Nanostructured topological insulator materials such as ultrathin films, nanoplates, nanowires, and nanoribbons are attracting much attention for fundamental research as well as potential applications in low-energy dis...Nanostructured topological insulator materials such as ultrathin films, nanoplates, nanowires, and nanoribbons are attracting much attention for fundamental research as well as potential applications in low-energy dissipation electronics, spintronics, thermoelectrics, magnetoelectrics, and quantum computing due to their extremely large surface-to-volume ratios and exotic metallic edge/surface states. Layered Bi2Se3 and Bi2Te3 serve as reference topological insulator materials with a large nontrivial bulk gap up to 0.3 eV (equivalent to 3600 K) and simple single-Dirac-cone surface states. In this mini-review, we present an overview of recent advances in nanostructured topological in- sulator Bi2Se3 and Bi3Te3 from the viewpoints of controlled synthesis and physical properties. We summarize our recent achievements in the vapor-phase synthesis and structural characteriza- tion of nanostructured topological insulator Bi2Se3 and Bi2Te3, such as nanoribbons and ultrathin nanoplates. We also demonstrate the evolution of Raman spectra with the number of few-layer topo- logical insulators, as well as the transport measurements that have succeeded in accessing the surface conductance and surface state manipulations in the device of topological insulator nanostructures.展开更多
文摘Nanostructured topological insulator materials such as ultrathin films, nanoplates, nanowires, and nanoribbons are attracting much attention for fundamental research as well as potential applications in low-energy dissipation electronics, spintronics, thermoelectrics, magnetoelectrics, and quantum computing due to their extremely large surface-to-volume ratios and exotic metallic edge/surface states. Layered Bi2Se3 and Bi2Te3 serve as reference topological insulator materials with a large nontrivial bulk gap up to 0.3 eV (equivalent to 3600 K) and simple single-Dirac-cone surface states. In this mini-review, we present an overview of recent advances in nanostructured topological in- sulator Bi2Se3 and Bi3Te3 from the viewpoints of controlled synthesis and physical properties. We summarize our recent achievements in the vapor-phase synthesis and structural characteriza- tion of nanostructured topological insulator Bi2Se3 and Bi2Te3, such as nanoribbons and ultrathin nanoplates. We also demonstrate the evolution of Raman spectra with the number of few-layer topo- logical insulators, as well as the transport measurements that have succeeded in accessing the surface conductance and surface state manipulations in the device of topological insulator nanostructures.