Many-objective optimization problems take challenges to multi-objective evolutionary algorithms.A number of nondominated solutions in population cause a difficult selection towards the Pareto front.To tackle this issu...Many-objective optimization problems take challenges to multi-objective evolutionary algorithms.A number of nondominated solutions in population cause a difficult selection towards the Pareto front.To tackle this issue,a series of indicatorbased multi-objective evolutionary algorithms(MOEAs)have been proposed to guide the evolution progress and shown promising performance.This paper proposes an indicator-based manyobjective evolutionary algorithm calledε-indicator-based shuffled frog leaping algorithm(ε-MaOSFLA),which adopts the shuffled frog leaping algorithm as an evolutionary strategy and a simple and effectiveε-indicator as a fitness assignment scheme to press the population towards the Pareto front.Compared with four stateof-the-art MOEAs on several standard test problems with up to 50 objectives,the experimental results show thatε-MaOSFLA outperforms the competitors.展开更多
Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when ta...Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when tackling high-dimensional optimization challenges.To effectively address these challenges,this study introduces cooperative metaheuristics integrating dynamic dimension reduction(DR).Building upon particle swarm optimization(PSO)and differential evolution(DE),the proposed cooperative methods C-PSO and C-DE are developed.In the proposed methods,the modified principal components analysis(PCA)is utilized to reduce the dimension of design variables,thereby decreasing computational costs.The dynamic DR strategy implements periodic execution of modified PCA after a fixed number of iterations,resulting in the important dimensions being dynamically identified.Compared with the static one,the dynamic DR strategy can achieve precise identification of important dimensions,thereby enabling accelerated convergence toward optimal solutions.Furthermore,the influence of cumulative contribution rate thresholds on optimization problems with different dimensions is investigated.Metaheuristic algorithms(PSO,DE)and cooperative metaheuristics(C-PSO,C-DE)are examined by 15 benchmark functions and two engineering design problems(speed reducer and composite pressure vessel).Comparative results demonstrate that the cooperative methods achieve significantly superior performance compared to standard methods in both solution accuracy and computational efficiency.Compared to standard metaheuristic algorithms,cooperative metaheuristics achieve a reduction in computational cost of at least 40%.The cooperative metaheuristics can be effectively used to tackle both high-dimensional unconstrained and constrained optimization problems.展开更多
With the increase of problem dimensions,most solutions of existing many-objective optimization algorithms are non-dominant.Therefore,the selection of individuals and the retention of elite individuals are important.Ex...With the increase of problem dimensions,most solutions of existing many-objective optimization algorithms are non-dominant.Therefore,the selection of individuals and the retention of elite individuals are important.Existing algorithms cannot provide sufficient solution precision and guarantee the diversity and convergence of solution sets when solving practical many-objective industrial problems.Thus,this work proposes an improved many-objective pigeon-inspired optimization(ImMAPIO)algorithm with multiple selection strategies to solve many-objective optimization problems.Multiple selection strategies integrating hypervolume,knee point,and vector angles are utilized to increase selection pressure to the true Pareto Front.Thus,the accuracy,convergence,and diversity of solutions are improved.ImMAPIO is applied to the DTLZ and WFG test functions with four to fifteen objectives and compared against NSGA-III,GrEA,MOEA/D,RVEA,and many-objective Pigeon-inspired optimization algorithm.Experimental results indicate the superiority of ImMAPIO on these test functions.展开更多
Evolutionary algorithm is an effective strategy for solving many-objective optimization problems.At present,most evolutionary many-objective algorithms are designed for solving many-objective optimization problems whe...Evolutionary algorithm is an effective strategy for solving many-objective optimization problems.At present,most evolutionary many-objective algorithms are designed for solving many-objective optimization problems where the objectives conflict with each other.In some cases,however,the objectives are not always in conflict.It consists of multiple independent objective subsets and the relationship between objectives is unknown in advance.The classical evolutionary many-objective algorithms may not be able to effectively solve such problems.Accordingly,we propose an objective set decomposition strategy based on the partial set covering model.It decomposes the objectives into a collection of objective subsets to preserve the nondominance relationship as much as possible.An optimization subproblem is defined on each objective subset.A coevolutionary algorithm is presented to optimize all subproblems simultaneously,in which a nondominance ranking is presented to interact information among these sub-populations.The proposed algorithm is compared with five popular many-objective evolutionary algorithms and four objective set decomposition based evolutionary algorithms on a series of test problems.Numerical experiments demonstrate that the proposed algorithm can achieve promising results for the many-objective optimization problems with independent and harmonious objectives.展开更多
Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale opti...Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale optimization problems are solved using computing machines,leading to an enormous computational time being required,which may delay deriving timely solutions.Decomposition methods,which partition a large-scale optimization problem into lower-dimensional subproblems,represent a key approach to addressing time-efficiency issues.There has been significant progress in both applied mathematics and emerging artificial intelligence approaches on this front.This work aims at providing an overview of the decomposition methods from both the mathematics and computer science points of view.We also remark on the state-of-the-art developments and recent applications of the decomposition methods,and discuss the future research and development perspectives.展开更多
In solving many-objective optimization problems(MaO Ps),existing nondominated sorting-based multi-objective evolutionary algorithms suffer from the fast loss of selection pressure.Most candidate solutions become nondo...In solving many-objective optimization problems(MaO Ps),existing nondominated sorting-based multi-objective evolutionary algorithms suffer from the fast loss of selection pressure.Most candidate solutions become nondominated during the evolutionary process,thus leading to the failure of producing offspring toward Pareto-optimal front with diversity.Can we find a more effective way to select nondominated solutions and resolve this issue?To answer this critical question,this work proposes to evolve solutions through line complex rather than solution points in Euclidean space.First,Plücker coordinates are used to project solution points to line complex composed of position vectors and momentum ones.Besides position vectors of the solution points,momentum vectors are used to extend the comparability of nondominated solutions and enhance selection pressure.Then,a new distance function designed for high-dimensional space is proposed to replace Euclidean distance as a more effective distancebased estimator.Based on them,a novel many-objective evolutionary algorithm(MaOEA)is proposed by integrating a line complex-based environmental selection strategy into the NSGAⅢframework.The proposed algorithm is compared with the state of the art on widely used benchmark problems with up to 15 objectives.Experimental results demonstrate its superior competitiveness in solving MaOPs.展开更多
As Internet of Things(IoT)applications expand,Mobile Edge Computing(MEC)has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices.Edge-side computation offloading plays...As Internet of Things(IoT)applications expand,Mobile Edge Computing(MEC)has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices.Edge-side computation offloading plays a pivotal role in MEC performance but remains challenging due to complex task topologies,conflicting objectives,and limited resources.This paper addresses high-dimensional multi-objective offloading for serial heterogeneous tasks in MEC.We jointly consider task heterogeneity,high-dimensional objectives,and flexible resource scheduling,modeling the problem as a Many-objective optimization.To solve it,we propose a flexible framework integrating an improved cooperative co-evolutionary algorithm based on decomposition(MOCC/D)and a flexible scheduling strategy.Experimental results on benchmark functions and simulation scenarios show that the proposed method outperforms existing approaches in both convergence and solution quality.展开更多
Ant colony optimization (ACO) is a new heuristic algo- rithm which has been proven a successful technique and applied to a number of combinatorial optimization problems. The traveling salesman problem (TSP) is amo...Ant colony optimization (ACO) is a new heuristic algo- rithm which has been proven a successful technique and applied to a number of combinatorial optimization problems. The traveling salesman problem (TSP) is among the most important combinato- rial problems. An ACO algorithm based on scout characteristic is proposed for solving the stagnation behavior and premature con- vergence problem of the basic ACO algorithm on TSP. The main idea is to partition artificial ants into two groups: scout ants and common ants. The common ants work according to the search manner of basic ant colony algorithm, but scout ants have some differences from common ants, they calculate each route's muta- tion probability of the current optimal solution using path evaluation model and search around the optimal solution according to the mutation probability. Simulation on TSP shows that the improved algorithm has high efficiency and robustness.展开更多
There are three common types of predictability problems in weather and climate, which each involve different constrained nonlinear optimization problems: the lower bound of maximum predictable time, the upper bound o...There are three common types of predictability problems in weather and climate, which each involve different constrained nonlinear optimization problems: the lower bound of maximum predictable time, the upper bound of maximum prediction error, and the lower bound of maximum allowable initial error and parameter error. Highly effcient algorithms have been developed to solve the second optimization problem. And this optimization problem can be used in realistic models for weather and climate to study the upper bound of the maximum prediction error. Although a filtering strategy has been adopted to solve the other two problems, direct solutions are very time-consuming even for a very simple model, which therefore limits the applicability of these two predictability problems in realistic models. In this paper, a new strategy is designed to solve these problems, involving the use of the existing highly effcient algorithms for the second predictability problem in particular. Furthermore, a series of comparisons between the older filtering strategy and the new method are performed. It is demonstrated that the new strategy not only outputs the same results as the old one, but is also more computationally effcient. This would suggest that it is possible to study the predictability problems associated with these two nonlinear optimization problems in realistic forecast models of weather or climate.展开更多
