期刊文献+
共找到7,390篇文章
< 1 2 250 >
每页显示 20 50 100
A ε-indicator-based shuffled frog leaping algorithm for many-objective optimization problems
1
作者 WANG Na SU Yuchao +2 位作者 CHEN Xiaohong LI Xia LIU Dui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第1期142-155,共14页
Many-objective optimization problems take challenges to multi-objective evolutionary algorithms.A number of nondominated solutions in population cause a difficult selection towards the Pareto front.To tackle this issu... Many-objective optimization problems take challenges to multi-objective evolutionary algorithms.A number of nondominated solutions in population cause a difficult selection towards the Pareto front.To tackle this issue,a series of indicatorbased multi-objective evolutionary algorithms(MOEAs)have been proposed to guide the evolution progress and shown promising performance.This paper proposes an indicator-based manyobjective evolutionary algorithm calledε-indicator-based shuffled frog leaping algorithm(ε-MaOSFLA),which adopts the shuffled frog leaping algorithm as an evolutionary strategy and a simple and effectiveε-indicator as a fitness assignment scheme to press the population towards the Pareto front.Compared with four stateof-the-art MOEAs on several standard test problems with up to 50 objectives,the experimental results show thatε-MaOSFLA outperforms the competitors. 展开更多
关键词 evolutionary algorithm many-objective optimization shuffled frog leaping algorithm(SFLA) ε-indicator
在线阅读 下载PDF
Decomposition for Large-Scale Optimization Problems:An Overview
2
作者 Thai Doan CHUONG Chen LIU Xinghuo YU 《Artificial Intelligence Science and Engineering》 2025年第3期157-174,共18页
Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale opti... Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale optimization problems are solved using computing machines,leading to an enormous computational time being required,which may delay deriving timely solutions.Decomposition methods,which partition a large-scale optimization problem into lower-dimensional subproblems,represent a key approach to addressing time-efficiency issues.There has been significant progress in both applied mathematics and emerging artificial intelligence approaches on this front.This work aims at providing an overview of the decomposition methods from both the mathematics and computer science points of view.We also remark on the state-of-the-art developments and recent applications of the decomposition methods,and discuss the future research and development perspectives. 展开更多
关键词 decomposition methods nonlinear optimization large-scale problems computational intelligence
在线阅读 下载PDF
Novel PIO Algorithm with Multiple Selection Strategies for Many-Objective Optimization Problems 被引量:3
3
作者 Zhihua Cui Lihong Zhao +3 位作者 Youqian Zeng Yeqing Ren Wensheng Zhang Xiao-Zhi Gao 《Complex System Modeling and Simulation》 2021年第4期291-307,共17页
With the increase of problem dimensions,most solutions of existing many-objective optimization algorithms are non-dominant.Therefore,the selection of individuals and the retention of elite individuals are important.Ex... With the increase of problem dimensions,most solutions of existing many-objective optimization algorithms are non-dominant.Therefore,the selection of individuals and the retention of elite individuals are important.Existing algorithms cannot provide sufficient solution precision and guarantee the diversity and convergence of solution sets when solving practical many-objective industrial problems.Thus,this work proposes an improved many-objective pigeon-inspired optimization(ImMAPIO)algorithm with multiple selection strategies to solve many-objective optimization problems.Multiple selection strategies integrating hypervolume,knee point,and vector angles are utilized to increase selection pressure to the true Pareto Front.Thus,the accuracy,convergence,and diversity of solutions are improved.ImMAPIO is applied to the DTLZ and WFG test functions with four to fifteen objectives and compared against NSGA-III,GrEA,MOEA/D,RVEA,and many-objective Pigeon-inspired optimization algorithm.Experimental results indicate the superiority of ImMAPIO on these test functions. 展开更多
关键词 pigeon-inspired optimization algorithm many-objective optimization problem multiple selection strategy elite individual retention
原文传递
Systematic Benchmarking of Topology Optimization Methods Using Both Binary and Relaxed Forms of the Zhou-Rozvany Problem
4
作者 Jiye Zhou Yun-Fei Fu Kazem Ghabraie 《Computer Modeling in Engineering & Sciences》 2025年第6期3233-3251,共19页
