Strategically coupling nanoparticle hybrids and internal thermosensitive molecular switches establishes an innovative paradigm for constructing micro/nanoscale-reconfigurable robots,facilitating energyefficient CO_(2)...Strategically coupling nanoparticle hybrids and internal thermosensitive molecular switches establishes an innovative paradigm for constructing micro/nanoscale-reconfigurable robots,facilitating energyefficient CO_(2) management in life-support systems of confined space.Here,a micro/nano-reconfigurable robot is constructed from the CO_(2) molecular hunters,temperature-sensitive molecular switch,solar photothermal conversion,and magnetically-driven function engines.The molecular hunters within the molecular extension state can capture 6.19 mmol g^(−1) of CO_(2) to form carbamic acid and ammonium bicarbonate.Interestingly,the molecular switch of the robot activates a molecular curling state that facilitates CO_(2) release through nano-reconfiguration,which is mediated by the temperature-sensitive curling of Pluronic F127 molecular chains during the photothermal desorption.Nano-reconfiguration of robot alters the amino microenvironment,including increasing surface electrostatic potential of the amino group and decreasing overall lowest unoccupied molecular orbital energy level.This weakened the nucleophilic attack ability of the amino group toward the adsorption product derivatives,thereby inhibiting the side reactions that generate hard-to-decompose urea structures,achieving the lowest regeneration temperature of 55℃ reported to date.The engine of the robot possesses non-contact magnetically-driven micro-reconfiguration capability to achieve efficient photothermal regeneration while avoiding local overheating.Notably,the robot successfully prolonged the survival time of mice in the sealed container by up to 54.61%,effectively addressing the issue of carbon suffocation in confined spaces.This work significantly enhances life-support systems for deep-space exploration,while stimulating innovations in sustainable carbon management technologies for terrestrial extreme environments.展开更多
Sustainable water,energy and food(WEF)supplies are the bedrock upon which human society depends.Solar-driven interfacial evaporation,combined with electricity generation and cultivation,is a promising approach to miti...Sustainable water,energy and food(WEF)supplies are the bedrock upon which human society depends.Solar-driven interfacial evaporation,combined with electricity generation and cultivation,is a promising approach to mitigate the freshwater,energy and food crises.However,the performance of solar-driven systems decreases significantly during operation due to uncontrollable weather.This study proposes an integrated water/electricity cogeneration-cultivation system with superior thermal management.The energy storage evaporator,consisting of energy storage microcapsules/hydrogel composites,is optimally designed for sustainable desalination,achieving an evaporation rate of around 1.91 kg m^(-2)h^(-1).In the dark,heat released from the phase-change layer supported an evaporation rate of around 0.54kg m^(-2)h^(-1).Reverse electrodialysis harnessed the salinity-gradient energy enhanced during desalination,enabling the long-running WEC system to achieve a power output of~0.3 W m^(-2),which was almost three times higher than that of conventional seawater/surface water mixing.Additionally,an integrated crop irrigation platform utilized system drainage for real-time,on-demand wheat cultivation without secondary contaminants,facilitating seamless WEF integration.This work presents a novel approach to all-day solar water production,electricity generation and crop irrigation,offering a solution and blueprint for the sustainable development of WEF.展开更多
Neuromodulation for diabetic peripheral neuropathy represents a significant area of interest in the management of chronic pain associated with this condition.Diabetic peripheral neuropathy,a common complication of dia...Neuromodulation for diabetic peripheral neuropathy represents a significant area of interest in the management of chronic pain associated with this condition.Diabetic peripheral neuropathy,a common complication of diabetes,is characterized by nerve damage due to high blood sugar levels that lead to symptoms,such as pain,tingling,and numbness,primarily in the hands and feet.The aim of this systematic review was to evaluate the efficacy of neuromodulatory techniques as potential therapeutic interventions for patients with diabetic peripheral neuropathy,while also examining recent developments in this domain.The investigation encompassed an array of neuromodulation methods,including frequency rhythmic electrical modulated systems,dorsal root ganglion stimulation,and spinal cord stimulation.This systematic review suggests that neuromodulatory techniques may be useful in the treatment of diabetic peripheral neuropathy.Understanding the advantages of these treatments will enable physicians and other healthcare providers to offer additional options for patients with symptoms refractory to standard pharmacologic treatments.Through these efforts,we may improve quality of life and increase functional capacity in patients suffering from complications related to diabetic neuropathy.展开更多