As power systems expand,solving the unit commitment problem(UCP)becomes increasingly challenging due to the curse of dimensionality,and traditional methods often struggle to balance computational efficiency and soluti...As power systems expand,solving the unit commitment problem(UCP)becomes increasingly challenging due to the curse of dimensionality,and traditional methods often struggle to balance computational efficiency and solution optimality.To tackle this issue,we propose a problem-structure-informed quantum approximate optimization algorithm(QAOA)framework that fully exploits the quantum advantage under extremely limited quantum resources.Specifically,we leverage the inherent topological structure of power systems to decompose large-scale UCP instances into smaller subproblems,which are solvable in parallel by limited number of qubits.This decomposition not only circumvents the current hardware limitations of quantum computing but also achieves higher performance as the graph structure of the power system becomes more sparse.Consequently,our approach can be extended to future power systems that are larger and more complex.展开更多
A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems....A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions.展开更多
Most material distribution-based topology optimization methods work on a relaxed form of the optimization problem and then push the solution toward the binary limits.However,when benchmarking these methods,researchers...Most material distribution-based topology optimization methods work on a relaxed form of the optimization problem and then push the solution toward the binary limits.However,when benchmarking these methods,researchers use known solutions to only a single form of benchmark problem.This paper proposes a comparison platform for systematic benchmarking of topology optimization methods using both binary and relaxed forms.A greyness measure is implemented to evaluate how far a solution is from the desired binary form.The well-known ZhouRozvany(ZR)problem is selected as the benchmarking problem here,making use of available global solutions for both its relaxed and binary forms.The recently developed non-penalization Smooth-edged Material Distribution for Optimizing Topology(SEMDOT),well-established Solid Isotropic Material with Penalization(SIMP),and continuation methods are studied on this platform.Interestingly,in most cases,the grayscale solutions obtained by SEMDOT demonstrate better performance in dealing with the ZR problem than SIMP.The reasons are investigated and attributed to the usage of two different regularization techniques,namely,the Heaviside smooth function in SEMDOT and the power-law penalty in SIMP.More importantly,a simple-to-use benchmarking graph is proposed for evaluating newly developed topology optimization methods.展开更多
Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remed...Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remedy this issue,a large body of research has been performed in recent years and many new algorithms have been proposed.This paper provides a comprehensive survey of the research on MOPs with irregular Pareto fronts.We start with a brief introduction to the basic concepts,followed by a summary of the benchmark test problems with irregular problems,an analysis of the causes of the irregularity,and real-world optimization problems with irregular Pareto fronts.Then,a taxonomy of the existing methodologies for handling irregular problems is given and representative algorithms are reviewed with a discussion of their strengths and weaknesses.Finally,open challenges are pointed out and a few promising future directions are suggested.展开更多
The authors of this article are interested in characterization of efficient solutions for special classes of problems. These classes consider semi-strong E-convexity of involved functions. Sufficient and necessary con...The authors of this article are interested in characterization of efficient solutions for special classes of problems. These classes consider semi-strong E-convexity of involved functions. Sufficient and necessary conditions for a feasible solution to be an efficient or properly efficient solution are obtained.展开更多
In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the mult...In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the multiple interval-objective function. Further, the sufficient optimality conditions for a (weakly) LU-efficient solution and several duality results in Mond-Weir sense are proved under assumptions that the functions constituting the considered nondifferentiable multiobjective programming problem with the multiple interval- objective function are convex.展开更多
The two-archive 2 algorithm(Two_Arch2) is a manyobjective evolutionary algorithm for balancing the convergence,diversity,and complexity using diversity archive(DA) and convergence archive(CA).However,the individuals i...The two-archive 2 algorithm(Two_Arch2) is a manyobjective evolutionary algorithm for balancing the convergence,diversity,and complexity using diversity archive(DA) and convergence archive(CA).However,the individuals in DA are selected based on the traditional Pareto dominance which decreases the selection pressure in the high-dimensional problems.The traditional algorithm even cannot converge due to the weak selection pressure.Meanwhile,Two_Arch2 adopts DA as the output of the algorithm which is hard to maintain diversity and coverage of the final solutions synchronously and increase the complexity of the algorithm.To increase the evolutionary pressure of the algorithm and improve distribution and convergence of the final solutions,an ε-domination based Two_Arch2 algorithm(ε-Two_Arch2) for many-objective problems(MaOPs) is proposed in this paper.In ε-Two_Arch2,to decrease the computational complexity and speed up the convergence,a novel evolutionary framework with a fast update strategy is proposed;to increase the selection pressure,ε-domination is assigned to update the individuals in DA;to guarantee the uniform distribution of the solution,a boundary protection strategy based on I_(ε+) indicator is designated as two steps selection strategies to update individuals in CA.To evaluate the performance of the proposed algorithm,a series of benchmark functions with different numbers of objectives is solved.The results demonstrate that the proposed method is competitive with the state-of-the-art multi-objective evolutionary algorithms and the efficiency of the algorithm is significantly improved compared with Two_Arch2.展开更多