Most material distribution-based topology optimization methods work on a relaxed form of the optimization problem and then push the solution toward the binary limits.However,when benchmarking these methods,researchers... Most material distribution-based topology optimization methods work on a relaxed form of the optimization problem and then push the solution toward the binary limits.However,when benchmarking these methods,researchers use known solutions to only a single form of benchmark problem.This paper proposes a comparison platform for systematic benchmarking of topology optimization methods using both binary and relaxed forms.A greyness measure is implemented to evaluate how far a solution is from the desired binary form.The well-known ZhouRozvany(ZR)problem is selected as the benchmarking problem here,making use of available global solutions for both its relaxed and binary forms.The recently developed non-penalization Smooth-edged Material Distribution for Optimizing Topology(SEMDOT),well-established Solid Isotropic Material with Penalization(SIMP),and continuation methods are studied on this platform.Interestingly,in most cases,the grayscale solutions obtained by SEMDOT demonstrate better performance in dealing with the ZR problem than SIMP.The reasons are investigated and attributed to the usage of two different regularization techniques,namely,the Heaviside smooth function in SEMDOT and the power-law penalty in SIMP.More importantly,a simple-to-use benchmarking graph is proposed for evaluating newly developed topology optimization methods. 展开更多
关键词 Topology optimization Zhou-Rozvany problem BENCHMARKING binary forms relaxed forms power-law penalty heaviside smooth function
在线阅读 下载PDF
A Coevolutionary Algorithm for Many-Objective Optimization Problems with Independent and Harmonious Objectives 被引量:1
5
作者 Fangqing Gu Haosen Liu Haiin Liu 《Complex System Modeling and Simulation》 2023年第1期59-70,共12页
Evolutionary algorithm is an effective strategy for solving many-objective optimization problems.At present,most evolutionary many-objective algorithms are designed for solving many-objective optimization problems whe... Evolutionary algorithm is an effective strategy for solving many-objective optimization problems.At present,most evolutionary many-objective algorithms are designed for solving many-objective optimization problems where the objectives conflict with each other.In some cases,however,the objectives are not always in conflict.It consists of multiple independent objective subsets and the relationship between objectives is unknown in advance.The classical evolutionary many-objective algorithms may not be able to effectively solve such problems.Accordingly,we propose an objective set decomposition strategy based on the partial set covering model.It decomposes the objectives into a collection of objective subsets to preserve the nondominance relationship as much as possible.An optimization subproblem is defined on each objective subset.A coevolutionary algorithm is presented to optimize all subproblems simultaneously,in which a nondominance ranking is presented to interact information among these sub-populations.The proposed algorithm is compared with five popular many-objective evolutionary algorithms and four objective set decomposition based evolutionary algorithms on a series of test problems.Numerical experiments demonstrate that the proposed algorithm can achieve promising results for the many-objective optimization problems with independent and harmonious objectives. 展开更多
关键词 many-objective optimization DECOMPOSITION objective conflict evolutionary algorithm set covering model
原文传递
An Improved Artificial Rabbits Optimization Algorithm with Chaotic Local Search and Opposition-Based Learning for Engineering Problems and Its Applications in Breast Cancer Problem 被引量:1
6
作者 Feyza AltunbeyÖzbay ErdalÖzbay Farhad Soleimanian Gharehchopogh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1067-1110,共44页
Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems... Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems,the ARO algorithm shows slow convergence speed and can fall into local minima.To overcome these drawbacks,this paper proposes chaotic opposition-based learning ARO(COARO),an improved version of the ARO algorithm that incorporates opposition-based learning(OBL)and chaotic local search(CLS)techniques.By adding OBL to ARO,the convergence speed of the algorithm increases and it explores the search space better.Chaotic maps in CLS provide rapid convergence by scanning the search space efficiently,since their ergodicity and non-repetitive properties.The proposed COARO algorithm has been tested using thirty-three distinct benchmark functions.The outcomes have been compared with the most