. We then discuss some practical applications that are mainly addressed by the conditioned Latin hypercube sampling with the flexibility and feasibility of adding multiple optimization criteria. We also discuss different methods of validation, an important stage of DSM, and conclude that an independent dataset selected from the probability sampling is superior for its free model assumptions. For future work, we recommend: 1) exploring SDs with both good spatial coverage and feature space coverage; 2) uncovering the real impacts of an SD on the integral DSM procedure;and 3) testing the feasibility and contribution of SDs in three-dimensional(3 D) DSM with variability for multiple layers.
基金supported by the National Natural Science Foundation of China(Nos.91325301,41571130051,41401237,41571212,and 41371224)partly by the Jiangsu Provincial Science Foundation for Youths,China(No.BK20141053)
文摘Local terrain attributes,which are derived directly from the digital elevation model,have been widely applied in digital soil mapping.This study aimed to evaluate the mapping accuracy of soil organic carbon(SOC) concentration in 2 zones of the Heihe River in China,by combining prediction methods with local terrain attributes derived from different polynomial models.The prediction accuracy was used as a benchmark for those who may be more concerned with how accurately the variability of soil properties is modeled in practice,rather than how morphometric variables and their geomorphologic interpretations are understood and calculated.In this study,2 neighborhood types(square and circular) and 6 representative algorithms(Evans-Young,Horn,Zevenbergen-Thorne,Shary,Shi,and Florinsky algorithms) were applied.In general,35 combinations of first-and second-order derivatives were produced as candidate predictors for soil mapping using two mapping methods(i.e.,kriging with an external drift and geographically weighted regression).The results showed that appropriate local terrain attribute algorithms could better capture the spatial variation of SOC concentration in a region where soil properties are strongly influenced by the topography.Among the different combinations of firstand second-order derivatives used,there was a best combination with a more accurate estimate.For different prediction methods,the relative improvement in the two zones varied between 0.30% and 9.68%.The SOC maps resulting from the higher-order algorithms(Zevenbergen-Thorne and Florinsky) yielded less interpolation errors.Therefore,it was concluded that the performance of predictive methods,which incorporated auxiliary variables,could be improved by attempting different terrain analysis algorithms.
基金the National Science and Engineering Research Council of Canada(No.RGPIN-2014-04100)for funding this project.
文摘Digital soil mapping (DSM) aims to produce detailed maps of soil properties or soil classes to improve agricultural management and soil quality assessment. Optimized sampling design can reduce the substantial costs and efforts associated with sampling, profile description, and laboratory analysis. The purpose of this study was to compare common sampling designs for DSM, including grid sampling (GS), grid random sampling (GRS), stratified random sampling (StRS), and conditioned Latin hypercube sampling (cLHS). In an agricultural field (11 ha) in Quebec, Canada, a total of unique 118 locations were selected using each of the four sampling designs (45 locations each), and additional 30 sample locations were selected as an independent testing dataset (evaluation dataset). Soil visible near-infrared (Vis-NIR) spectra were collected in situ at the 148 locations (1 m depth), and soil cores were collected from a subset of 32 locations and subdivided at 10-cm depth intervals, totaling 251 samples. The Cubist model was used to elucidate the relationship between Vis-NIR spectra and soil properties (soil organic matter (SOM) and clay), which was then used to predict the soil properties at all 148 sample locations. Digital maps of soil properties at multiple depths for the entire field (148 sample locations) were prepared using a quantile random forest model to obtain complete model maps (CM-maps). Soil properties were also mapped using the samples from each of the 45 locations for each sampling design to obtain sampling design maps (SD-maps). The SD-maps were evaluated using the independent testing dataset (30 sample locations), and the spatial distribution and model uncertainty of each SD-map were compared with those of the corresponding CM-map. The spatial and feature space coverage were compared across the four sampling designs. The results showed that GS resulted in the most even spatial coverage, cLHS resulted in the best coverage of the feature space, and GS and cLHS resulted in similar prediction accuracies and spatial distributions of soil properties. The SOM content was underestimated using GRS, with large errors at 0–50 cm depth, due to some values not being captured by this sampling design, whereas larger errors for the deeper soil layers were produced using StRS. Predictions of SOM and clay contents had higher accuracy for topsoil (0–30 cm) than for deep subsoil (60–100 cm). It was concluded that the soil sampling designs with either good spatial coverage or feature space coverage can provide good accuracy in 3D DSM, but their performances may be different for different soil properties.