This paper proposes a modified version of the Dwarf Mongoose Optimization Algorithm (IDMO) for constrained engineering design problems. This optimization technique modifies the base algorithm (DMO) in three simple but...This paper proposes a modified version of the Dwarf Mongoose Optimization Algorithm (IDMO) for constrained engineering design problems. This optimization technique modifies the base algorithm (DMO) in three simple but effective ways. First, the alpha selection in IDMO differs from the DMO, where evaluating the probability value of each fitness is just a computational overhead and contributes nothing to the quality of the alpha or other group members. The fittest dwarf mongoose is selected as the alpha, and a new operator ω is introduced, which controls the alpha movement, thereby enhancing the exploration ability and exploitability of the IDMO. Second, the scout group movements are modified by randomization to introduce diversity in the search process and explore unvisited areas. Finally, the babysitter's exchange criterium is modified such that once the criterium is met, the babysitters that are exchanged interact with the dwarf mongoose exchanging them to gain information about food sources and sleeping mounds, which could result in better-fitted mongooses instead of initializing them afresh as done in DMO, then the counter is reset to zero. The proposed IDMO was used to solve the classical and CEC 2020 benchmark functions and 12 continuous/discrete engineering optimization problems. The performance of the IDMO, using different performance metrics and statistical analysis, is compared with the DMO and eight other existing algorithms. In most cases, the results show that solutions achieved by the IDMO are better than those obtained by the existing algorithms.展开更多
A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO c...A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO combined the exploration of ABC algorithm with the exploitation of BBO algorithm effectively, and hence it can generate the promising candidate individuals. The proposed hybrid algorithm speeds up the convergence and improves the algorithm's performance. Several benchmark test functions and mechanical design problems are applied to verifying the effects of these improvements and it is demonstrated that the performance of this proposed ABC-BBO is superior to or at least highly competitive with other population-based optimization approaches.展开更多
As a new-style stochastic algorithm, the electromagnetism-like mechanism(EM) method gains more and more attention from many researchers in recent years. A novel model based on EM(NMEM) for multiobjective optimizat...As a new-style stochastic algorithm, the electromagnetism-like mechanism(EM) method gains more and more attention from many researchers in recent years. A novel model based on EM(NMEM) for multiobjective optimization problems is proposed, which regards the charge of all particles as the constraints in the current population and the measure of the uniformity of non-dominated solutions as the objective function. The charge of the particle is evaluated based on the dominated concept, and its magnitude determines the direction of a force between two particles. Numerical studies are carried out on six complex test functions and the experimental results demonstrate that the proposed NMEM algorithm is a very robust method for solving the multiobjective optimization problems.展开更多
The aim of this paper is to study the relationship among Minty vector variational-like inequality problem, Stampacchia vector variational-like inequality problem and vector optimization problem involving (G, α)-invex...The aim of this paper is to study the relationship among Minty vector variational-like inequality problem, Stampacchia vector variational-like inequality problem and vector optimization problem involving (G, α)-invex functions. Furthermore, we establish equivalence among the solutions of weak formulations of Minty vector variational-like inequality problem, Stampacchia vector variational-like inequality problem and weak efficient solution of vector optimization problem under the assumption of (G, α)-invex functions. Examples are provided to elucidate our results.展开更多
基金supported by the Shenzhen Innovation Technology Program(JCYJ20160422112909302)
文摘Many-objective optimization problems take challenges to multi-objective evolutionary algorithms.A number of nondominated solutions in population cause a difficult selection towards the Pareto front.To tackle this issue,a series of indicatorbased multi-objective evolutionary algorithms(MOEAs)have been proposed to guide the evolution progress and shown promising performance.This paper proposes an indicator-based manyobjective evolutionary algorithm calledε-indicator-based shuffled frog leaping algorithm(ε-MaOSFLA),which adopts the shuffled frog leaping algorithm as an evolutionary strategy and a simple and effectiveε-indicator as a fitness assignment scheme to press the population towards the Pareto front.Compared with four stateof-the-art MOEAs on several standard test problems with up to 50 objectives,the experimental results show thatε-MaOSFLA outperforms the competitors.