recent optimization algorithms.Additionally,the COARO algorithm’s problem-solving capabilities have been evaluated using six different engineering design problems and compared with various other algorithms.This study also introduces a binary variant of the continuous COARO algorithm,named BCOARO.The performance of BCOARO was evaluated on the breast cancer dataset.The effectiveness of BCOARO has been compared with different feature selection algorithms.The proposed BCOARO outperforms alternative algorithms,according to the findings obtained for real applications in terms of accuracy performance,and fitness value.Extensive experiments show that the COARO and BCOARO algorithms achieve promising results compared to other metaheuristic algorithms. 展开更多
关键词 Artificial rabbit optimization binary optimization breast cancer chaotic local search engineering design problem opposition-based learning
在线阅读 下载PDF
Quafu-Qcover:Explore combinatorial optimization problems on cloud-based quantum computers 被引量:1
7
作者 许宏泽 庄伟峰 +29 位作者 王正安 黄凯旋 时运豪 马卫国 李天铭 陈驰通 许凯 冯玉龙 刘培 陈墨 李尚书 杨智鹏 钱辰 靳羽欣 马运恒 肖骁 钱鹏 顾炎武 柴绪丹 普亚南 张翼鹏 魏世杰 增进峰 李行 龙桂鲁 金贻荣 于海峰 范桁 刘东 胡孟军 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期104-115,共12页
We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and c... We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and comprehensive workflow that utilizes the quantum approximate optimization algorithm(QAOA).It facilitates the automatic conversion of the original problem into a quadratic unconstrained binary optimization(QUBO)model and its corresponding Ising model,which can be subsequently transformed into a weight graph.The core of Qcover relies on a graph decomposition-based classical algorithm,which efficiently derives the optimal parameters for the shallow QAOA circuit.Quafu-Qcover incorporates a dedicated compiler capable of translating QAOA circuits into physical quantum circuits that can be executed on Quafu cloud quantum computers.Compared to a general-purpose compiler,our compiler demonstrates the ability to generate shorter circuit depths,while also exhibiting superior speed performance.Additionally,the Qcover compiler has the capability to dynamically create a library of qubits coupling substructures in real-time,utilizing the most recent calibration data from the superconducting quantum devices.This ensures that computational tasks can be assigned to connected physical qubits with the highest fidelity.The Quafu-Qcover allows us to retrieve quantum computing sampling results using a task ID at any time,enabling asynchronous processing.Moreover,it incorporates modules for results preprocessing and visualization,facilitating an intuitive display of solutions for combinatorial optimization problems.We hope that Quafu-Qcover can serve as an instructive illustration for how to explore application problems on the Quafu cloud quantum computers. 展开更多
关键词 quantum cloud platform combinatorial optimization problems quantum software
原文传递
A Comparative Study of Metaheuristic Optimization Algorithms for Solving Real-World Engineering Design Problems
8
作者 Elif Varol Altay Osman Altay Yusuf Ovik 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期1039-1094,共56页
Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as ... Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as industry,automotive,construction,machinery,and interdisciplinary research.However,there are established optimization techniques that have shown effectiveness in addressing these types of issues.This research paper gives a comparative study of the implementation of seventeen new metaheuristic methods in order to optimize twelve distinct engineering design issues.The algorithms used in the study are listed as:transient search optimization(TSO),equilibrium optimizer(EO),grey wolf optimizer(GWO),moth-flame optimization(MFO),whale optimization algorithm(WOA),slimemould algorithm(SMA),harris hawks optimization(HHO),chimp optimization algorithm(COA),coot optimization algorithm(COOT),multi-verse optimization(MVO),arithmetic optimization algorithm(AOA),aquila optimizer(AO),sine cosine algorithm(SCA),smell agent optimization(SAO),and seagull optimization algorithm(SOA),pelican optimization algorithm(POA),and coati optimization algorithm(CA).As far as we know,there is no comparative analysis of recent and popular methods against the concrete conditions of real-world engineering problems.Hence,a remarkable research guideline is presented in the study for researchersworking in the fields of engineering and artificial intelligence,especiallywhen applying the optimization methods that have emerged recently.Future research can rely on this work for a literature search on comparisons of metaheuristic optimization methods in real-world problems under similar conditions. 展开更多