To meet the challenge of mismatches between power supply and demand,modern buildings must schedule flexible energy loads in order to improve the efficiency of power grids.Furthermore,it is essential to understand the ...To meet the challenge of mismatches between power supply and demand,modern buildings must schedule flexible energy loads in order to improve the efficiency of power grids.Furthermore,it is essential to understand the effectiveness of flexibility management strategies under different climate conditions and extreme weather events.Using both typical and extreme weather data from cities in five major climate zones of China,this study investigates the energy flexibility potential of an office building under three short-term HVAC management strategies in the context of different climates.The results show that the peak load flexibility and overall energy performance of the three short-term strategies were affected by the surrounding climate conditions.The peak load reduction rate of the pre-cooling and zone temperature reset strategies declined linearly as outdoor temperature increased.Under extreme climate conditions,the daily peak-load time was found to be over two hours earlier than under typical conditions,and the intensive solar radiation found in the extreme conditions can weaken the correlation between peak load reduction and outdoor temperature,risking the ability of a building’s HVAC system to maintain a comfortable indoor environment.展开更多
Both straw incorporation and irrigation practices affect biological nitrogen(N)fixation(BNF),but it is still unclear how straw incorporation impacts BNF under continuous(CFI)or intermittent(IFI)flooding irrigation in ...Both straw incorporation and irrigation practices affect biological nitrogen(N)fixation(BNF),but it is still unclear how straw incorporation impacts BNF under continuous(CFI)or intermittent(IFI)flooding irrigation in a rice cropping system.A15N2-labeling chamber system was placed in a rice field to evaluate BNF with straw incorporation under CFI or IFI for 90 d.The nif H(gene encoding the nitrogenase reductase subunit)DNA and c DNA in soil were amplified using real-time quantitative polymerase chain reaction,and high-throughput sequencing was applied to the nif H gene.The total fixed N in the straw incorporation treatment was 14.3 kg ha^(-1)under CFI,being 116%higher than that under IFI(6.62 kg ha^(-1)).Straw incorporation and CFI showed significant interactive effects on the total fixed N and abundances of nif H DNA and c DNA.The increase in BNF was mainly due to the increase in the abundances of heterotrophic diazotrophs such as Desulfovibrio,Azonexus,and Azotobacter.These results indicated that straw incorporation stimulated BNF under CFI relative to IFI,which might ultimately lead to a rapid enhancement of soil fertility.展开更多
With the anticipated growth in air traffic complexity in the coming years,future civil aviation transportation system(CATS)is transforming into a complex cyber–physical–social system,surpassing all previous experien...With the anticipated growth in air traffic complexity in the coming years,future civil aviation transportation system(CATS)is transforming into a complex cyber–physical–social system,surpassing all previous experiences in the history of civil aviation safety management.Therefore,a new safety concept based on a system-of-systems(SoS)perspective is proposed for the next-generation aviation.This article begins by elucidating the complexity of existing aviation risks and emphasizing the necessity for an updated safety concept.It then presents the challenges of current safety management and potential solutions from the new SoS perspective.To address future risks,the concept of SoS safety is introduced with the inspiration of the human immune system in terms of capability,logic,and architecture,which can serve as a guiding framework and methodology for safety engineering in complex large-scale CATS.This concept indicates the transition from“process and outcome-oriented”to“capability-oriented”intelligent safety management.Our research highlights the development directions and potential technological areas that need to be addressed at different stages of SoS safety.The integration of SoS design and operation through rapid iterations enabled by artificial intelligence(AI)will ultimately achieve endogenous SoS safety.展开更多
All-season thermal management with zero energy consumption and emissions is more crucial to global decarbonization over traditional energy-intensive cooling/heating systems.However,the static single thermal management...All-season thermal management with zero energy consumption and emissions is more crucial to global decarbonization over traditional energy-intensive cooling/heating systems.However,the static single thermal management for cooling or heating fails to self-regulate the temperature in dynamic seasonal temperature condition.Herein,inspired by the dual-temperature regulation function of the fur color changes on the backs and abdomens of penguins,a smart thermal management composite hydrogel(PNA@H-PM Gel)system was subtly created though an"on-demand"dual-layer structure design strategy.The PNA@H-PM Gel system features synchronous solar and thermal