基金funded by National Natural Science Foundation of China(Nos.12402142,11832013 and 11572134)Natural Science Foundation of Hubei Province(No.2024AFB235)+1 种基金Hubei Provincial Department of Education Science and Technology Research Project(No.Q20221714)the Opening Foundation of Hubei Key Laboratory of Digital Textile Equipment(Nos.DTL2023019 and DTL2022012).
文摘Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when tackling high-dimensional optimization challenges.To effectively address these challenges,this study introduces cooperative metaheuristics integrating dynamic dimension reduction(DR).Building upon particle swarm optimization(PSO)and differential evolution(DE),the proposed cooperative methods C-PSO and C-DE are developed.In the proposed methods,the modified principal components analysis(PCA)is utilized to reduce the dimension of design variables,thereby decreasing computational costs.The dynamic DR strategy implements periodic execution of modified PCA after a fixed number of iterations,resulting in the important dimensions being dynamically identified.Compared with the static one,the dynamic DR strategy can achieve precise identification of important dimensions,thereby enabling accelerated convergence toward optimal solutions.Furthermore,the influence of cumulative contribution rate thresholds on optimization problems with different dimensions is investigated.Metaheuristic algorithms(PSO,DE)and cooperative metaheuristics(C-PSO,C-DE)are examined by 15 benchmark functions and two engineering design problems(speed reducer and composite pressure vessel).Comparative results demonstrate that the cooperative methods achieve significantly superior performance compared to standard methods in both solution accuracy and computational efficiency.Compared to standard metaheuristic algorithms,cooperative metaheuristics achieve a reduction in computational cost of at least 40%.The cooperative metaheuristics can be effectively used to tackle both high-dimensional unconstrained and constrained optimization problems.
基金This work was supported by the National Key Research and Development Program of China(No.2018YFC1604000)the National Natural Science Foundation of China(Nos.61806138,61772478,U1636220,61961160707,and 61976212)+2 种基金the Key R&D Program of Shanxi Province(High Technology)(No.201903D121119)the Key R&D Program of Shanxi Province(International Cooperation)(No.201903D421048)the Key R&D Program(International Science and Technology Cooperation Project)of Shanxi Province,China(No.201903D421003).
文摘With the increase of problem dimensions,most solutions of existing many-objective optimization algorithms are non-dominant.Therefore,the selection of individuals and the retention of elite individuals are important.Existing algorithms cannot provide sufficient solution precision and guarantee the diversity and convergence of solution sets when solving practical many-objective industrial problems.Thus,this work proposes an improved many-objective pigeon-inspired optimization(ImMAPIO)algorithm with multiple selection strategies to solve many-objective optimization problems.Multiple selection strategies integrating hypervolume,knee point,and vector angles are utilized to increase selection pressure to the true Pareto Front.Thus,the accuracy,convergence,and diversity of solutions are improved.ImMAPIO is applied to the DTLZ and WFG test functions with four to fifteen objectives and compared against NSGA-III,GrEA,MOEA/D,RVEA,and many-objective Pigeon-inspired optimization algorithm.Experimental results indicate the superiority of ImMAPIO on these test functions.
基金supported in part by the National Natural Science Foundation of China(No.62172110)the Natural Science Foundation of Guangdong Province(Nos.2021A1515011839 and 2022A1515010130)the Programme of Science and Technology of Guangdong Province(No.2021A0505110004).
文摘Evolutionary algorithm is an effective strategy for solving many-objective optimization problems.At present,most evolutionary many-objective algorithms are designed for solving many-objective optimization problems where the objectives conflict with each other.In some cases,however,the objectives are not always in conflict.It consists of multiple independent objective subsets and the relationship between objectives is unknown in advance.The classical evolutionary many-objective algorithms may not be able to effectively solve such problems.Accordingly,we propose an objective set decomposition strategy based on the partial set covering model.It decomposes the objectives into a collection of objective subsets to preserve the nondominance relationship as much as possible.An optimization subproblem is defined on each objective subset.A coevolutionary algorithm is presented to optimize all subproblems simultaneously,in which a nondominance ranking is presented to interact information among these sub-populations.The proposed algorithm is compared with five popular many-objective evolutionary algorithms and four objective set decomposition based evolutionary algorithms on a series of test problems.Numerical experiments demonstrate that the proposed algorithm can achieve promising results for the many-objective optimization problems with independent and harmonious objectives.