关键词 Metaheuristic optimization algorithms real-world engineering design problems multidisciplinary design optimization problems
在线阅读 下载PDF
An Immune-Inspired Approach with Interval Allocation in Solving Multimodal Multi-Objective Optimization Problems with Local Pareto Sets
9
作者 Weiwei Zhang Jiaqiang Li +2 位作者 Chao Wang Meng Li Zhi Rao 《Computers, Materials & Continua》 SCIE EI 2024年第6期4237-4257,共21页
In practical engineering,multi-objective optimization often encounters situations where multiple Pareto sets(PS)in the decision space correspond to the same Pareto front(PF)in the objective space,known as Multi-Modal ... In practical engineering,multi-objective optimization often encounters situations where multiple Pareto sets(PS)in the decision space correspond to the same Pareto front(PF)in the objective space,known as Multi-Modal Multi-Objective Optimization Problems(MMOP).Locating multiple equivalent global PSs poses a significant challenge in real-world applications,especially considering the existence of local PSs.Effectively identifying and locating both global and local PSs is a major challenge.To tackle this issue,we introduce an immune-inspired reproduction strategy designed to produce more offspring in less crowded,promising regions and regulate the number of offspring in areas that have been thoroughly explored.This approach achieves a balanced trade-off between exploration and exploitation.Furthermore,we present an interval allocation strategy that adaptively assigns fitness levels to each antibody.This strategy ensures a broader survival margin for solutions in their initial stages and progressively amplifies the differences in individual fitness values as the population matures,thus fostering better population convergence.Additionally,we incorporate a multi-population mechanism that precisely manages each subpopulation through the interval allocation strategy,ensuring the preservation of both global and local PSs.Experimental results on 21 test problems,encompassing both global and local PSs,are compared with eight state-of-the-art multimodal multi-objective optimization algorithms.The results demonstrate the effectiveness of our proposed algorithm in simultaneously identifying global Pareto sets and locally high-quality PSs. 展开更多
关键词 Multimodal multi-objective optimization problem local PSs immune-inspired reproduction
在线阅读 下载PDF
Enhancing Evolutionary Algorithms With Pattern Mining for Sparse Large-Scale Multi-Objective Optimization Problems
10
作者 Sheng Qi Rui Wang +3 位作者 Tao Zhang Weixiong Huang Fan Yu Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1786-1801,共16页
Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to tr... Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges. 展开更多
关键词 Evolutionary algorithms pattern mining sparse large-scale multi-objective problems(SLMOPs) sparse large-scale optimization.
在线阅读 下载PDF
A Reference Vector-Assisted Many-Objective Optimization Algorithm with Adaptive Niche Dominance Relation
11
作者 Fangzhen Ge Yating Wu +1 位作者 Debao Chen Longfeng Shen 《Intelligent Automation & Soft Computing》 2024年第2期189-211,共23页
It is still a huge challenge for traditional Pareto-dominatedmany-objective optimization algorithms to solve manyobjective optimization problems because these algorithms hardly maintain the balance between convergence... It is still a huge challenge for traditional Pareto-dominatedmany-objective optimization algorithms to solve manyobjective optimization problems because these algorithms hardly maintain the balance between convergence and diversity and can only find a group of solutions focused on a small area on the Pareto front,resulting in poor performance of those algorithms.For this reason,we propose a reference vector-assisted algorithmwith an adaptive niche dominance relation,for short MaOEA-AR.The new dominance relation forms a niche based on the angle between candidate solutions.By comparing these solutions,the solutionwith the best convergence is found to be the non-dominated solution to improve the selection pressure.In reproduction,a mutation strategy of k-bit crossover and hybrid mutation is used to generate high-quality offspring.On 23 test problems with up to 15-objective,we compared the proposed algorithm with five state-of-the-art algorithms.The experimental results verified that the proposed algorithm is competitive. 展开更多
关键词 many-objective optimization evolutionary algorithm Pareto dominance reference vector adaptive niche
在线阅读 下载PDF
A Line Complex-Based Evolutionary Algorithm for Many-Objective Optimization 被引量:3