文摘Soil organic carbon (SOC) pool has the potential to mitigate or enhance climate change by either acting as a sink, or a source of atmospheric carbon dioxide (CO2) and also plays a fundamental role in the health and proper functioning of soils to sustain life on Earth. As such, the objective of this study was to investigate the applicability of a novel evolutionary genetic optimization-based adaptive neuro-fuzzy inference system (ANFIS-EG) in predicting and mapping the spatial patterns of SOC stocks in the Eastern Mau Forest Reserve, Kenya. Field measurements and auxiliary data reflecting the soil-forming factors were used to design an ANFIS-EG model, which was then implemented to predict and map the areal differentiation of SOC stocks in the Eastern Mau Forest Reserve. This was achieved with a reasonable level of uncertainty (i.e., root mean square error of 15.07 Mg C ha-l), hence demonstrating the applicability of the ANFIS-EG in SOC mapping studies. There is potential for improving the model performance, as indicated by the current ratio of performance to deviation (1.6). The mapping also revealed marginally higher SOC stocks in the forested ecosystems (i.e., an average of 109.78 M C ha-1) than in the aro-ecosvstems (i.e., an average of 95.9 Mg C ha-l).
基金supported by the National Natural Science Foundation of China (Nos. 41501229, 41371224, 41130530, and 91325301)the China Postdoctoral Science Foundation (No. 2015M581876)
文摘Soil diagnostic horizons, which each have a set of quantified properties, play a key role in soil classification. However, they are difficult to predict, and few attempts have been made to map their spatial occurrence. We evaluated and compared four machine learning algorithms, namely, the classification and regression tree(CART), random forest(RF), boosted regression trees(BRT), and support vector machine(SVM), to map the occurrence of the soil mattic horizon in the northeastern Qinghai-Tibetan Plateau using readily available ancillary data. The mechanisms of resampling and ensemble techniques significantly improved prediction accuracies(measured based on area under the receiver operator characteristic curve score(AUC)) and produced more stable results for the BRT(AUC of 0.921 ± 0.012, mean ± standard deviation) and RF(0.908 ± 0.013) algorithms compared to the CART algorithm(0.784 ± 0.012), which is the most commonly used machine learning method. Although the SVM algorithm yielded a comparable AUC value(0.906 ± 0.006) to the RF and BRT algorithms, it is sensitive to parameter settings, which are extremely time-consuming.Therefore, we consider it inadequate for occurrence-distribution modeling. Considering the obvious advantages of high prediction accuracy, robustness to parameter settings, the ability to estimate uncertainty in prediction, and easy interpretation of predictor variables, BRT seems to be the most desirable method. These results provide an insight into the use of machine learning algorithms to map the mattic horizon and potentially other soil diagnostic horizons.
文摘Ice and snow domint the land features in Antarctica. The great brightness and poorcontrast of ice and snow and streaking noise in satellite image make the procedure of image processing difficult. On the other hand however, the contrast between bare rock land/sea water and ice/snow is so high that the details of image will be overcompressed.In the light of characteristics of satellite image in Antarctica, a filtering to remove streaking noise has adn discussed. Based on automatic identify classification to enhance the details of objects and the method and theory of digital rectification of satellite image with ground control points measured from field survey are also presented.
基金Supported by National Oil-gas Project:No XQ-2004-07
文摘Digital geological mapping fundamentally broke through the traditional working pattern,successfully carried out the geological mapping digitalization.By using the RGMAP system to field digital geological mapping,the authors summarized the method of work and the work flow of the RGMAPGIS during the field geological survey.First,we prepared material,set up the PRB gallery,then put the geographic base map under the background maplayer and organizing the field hand map,forming the field factual datum map.At last,the geological space database is formed.
文摘The components of map information are analyzed theoretically in this paper,and the map information includes mainly the spatial information,attributive information and temporal characteristics information.Then the digital map entity is defined according to construction characteristics of the map information.Finally,on the basis of the analyses of the construction characteristics of digital map entity and present conceptual model of digital map database,an abstracted conceptual model of digital map database is presented.And the Normal Form theory of relational database is discussed particularly.
基金The National Natural Science Foundation of China(No.61273236)the National Key Research and Development Plan of China(No.2016YFC0802706,2017YFC0804804)+1 种基金the Program for Special Talents in Six Major Fields of Jiangsu Province(No.2017JXQC-003)the Project of Beijing Municipal Science and Technology Commission(No.Z161100001416001)
文摘In order to realize an optimal balance between the efficiency and reliability requirements ofroad models,a road modeling method for digital maps based on cardinal spline is studied.First,the cardinal spline is chosen to establish an initial road model,which is specified by a series of control points and tension parameters.Then,in view of the initial road model,a gradual optimization algorithm,which can determine the reasonable control points and optimal tension parameters according to the degree of the change of road curvature,is proposed to determine the final road model.Finally,the proposed road modeling method is verified a d evaluated through experiments,and it is compared with the conventional method for digital maps based on the B-spline.The results show that the proposed method can resize a neaoptimal balance between the efficiency and reliability requirements.Compared with the conventional method based on the B-spline,this method occupies less data storage and achieves higher accuracy.