In the past two decades,metamaterials and metasurfaces[1,2]have been providing a new playground for light manipulation,establishing concepts and experimental platforms that enable structuring light in compact footprin...In the past two decades,metamaterials and metasurfaces[1,2]have been providing a new playground for light manipulation,establishing concepts and experimental platforms that enable structuring light in compact footprints with exceptional benefits for a wide range of technologies.Metasurfaces,in particular,have been developing a paradigm of compactification of optical components,enabling manipulation of the optical wavefront within subwavelength footprints and unprecedented control over all properties of light,from spectrum to polarization,from wavefront shaping to spatial and temporal coherence[3].The progress in the past few years has been truly impressive,bringing many of these concepts from proof-of-concept ideas to practical demonstrations ready for commercialization and deployment.As such,it has become imperative to explore ways to integrate metamaterial and metasurface devices into photonic platforms and enable platforms compatible with existing photonic circuits and systems.展开更多
文摘In the past two decades,metamaterials and metasurfaces[1,2]have been providing a new playground for light manipulation,establishing concepts and experimental platforms that enable structuring light in compact footprints with exceptional benefits for a wide range of technologies.Metasurfaces,in particular,have been developing a paradigm of compactification of optical components,enabling manipulation of the optical wavefront within subwavelength footprints and unprecedented control over all properties of light,from spectrum to polarization,from wavefront shaping to spatial and temporal coherence[3].The progress in the past few years has been truly impressive,bringing many of these concepts from proof-of-concept ideas to practical demonstrations ready for commercialization and deployment.As such,it has become imperative to explore ways to integrate metamaterial and metasurface devices into photonic platforms and enable platforms compatible with existing photonic circuits and systems.