12
作者 Liang Zhang Qi Kang +2 位作者 Qi Deng Luyuan Xu Qidi Wu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第5期1150-1167,共18页
In solving many-objective optimization problems(MaO Ps),existing nondominated sorting-based multi-objective evolutionary algorithms suffer from the fast loss of selection pressure.Most candidate solutions become nondo... In solving many-objective optimization problems(MaO Ps),existing nondominated sorting-based multi-objective evolutionary algorithms suffer from the fast loss of selection pressure.Most candidate solutions become nondominated during the evolutionary process,thus leading to the failure of producing offspring toward Pareto-optimal front with diversity.Can we find a more effective way to select nondominated solutions and resolve this issue?To answer this critical question,this work proposes to evolve solutions through line complex rather than solution points in Euclidean space.First,Plücker coordinates are used to project solution points to line complex composed of position vectors and momentum ones.Besides position vectors of the solution points,momentum vectors are used to extend the comparability of nondominated solutions and enhance selection pressure.Then,a new distance function designed for high-dimensional space is proposed to replace Euclidean distance as a more effective distancebased estimator.Based on them,a novel many-objective evolutionary algorithm(MaOEA)is proposed by integrating a line complex-based environmental selection strategy into the NSGAⅢframework.The proposed algorithm is compared with the state of the art on widely used benchmark problems with up to 15 objectives.Experimental results demonstrate its superior competitiveness in solving MaOPs. 展开更多
关键词 Environmental selection line complex many-objective optimization problems(MaOPs) Plücker coordinate
在线阅读 下载PDF
Many-objective evolutionary algorithms based on reference-point-selection strategy for application in reactor radiation-shielding design
13
作者 Cheng-Wei Liu Ai-Kou Sun +4 位作者 Ji-Chong Lei Hong-Yu Qu Chao Yang Tao Yu Zhen-Ping Chen 《Nuclear Science and Techniques》 2025年第6期201-215,共15页
In recent years,the development of new types of nuclear reactors,such as transportable,marine,and space reactors,has presented new challenges for the optimization of reactor radiation-shielding design.Shielding struct... In recent years,the development of new types of nuclear reactors,such as transportable,marine,and space reactors,has presented new challenges for the optimization of reactor radiation-shielding design.Shielding structures typically need to be lightweight,miniaturized,and radiation-protected,which is a multi-parameter and multi-objective optimization problem.The conventional multi-objective(two or three objectives)optimization method for radiation-shielding design exhibits limitations for a number of optimization objectives and variable parameters,as well as a deficiency in achieving a global optimal solution,thereby failing to meet the requirements of shielding optimization for newly developed reactors.In this study,genetic and artificial bee-colony algorithms are combined with a reference-point-selection strategy and applied to the many-objective(having four or more objectives)optimal design of reactor radiation shielding.To validate the reliability of the methods,an optimization simulation is conducted on three-dimensional shielding structures and another complicated shielding-optimization problem.The numerical results demonstrate that the proposed algorithms outperform conventional shielding-design methods in terms of optimization performance,and they exhibit their reliability in practical engineering problems.The many-objective optimization algorithms developed in this study are proven to efficiently and consistently search for Pareto-front shielding schemes.Therefore,the algorithms proposed in this study offer novel insights into improving the shielding-design performance and shielding quality of new reactor types. 展开更多
关键词 many-objective optimization problem Evolutionary algorithm Radiation-shielding design Reference-point-selection strategy
在线阅读 下载PDF
Using Improved Particle Swarm Optimization Algorithm for Location Problem of Drone Logistics Hub 被引量:1
14
作者 Li Zheng Gang Xu Wenbin Chen 《Computers, Materials & Continua》 SCIE EI 2024年第1期935-957,共23页