radiation modulation as well as tunable phase transition temperatures to meet the variable seasonal thermal requirements and energy-saving demands via self-adaptive radiative cooling and solar heating regulation.Furthermore,this system demonstrates superb modulations of both the solar reflectance(ΔR=0.74)and thermal emissivity(ΔE=0.52)in response to ambient temperature changes,highlighting efficient temperature regulation with average radiative cooling and solar heating effects of 9.6℃in summer and 6.1℃in winter,respectively.Moreover,compared to standard building baselines,the PNA@H-PM Gel presents a more substantial energy-saving cooling/heating potentials for energy-efficient buildings across various regions and climates.This novel solution,inspired by penguins in the real world,will offer a fresh approach for producing intelligent,energy-saving thermal management materials,and serve for temperature regulation under dynamic climate conditions and even throughout all seasons.展开更多
Distributed Federated Learning(DFL)technology enables participants to cooperatively train a shared model while preserving the privacy of their local datasets,making it a desirable solution for decentralized and privac...Distributed Federated Learning(DFL)technology enables participants to cooperatively train a shared model while preserving the privacy of their local datasets,making it a desirable solution for decentralized and privacy-preserving Web3 scenarios.However,DFL faces incentive and security challenges in the decentralized framework.To address these issues,this paper presents a Hierarchical Blockchain-enabled DFL(HBDFL)system,which provides a generic solution framework for the DFL-related applications.The proposed system consists of four major components,including a model contribution-based reward mechanism,a Proof of Elapsed Time and Accuracy(PoETA)consensus algorithm,a Distributed Reputation-based Verification Mechanism(DRTM)and an Accuracy-Dependent Throughput Management(ADTM)mechanism.The model contribution-based rewarding mechanism incentivizes network nodes to train models with their local datasets,while the PoETA consensus algorithm optimizes the tradeoff between the shared model accuracy and system throughput.The DRTM improves the system efficiency in consensus,and the ADTM mechanism guarantees that the throughput performance remains within a predefined range while improving the shared model accuracy.The performance of the proposed HBDFL system is evaluated by numerical simulations,with the results showing that the system improves the accuracy of the shared model while maintaining high throughput and ensuring security.展开更多
The complexity of coupled risks,which refer to the compounded effects of interacting uncertainties across multiple interdependent objectives,is inherent to cities functioning as dynamic,interdependent systems.A disrup...The complexity of coupled risks,which refer to the compounded effects of interacting uncertainties across multiple interdependent objectives,is inherent to cities functioning as dynamic,interdependent systems.A disruption in one domain ripples across various urban systems,often with unforeseen consequences.Central to this complexity are people,whose behaviors,needs,and vulnerabilities shape risk evolution and response effectiveness.Realizing cities as complex systems centered on human needs and behaviors is essential to understanding the complexities of coupled urban risks.This paper adopts a complex systems perspective to examine the intricacies of coupled urban risks,emphasizing the critical role of human decisions and behavior in shaping these dynamics.We focus on two key dimensions:cascading hazards in urban environments and cascading failures across interdependent exposed systems in cities.Existing risk assessment models often fail to capture the complexity of these processes,particularly when factoring in human decision-making.To tackle these challenges,we advocate for a standardized taxonomy of cascading hazards,urban components,and their interactions.At its core is a people-centric perspective,emphasizing the bidirectional interactions between people and the systems that serve them.Building on this foundation,we argue the need for an integrated,people-centric risk assessment framework that evaluates event impacts in relation to the hierarchical needs of people and incorporates their preparedness and response capacities.By leveraging real-time data,advanced simulations,and innovative validation methods,this framework aims to enhance the accuracy of coupled urban risk modeling.To effectively manage coupled urban risks,cities can draw from proven strategies in real complex systems.However,given the escalating uncertainties and complexities associated with climate change,prioritizing people-centric strategies is crucial.This approach will empower cities to build resilience not only against known hazards but also against evolving and unforeseen challenges in an increasingly uncertain world.展开更多