基金The Australian Research Council(DP200101197,DP230101107).
文摘Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale optimization problems are solved using computing machines,leading to an enormous computational time being required,which may delay deriving timely solutions.Decomposition methods,which partition a large-scale optimization problem into lower-dimensional subproblems,represent a key approach to addressing time-efficiency issues.There has been significant progress in both applied mathematics and emerging artificial intelligence approaches on this front.This work aims at providing an overview of the decomposition methods from both the mathematics and computer science points of view.We also remark on the state-of-the-art developments and recent applications of the decomposition methods,and discuss the future research and development perspectives.
基金supported in part by the National Natural Science Foundation of China(51775385)the Natural Science Foundation of Shanghai(23ZR1466000)+3 种基金the Shanghai Industrial Collaborative Science and Technology Innovation Project(2021-cyxt2-kj10)the Innovation Program of Shanghai Municipal Education Commission(202101070007E00098)the Innovation Project of Engineering Research Center of Integration and Application of Digital Learning Technology of MOE(1221046)the Program to Cultivate Middle-Aged and Young Cadre Teacher of Jiangsu Province。
文摘In solving many-objective optimization problems(MaO Ps),existing nondominated sorting-based multi-objective evolutionary algorithms suffer from the fast loss of selection pressure.Most candidate solutions become nondominated during the evolutionary process,thus leading to the failure of producing offspring toward Pareto-optimal front with diversity.Can we find a more effective way to select nondominated solutions and resolve this issue?To answer this critical question,this work proposes to evolve solutions through line complex rather than solution points in Euclidean space.First,Plücker coordinates are used to project solution points to line complex composed of position vectors and momentum ones.Besides position vectors of the solution points,momentum vectors are used to extend the comparability of nondominated solutions and enhance selection pressure.Then,a new distance function designed for high-dimensional space is proposed to replace Euclidean distance as a more effective distancebased estimator.Based on them,a novel many-objective evolutionary algorithm(MaOEA)is proposed by integrating a line complex-based environmental selection strategy into the NSGAⅢframework.The proposed algorithm is compared with the state of the art on widely used benchmark problems with up to 15 objectives.Experimental results demonstrate its superior competitiveness in solving MaOPs.
基金supported by Youth Talent Project of Scientific Research Program of Hubei Provincial Department of Education under Grant Q20241809Doctoral Scientific Research Foundation of Hubei University of Automotive Technology under Grant 202404.
文摘As Internet of Things(IoT)applications expand,Mobile Edge Computing(MEC)has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices.Edge-side computation offloading plays a pivotal role in MEC performance but remains challenging due to complex task topologies,conflicting objectives,and limited resources.This paper addresses high-dimensional multi-objective offloading for serial heterogeneous tasks in MEC.We jointly consider task heterogeneity,high-dimensional objectives,and flexible resource scheduling,modeling the problem as a Many-objective optimization.To solve it,we propose a flexible framework integrating an improved cooperative co-evolutionary algorithm based on decomposition(MOCC/D)and a flexible scheduling strategy.Experimental results on benchmark functions and simulation scenarios show that the proposed method outperforms existing approaches in both convergence and solution quality.
基金supported by the National Natural Science Foundation of China(60573159)
文摘Ant colony optimization (ACO) is a new heuristic algo- rithm which has been proven a successful technique and applied to a number of combinatorial optimization problems. The traveling salesman problem (TSP) is among the most important combinato- rial problems. An ACO algorithm based on scout characteristic is proposed for solving the stagnation behavior and premature con- vergence problem of the basic ACO algorithm on TSP. The main idea is to partition artificial ants into two groups: scout ants and common ants. The common ants work according to the search manner of basic ant colony algorithm, but scout ants have some differences from common ants, they calculate each route's muta- tion probability of the current optimal solution using path evaluation model and search around the optimal solution according to the mutation probability. Simulation on TSP shows that the improved algorithm has high efficiency and robustness.