Drone logistics is a novel method of distribution that will become prevalent.The advantageous location of the logistics hub enables quicker customer deliveries and lower fuel consumption,resulting in cost savings for ... Drone logistics is a novel method of distribution that will become prevalent.The advantageous location of the logistics hub enables quicker customer deliveries and lower fuel consumption,resulting in cost savings for the company’s transportation operations.Logistics firms must discern the ideal location for establishing a logistics hub,which is challenging due to the simplicity of existing models and the intricate delivery factors.To simulate the drone logistics environment,this study presents a new mathematical model.The model not only retains the aspects of the current models,but also considers the degree of transportation difficulty from the logistics hub to the village,the capacity of drones for transportation,and the distribution of logistics hub locations.Moreover,this paper proposes an improved particle swarm optimization(PSO)algorithm which is a diversity-based hybrid PSO(DHPSO)algorithm to solve this model.In DHPSO,the Gaussian random walk can enhance global search in the model space,while the bubble-net attacking strategy can speed convergence.Besides,Archimedes spiral strategy is employed to overcome the local optima trap in the model and improve the exploitation of the algorithm.DHPSO maintains a balance between exploration and exploitation while better defining the distribution of logistics hub locations Numerical experiments show that the newly proposed model always achieves better locations than the current model.Comparing DHPSO with other state-of-the-art intelligent algorithms,the efficiency of the scheme can be improved by 42.58%.This means that logistics companies can reduce distribution costs and consumers can enjoy a more enjoyable shopping experience by using DHPSO’s location selection.All the results show the location of the drone logistics hub is solved by DHPSO effectively. 展开更多
关键词 Drone logistics location problem mathematical model DIVERSITY particle swarm optimization
在线阅读 下载PDF
Optimization of Linear Sequence-controlled Copolymers for Maximizing Adsorption Capacity
15
作者 Sheng-Da Zhao Qiu-Ju Chen +2 位作者 Zhi-Xin Liu Quan-Xiao Dong Xing-Hua Zhang 《Chinese Journal of Polymer Science》 2025年第10期1739-1748,共10页
The optimization of polymer structures aims to determine an optimal sequence or topology that achieves a given target property or structural performance.This inverse design problem involves searching within a vast com... The optimization of polymer structures aims to determine an optimal sequence or topology that achieves a given target property or structural performance.This inverse design problem involves searching within a vast combinatorial phase space defined by components,se-quences,and topologies,and is often computationally intractable due to its NP-hard nature.At the core of this challenge lies the need to evalu-ate complex correlations among structural variables,a classical problem in both statistical physics and combinatorial optimization.To address this,we adopt a mean-field approach that decouples direct variable-variable interactions into effective interactions between each variable and an auxiliary field.The simulated bifurcation(SB)algorithm is employed as a mean-field-based optimization framework.It constructs a Hamiltonian dynamical system by introducing generalized momentum fields,enabling efficient decoupling and dynamic evolution of strongly coupled struc-tural variables.Using the sequence optimization of a linear copolymer adsorbing on a solid surface as a case study,we demonstrate the applica-bility of the SB algorithm to high-dimensional,non-differentiable combinatorial optimization problems.Our results show that SB can efficiently discover polymer sequences with excellent adsorption performance within a reasonable computational time.Furthermore,it exhibits robust con-vergence and high parallel scalability across large design spaces.The approach developed in this work offers a new computational pathway for polymer structure optimization.It also lays a theoretical foundation for future extensions to topological design problems,such as optimizing the number and placement of side chains,as well as the co-optimization of sequence and topology. 展开更多
关键词 Combinatorial optimization optimal design Sequence design COPOLYMER Adsorption problem
原文传递
Enhanced Particle Swarm Optimization Algorithm Based on SVM Classifier for Feature Selection
16
作者 Xing Wang Huazhen Liu +2 位作者 Abdelazim G.Hussien Gang Hu Li Zhang 《Computer Modeling in Engineering & Sciences》 2025年第3期2791-2839,共49页