This paper introduces a high-precision bandgap reference(BGR)designed for battery management systems(BMS),fea-turing an ultra-low temperature coefficient(TC)and line sensitivity(LS).The BGR employs a current-mode sche...This paper introduces a high-precision bandgap reference(BGR)designed for battery management systems(BMS),fea-turing an ultra-low temperature coefficient(TC)and line sensitivity(LS).The BGR employs a current-mode scheme with chopped op-amps and internal clock generators to eliminate op-amp offset.A low dropout regulator(LDO)and a pre-regula-tor enhance output driving and LS,respectively.Curvature compensation enhances the TC by addressing higher-order nonlinear-ity.These approaches,effective near room temperature,employs trimming at both 20 and 60°C.When combined with fixed cur-vature correction currents,it achieves an ultra-low TC for each chip.Implemented in a CMOS 180 nm process,the BGR occu-pies 0.548 mm²and operates at 2.5 V with 84μA current draw from a 5 V supply.An average TC of 2.69 ppm/℃ with two-point trimming and 0.81 ppm/℃ with multi-point trimming are achieved over the temperature range of-40 to 125℃.It accommo-dates a load current of 1 mA and an LS of 42 ppm/V,making it suitable for precise BMS applications.展开更多
There is growing interest in introducing ecological risks(ERs)and ecosystem services(ESs)into environmental policies and practices.However,the integration of ESs and ERs into actual decision-making remains insufficien...There is growing interest in introducing ecological risks(ERs)and ecosystem services(ESs)into environmental policies and practices.However,the integration of ESs and ERs into actual decision-making remains insufficient.We simulated the spatiotemporal dynamics of ESs(e.g.,carbon storage,water yield,habitat quality,and soil conservation)and ERs in the upper reach of the Yellow River(URYR)from 2000 to 2100.Additionally,we explored their relationships by combining the InVEST model and a landscape ecological risk model with CMIP6 data.Our main findings showed that regional ERs change in response to land use and environmental dynamics.Specifically,the ER area decreased by 27,673 m^(2)during 2000-2020,but it is projected to increase by 13,273,438,and 68 m^(2)under the SSP1-2.6,SSP2-4.5,and SSP5-8.5 scenarios,respectively.We also observed remarkable spatial differences in ESs and ERs between past and future scenarios.For instance,the source area of the URYR exhibited high ESs and low ERs(P<0.001),while the ESs and ERs are declining and increasing,respectively,in the northeastern URYR(P<0.05).Finally,we proposed a spatial optimization framework to improve ESs and reduce ERs,which will support regional sustainable development.展开更多
Modern aircraft tend to use fuel thermal management systems to cool onboard heat sources.However,the design of heat transfer architectures for fuel thermal management systems relies on the experience of the engineers ...Modern aircraft tend to use fuel thermal management systems to cool onboard heat sources.However,the design of heat transfer architectures for fuel thermal management systems relies on the experience of the engineers and lacks theoretical guidance.This paper proposes a concise graph representation method based on graph theory for fuel thermal management systems,which can represent all possible connections between subsystems.A generalized optimization algorithm is proposed for fuel thermal management system architecture to minimize the heat sink.This algorithm can autonomously arrange subsystems with heat production differences and efficiently utilize the architecture of the fuel heat sink.At the same time,two evaluation indices are proposed from the perspective of subsystems.These indices intuitively and clearly show that the reason for the high efficiency of heat sink utilization is the balanced and moderate cooling of each subsystem and verify the rationality of the architecture optimization method.A set of simulations are also conducted,which demonstrate that the fuel tank temperature has no effect on the performance of the architecture.This paper provides a reference for the architectural design of aircraft fuel thermal management systems.The metrics used in this paper can also be utilized to evaluate the existing architecture.展开更多
Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and ...Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and smart transportation systems.Fog computing tackles a range of challenges,including processing,storage,bandwidth,latency,and reliability,by locally distributing secure information through end nodes.Consisting of endpoints,fog nodes,and back-end cloud infrastructure,it provides advanced capabilities beyond traditional cloud computing.In smart environments,particularly within smart city transportation systems,the abundance of devices and nodes poses significant challenges related to power consumption and system reliability.To address the challenges of latency,energy consumption,and fault tolerance in these environments,this paper proposes a latency-aware,faulttolerant framework for resource scheduling and data management,referred to as the FORD framework,for smart cities in fog environments.This framework is designed to meet the demands of time-sensitive applications,such as those in smart transportation systems.The FORD framework incorporates latency-aware resource scheduling to optimize task execution in smart city environments,leveraging resources from both fog and cloud environments.Through simulation-based executions,tasks are allocated to the nearest available nodes with minimum latency.In the event of execution failure,a fault-tolerantmechanism is employed to ensure the successful completion of tasks.Upon successful execution,data is efficiently stored in the cloud data center,ensuring data integrity and reliability within the smart city ecosystem.展开更多