基金sponsored by the Key Knowledge Innovation Program of the Chinese Academy of Sciences (Grant. No. KZCX2-YW-QN203)the National Basic Research Program of China(2007CB411800),the GYHY200906009 of China Meteorological Administration
文摘There are three common types of predictability problems in weather and climate, which each involve different constrained nonlinear optimization problems: the lower bound of maximum predictable time, the upper bound of maximum prediction error, and the lower bound of maximum allowable initial error and parameter error. Highly effcient algorithms have been developed to solve the second optimization problem. And this optimization problem can be used in realistic models for weather and climate to study the upper bound of the maximum prediction error. Although a filtering strategy has been adopted to solve the other two problems, direct solutions are very time-consuming even for a very simple model, which therefore limits the applicability of these two predictability problems in realistic models. In this paper, a new strategy is designed to solve these problems, involving the use of the existing highly effcient algorithms for the second predictability problem in particular. Furthermore, a series of comparisons between the older filtering strategy and the new method are performed. It is demonstrated that the new strategy not only outputs the same results as the old one, but is also more computationally effcient. This would suggest that it is possible to study the predictability problems associated with these two nonlinear optimization problems in realistic forecast models of weather or climate.
文摘As power systems expand,solving the unit commitment problem(UCP)becomes increasingly challenging due to the curse of dimensionality,and traditional methods often struggle to balance computational efficiency and solution optimality.To tackle this issue,we propose a problem-structure-informed quantum approximate optimization algorithm(QAOA)framework that fully exploits the quantum advantage under extremely limited quantum resources.Specifically,we leverage the inherent topological structure of power systems to decompose large-scale UCP instances into smaller subproblems,which are solvable in parallel by limited number of qubits.This decomposition not only circumvents the current hardware limitations of quantum computing but also achieves higher performance as the graph structure of the power system becomes more sparse.Consequently,our approach can be extended to future power systems that are larger and more complex.
基金Projects(50275150,61173052) supported by the National Natural Science Foundation of ChinaProject(14FJ3112) supported by the Planned Science and Technology of Hunan Province,ChinaProject(14B033) supported by Scientific Research Fund Education Department of Hunan Province,China
文摘A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions.
文摘Most material distribution-based topology optimization methods work on a relaxed form of the optimization problem and then push the solution toward the binary limits.However,when benchmarking these methods,researchers use known solutions to only a single form of benchmark problem.This paper proposes a comparison platform for systematic benchmarking of topology optimization methods using both binary and relaxed forms.A greyness measure is implemented to evaluate how far a solution is from the desired binary form.The well-known ZhouRozvany(ZR)problem is selected as the benchmarking problem here,making use of available global solutions for both its relaxed and binary forms.The recently developed non-penalization Smooth-edged Material Distribution for Optimizing Topology(SEMDOT),well-established Solid Isotropic Material with Penalization(SIMP),and continuation methods are studied on this platform.Interestingly,in most cases,the grayscale solutions obtained by SEMDOT demonstrate better performance in dealing with the ZR problem than SIMP.The reasons are investigated and attributed to the usage of two different regularization techniques,namely,the Heaviside smooth function in SEMDOT and the power-law penalty in SIMP.More importantly,a simple-to-use benchmarking graph is proposed for evaluating newly developed topology optimization methods.
基金supported in part by the National Natural Science Foundation of China(61806051,61903078)Natural Science Foundation of Shanghai(20ZR1400400)+2 种基金Agricultural Project of the Shanghai Committee of Science and Technology(16391902800)the Fundamental Research Funds for the Central Universities(2232020D-48)the Project of the Humanities and Social Sciences on Young Fund of the Ministry of Education in China(Research on swarm intelligence collaborative robust optimization scheduling for high-dimensional dynamic decisionmaking system(20YJCZH052))。
文摘Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remedy this issue,a large body of research has been performed in recent years and many new algorithms have been proposed.This paper provides a comprehensive survey of the research on MOPs with irregular Pareto fronts.We start with a brief introduction to the basic concepts,followed by a summary of the benchmark test problems with irregular problems,an analysis of the causes of the irregularity,and real-world optimization problems with irregular Pareto fronts.Then,a taxonomy of the existing methodologies for handling irregular problems is given and representative algorithms are reviewed with a discussion of their strengths and weaknesses.Finally,open challenges are pointed out and a few promising future directions are suggested.
文摘The authors of this article are interested in characterization of efficient solutions for special classes of problems. These classes consider semi-strong E-convexity of involved functions. Sufficient and necessary conditions for a feasible solution to be an efficient or properly efficient solution are obtained.
文摘In this paper, both Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are established for a (weakly) LU-efficient solution in the considered nonsmooth multiobjective programming problem with the multiple interval-objective function. Further, the sufficient optimality conditions for a (weakly) LU-efficient solution and several duality results in Mond-Weir sense are proved under assumptions that the functions constituting the considered nondifferentiable multiobjective programming problem with the multiple interval- objective function are convex.