Feature selection(FS)is essential in machine learning(ML)and data mapping by its ability to preprocess high-dimensional data.By selecting a subset of relevant features,feature selection cuts down on the dimension of t... Feature selection(FS)is essential in machine learning(ML)and data mapping by its ability to preprocess high-dimensional data.By selecting a subset of relevant features,feature selection cuts down on the dimension of the data.It excludes irrelevant or surplus features,thus boosting the performance and efficiency of the model.Particle Swarm Optimization(PSO)boasts a streamlined algorithmic framework and exhibits rapid convergence traits.Compared with other algorithms,it incurs reduced computational expenses when tackling high-dimensional datasets.However,PSO faces challenges like inadequate convergence precision.Therefore,regarding FS problems,this paper presents a binary version enhanced PSO based on the Support Vector Machines(SVM)classifier.First,the Sand Cat Swarm Optimization(SCSO)is added to enhance the global search capability of PSO and improve the accuracy of the solution.Secondly,the Latin hypercube sampling strategy initializes populations more uniformly and helps to increase population diversity.The last is the roundup search strategy introducing the grey wolf hierarchy idea to help improve convergence speed.To verify the capability of Self-adaptive Cooperative Particle Swarm Optimization(SCPSO),the CEC2020 test suite and CEC2022 test suite are selected for experiments and applied to three engineering problems.Compared with the standard PSO algorithm,SCPSO converges faster,and the convergence accuracy is significantly improved.Moreover,SCPSO’s comprehensive performance far exceeds that of other algorithms.Six datasets from the University of California,Irvine(UCI)database were selected to evaluate SCPSO’s effectiveness in solving feature selection problems.The results indicate that SCPSO has significant potential for addressing these problems. 展开更多
关键词 Feature selection SVM particle swarm optimization sand cat swarm optimization engineering problems
在线阅读 下载PDF
Multi-Neighborhood Enhanced Harris Hawks Optimization for Efficient Allocation of Hybrid Renewable Energy System with Cost and Emission Reduction
17
作者 Elaine Yi-Ling Wu 《Computer Modeling in Engineering & Sciences》 2025年第4期1185-1214,共30页
Hybrid renewable energy systems(HRES)offer cost-effectiveness,low-emission power solutions,and reduced dependence on fossil fuels.However,the renewable energy allocation problem remains challenging due to complex syst... Hybrid renewable energy systems(HRES)offer cost-effectiveness,low-emission power solutions,and reduced dependence on fossil fuels.However,the renewable energy allocation problem remains challenging due to complex system interactions and multiple operational constraints.This study develops a novel Multi-Neighborhood Enhanced Harris Hawks Optimization(MNEHHO)algorithm to address the allocation of HRES components.The proposed approach integrates key technical parameters,including charge-discharge efficiency,storage device configurations,and renewable energy fraction.We formulate a comprehensive mathematical model that simultaneously minimizes levelized energy costs and pollutant emissions while maintaining system reliability.The MNEHHO algorithm employs multiple neighborhood structures to enhance solution diversity and exploration capabilities.The model’s effectiveness is validated through case studies across four distinct institutional energy demand profiles.Results demonstrate that our approach successfully generates practically feasible HRES configurations while achieving significant reductions in costs and emissions compared to conventional methods.The enhanced search mechanisms of MNEHHO show superior performance in avoiding local optima and achieving consistent solutions.Experimental results demonstrate concrete improvements in solution quality(up to 46% improvement in objective value)and computational efficiency(average coefficient of variance of 24%-27%)across diverse institutional settings.This confirms the robustness and scalability of our method under various operational scenarios,providing a reliable framework for solving renewable energy allocation problems. 展开更多
关键词 Hybrid renewable energy system multi-neighborhood enhanced Harris Hawks optimization costemission optimization renewable energy allocation problem reliability
在线阅读 下载PDF
Two Performance Indicators Assisted Infill Strategy for Expensive Many⁃Objective Optimization
18
作者 Yi Zhao Jianchao Zeng Ying Tan 《Journal of Harbin Institute of Technology(New Series)》 2025年第5期24-40,共17页
