针对快速搜索随机树(rapidly-exploring random tree,RRT)算法的随机采样特征导致的收敛速度慢、路径冗余度高、采样点利用率低问题,给出一种新的解决方法。首先,根据图复杂度公式,计算出图的复杂度后确定目标偏执概率,建立偏置概率自...针对快速搜索随机树(rapidly-exploring random tree,RRT)算法的随机采样特征导致的收敛速度慢、路径冗余度高、采样点利用率低问题,给出一种新的解决方法。首先,根据图复杂度公式,计算出图的复杂度后确定目标偏执概率,建立偏置概率自适应模型;其次,在首次规划好路线后,路径中仍存在一些不必要的拐点与棱角,针对传统路径裁剪依赖局部搜索策略,可能导致次优解生成,提出PRM-Dijkstra(probabilistic roadmap-dijkstra)算法对路径进行裁剪,将改进RRT算法生成的树节点利用PRM算法相互连接起来,通过Dijkstra算法计算出一条最优路径;最后,改进RRT算法与PRM-Dijkstra种算法优势相结合,在保证有一条路径的前提下,最大概率的寻找最优路径。通过复杂图下仿真避障实验,结果显示:改进RRT算法在节点生成数量与规划用时相较传统RRT算法平均减少80%,相较于Goal-bias RRT算法均减少40%。并通过机器人操作系统(robot operating system,ROS)下的MoveIt!集成开发平台进行现实环境下避障实验,验证了算法的可行性与有效性。展开更多
This article describes a biologically inspired node generator for the path planning of serially connected hyper-redundant manipulators using probabilistic roadmap planners. The generator searches the configuration spa...This article describes a biologically inspired node generator for the path planning of serially connected hyper-redundant manipulators using probabilistic roadmap planners. The generator searches the configuration space surrounding existing nodes in the roadmap and uses a combination of random and deterministic search methods that emulate the behaviour of octopus limbs. The strategy consists of randomly mutating the states of the links near the end-effector, and mutating the states of the links near the base of the robot toward the states of the goal configuration. When combined with the small tree probabilistic roadmap planner, the method was successfully used to solve the narrow passage motion planning problem of a 17 degree-of-freedom manipulator.展开更多
文摘This article describes a biologically inspired node generator for the path planning of serially connected hyper-redundant manipulators using probabilistic roadmap planners. The generator searches the configuration space surrounding existing nodes in the roadmap and uses a combination of random and deterministic search methods that emulate the behaviour of octopus limbs. The strategy consists of randomly mutating the states of the links near the end-effector, and mutating the states of the links near the base of the robot toward the states of the goal configuration. When combined with the small tree probabilistic roadmap planner, the method was successfully used to solve the narrow passage motion planning problem of a 17 degree-of-freedom manipulator.