基金supported by the National Natural Science Foundation of ChinaNatural Science Foundation of Zhejiang Province (52077203,LY19E070003)the Fundamental Research Funds for the Provincial Universities of Zhejiang (2021YW06)。
文摘The two-archive 2 algorithm(Two_Arch2) is a manyobjective evolutionary algorithm for balancing the convergence,diversity,and complexity using diversity archive(DA) and convergence archive(CA).However,the individuals in DA are selected based on the traditional Pareto dominance which decreases the selection pressure in the high-dimensional problems.The traditional algorithm even cannot converge due to the weak selection pressure.Meanwhile,Two_Arch2 adopts DA as the output of the algorithm which is hard to maintain diversity and coverage of the final solutions synchronously and increase the complexity of the algorithm.To increase the evolutionary pressure of the algorithm and improve distribution and convergence of the final solutions,an ε-domination based Two_Arch2 algorithm(ε-Two_Arch2) for many-objective problems(MaOPs) is proposed in this paper.In ε-Two_Arch2,to decrease the computational complexity and speed up the convergence,a novel evolutionary framework with a fast update strategy is proposed;to increase the selection pressure,ε-domination is assigned to update the individuals in DA;to guarantee the uniform distribution of the solution,a boundary protection strategy based on I_(ε+) indicator is designated as two steps selection strategies to update individuals in CA.To evaluate the performance of the proposed algorithm,a series of benchmark functions with different numbers of objectives is solved.The results demonstrate that the proposed method is competitive with the state-of-the-art multi-objective evolutionary algorithms and the efficiency of the algorithm is significantly improved compared with Two_Arch2.
文摘This paper proposes a modified version of the Dwarf Mongoose Optimization Algorithm (IDMO) for constrained engineering design problems. This optimization technique modifies the base algorithm (DMO) in three simple but effective ways. First, the alpha selection in IDMO differs from the DMO, where evaluating the probability value of each fitness is just a computational overhead and contributes nothing to the quality of the alpha or other group members. The fittest dwarf mongoose is selected as the alpha, and a new operator ω is introduced, which controls the alpha movement, thereby enhancing the exploration ability and exploitability of the IDMO. Second, the scout group movements are modified by randomization to introduce diversity in the search process and explore unvisited areas. Finally, the babysitter's exchange criterium is modified such that once the criterium is met, the babysitters that are exchanged interact with the dwarf mongoose exchanging them to gain information about food sources and sleeping mounds, which could result in better-fitted mongooses instead of initializing them afresh as done in DMO, then the counter is reset to zero. The proposed IDMO was used to solve the classical and CEC 2020 benchmark functions and 12 continuous/discrete engineering optimization problems. The performance of the IDMO, using different performance metrics and statistical analysis, is compared with the DMO and eight other existing algorithms. In most cases, the results show that solutions achieved by the IDMO are better than those obtained by the existing algorithms.
基金Projects(61463009,11264005,11361014)supported by the National Natural Science Foundation of ChinaProject([2013]2082)supported by the Science Technology Foundation of Guizhou Province,China
文摘A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO combined the exploration of ABC algorithm with the exploitation of BBO algorithm effectively, and hence it can generate the promising candidate individuals. The proposed hybrid algorithm speeds up the convergence and improves the algorithm's performance. Several benchmark test functions and mechanical design problems are applied to verifying the effects of these improvements and it is demonstrated that the performance of this proposed ABC-BBO is superior to or at least highly competitive with other population-based optimization approaches.
基金supported by the National Natural Science Foundation of China(60873099)the Fundamental Research Funds for the Central Universities(2011QNA29)
文摘As a new-style stochastic algorithm, the electromagnetism-like mechanism(EM) method gains more and more attention from many researchers in recent years. A novel model based on EM(NMEM) for multiobjective optimization problems is proposed, which regards the charge of all particles as the constraints in the current population and the measure of the uniformity of non-dominated solutions as the objective function. The charge of the particle is evaluated based on the dominated concept, and its magnitude determines the direction of a force between two particles. Numerical studies are carried out on six complex test functions and the experimental results demonstrate that the proposed NMEM algorithm is a very robust method for solving the multiobjective optimization problems.
文摘The aim of this paper is to study the relationship among Minty vector variational-like inequality problem, Stampacchia vector variational-like inequality problem and vector optimization problem involving (G, α)-invex functions. Furthermore, we establish equivalence among the solutions of weak formulations of Minty vector variational-like inequality problem, Stampacchia vector variational-like inequality problem and weak efficient solution of vector optimization problem under the assumption of (G, α)-invex functions. Examples are provided to elucidate our results.