In recent years,surrogate models derived from genuine data samples have proven to be efficient in addressing optimization challenges that are costly or time⁃intensive.However,the individuals in the population become i... In recent years,surrogate models derived from genuine data samples have proven to be efficient in addressing optimization challenges that are costly or time⁃intensive.However,the individuals in the population become indistinguishable as the curse of dimensionality increases in the objective space and the accumulation of surrogate approximated errors.Therefore,in this paper,each objective function is modeled using a radial basis function approach,and the optimal solution set of the surrogate model is located by the multi⁃objective evolutionary algorithm of strengthened dominance relation.The original objective function values of the true evaluations are converted to two indicator values,and then the surrogate models are set up for the two performance indicators.Finally,an adaptive infill sampling strategy that relies on approximate performance indicators is proposed to assist in selecting individuals for real evaluations from the potential optimal solution set.The algorithm is contrasted against several advanced surrogate⁃assisted evolutionary algorithms on two suites of test cases,and the experimental findings prove that the approach is competitive in solving expensive many⁃objective optimization problems. 展开更多
关键词 expensive multi⁃objective optimization problems infill sample strategy evolutionary optimization algorithm
在线阅读 下载PDF
Optimal scheduling method for multi-regional integrated energy system based on dynamic robust optimization algorithm and bi-level Stackelberg model
19
作者 Bo Zhou Erchao Li Wenjing Liang 《Global Energy Interconnection》 2025年第3期510-521,共12页
In this study,we construct a bi-level optimization model based on the Stackelberg game and propose a robust optimization algorithm for solving the bi-level model,assuming an actual situation with several participants ... In this study,we construct a bi-level optimization model based on the Stackelberg game and propose a robust optimization algorithm for solving the bi-level model,assuming an actual situation with several participants in energy trading.Firstly,the energy trading process is analyzed between each subject based on the establishment of the operation framework of multi-agent participation in energy trading.Secondly,the optimal operation model of each energy trading agent is established to develop a bi-level game model including each energy participant.Finally,a combination algorithm of improved robust optimization over time(ROOT)and CPLEX is proposed to solve the established game model.The experimental results indicate that under different fitness thresholds,the robust optimization results of the proposed algorithm are increased by 56.91%and 68.54%,respectively.The established bi-level game model effectively balances the benefits of different energy trading entities.The proposed algorithm proposed can increase the income of each participant in the game by an average of 8.59%. 展开更多
关键词 Robust optimization over time Integrated energy system Dynamic problem Stackelberg game
在线阅读 下载PDF
Optimized Metaheuristic Strategies for Addressing the Multi-Picker Robot Routing Problem in 3D Warehouse Operations
20
作者 Thi My Binh Nguyen Thi Hoa Hue Nguyen Thi Ngoc Huyen Do 《Computers, Materials & Continua》 2025年第9期5063-5076,共14页
Efficient warehouse management is critical for modern supply chain systems,particularly in the era of e-commerce and automation.The Multi-Picker Robot Routing Problem(MPRRP)presents a complex challenge involving the o... Efficient warehouse management is critical for modern supply chain systems,particularly in the era of e-commerce and automation.The Multi-Picker Robot Routing Problem(MPRRP)presents a complex challenge involving the optimization of routes for multiple robots assigned to retrieve items from distinct locations within a warehouse.This study introduces optimized metaheuristic strategies to address MPRRP,with the aim of minimizing travel distances,energy consumption,and order fulfillment time while ensuring operational efficiency.Advanced algorithms,including an enhanced Particle Swarm Optimization(PSO-MPRRP)and a tailored Genetic Algorithm(GA-MPRRP),are specifically designed with customized evolutionary operators to effectively solve the MPRRP.Comparative experiments are conducted to evaluate the proposed strategies against benchmark approaches,demonstrating significant improvements in solution quality and computational efficiency.The findings contribute to the development of intelligent,scalable,and environmentally friendly warehouse systems,paving the way for future advances in robotics and automated logistics management. 展开更多
关键词 Particle swarm optimization algorithm genetic algorithm multi-picker robot routing problem
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部