Humans have always engaged with their surroundings and the ecology in which they live.However,during the industrial age,this contact has been more intense and has had a substantial impact on environment and ecosystems...Humans have always engaged with their surroundings and the ecology in which they live.However,during the industrial age,this contact has been more intense and has had a substantial impact on environment and ecosystems.For example,overexploitation of natural resources,mining,pollution,and deforestation are all elements that negatively affect biodiversity and natural resources.Few studies have been conducted to evaluate the damage caused,despite the significant uncontrolled pressure from human activity.However,maintaining its environment is essential to the survival of coastal fishing.Goal:This study’s goal was to evaluate how human activity affected Tabounsou’s coastal ecology in order to suggest remedial actions for sustainable management.The following was the methodological approach used:executive consultation and archival analysis;stakeholder survey(locals,farmers,salt producers,fishers,and loggers);inventory of species;anthropogenic activity inventory;evaluation of how human activity affects aquatic life in the research region;suggestion and action for sustainable management;Outcome:Executive consultation indicated that the main issues are:construction projects that reduce the estuary’s surface area;agricultural practices such as woodcutting and salt farming;the rise in resource exploitation;noncompliance with fisheries laws;and the catching of young fish.Eighty-three percent of fisherman ditch their nets on the coast after using them,but only seventeen percent burn them.With a 75%frequency rate,the same survey indicates that most fisherman fish around the coast.In the Tabounsou area,according to loggers’survey,68%of the wood cut is Rhizophora,24%is Avicennia,and 8%is Laguncularia.Three fish stocks,representing nine families and nine species,were identified by the species inventory.At 18%and 15%,respectively,the actors most frequently capture the species Pseudotolithus elongatus and Arius parkii.According to a poll of 30 farmers,90%of them apply fertilizer to their soil,while only 10%do not.During the dry season,salt is grown.According to two actors,Bougna Toro Toro produces 100 kg of salt per day,followed by Khoumawadé,which produces 80 kg,and Toumbibougni,which produces 70 kg.展开更多
This study analyzes the causes and effects of climate change in the upper Niger River basin and the implementation of local adaptation strategies based on EMS(Environmental Management Systems).It aims to strengthen ec...This study analyzes the causes and effects of climate change in the upper Niger River basin and the implementation of local adaptation strategies based on EMS(Environmental Management Systems).It aims to strengthen ecological resilience and sustainable natural resource management practices through training,awareness-raising,and community participation.The work was conducted in three rural communes in the Kissidougou prefecture,located in the Faranah administrative region.Data collection and analysis tools included questionnaires,GPS devices,digital devices,laptops,and Excel and SPSS software.The methodology employed a participatory and multidisciplinary approach combining a literature review,surveys of 163 respondents,semi-structured interviews with 16 key informants,training for 218 technical staff and local elected officials(30%of whom were women),and awareness-raising activities for 1,800 participants in local languages.Five community forests covering 443.58 hectares were integrated into management plans,concerted,under the coordination of the NGO APARFE.The results show an increase in average temperature(+0.8°C since 1960),a decrease in rainfall(-5.3 mm/month),and increased vulnerability of populations dependent on agriculture.The integration of the EMS(Environmental Management System)has led to improvements in environmental governance,community forest management,awareness of sustainable agricultural practices,and the inclusion of women(51%of participants).In short,the EMS is an effective tool for strengthening community resilience and environmental sustainability.展开更多
The use of unmanned aerial system(UAS)in congested airspace and/or in the proximity of critical infrastructure poses several challenges as far as safe and secure operations are concerned.The paper provides a detailed ...The use of unmanned aerial system(UAS)in congested airspace and/or in the proximity of critical infrastructure poses several challenges as far as safe and secure operations are concerned.The paper provides a detailed description of the architecture and workflow of a platform for UAS traffic management(UTM),designed to pave the way for increased,improved and safer UAS operations in the civil airspace.In particular,access to low-altitude airspace for UAS operations is managed,while facilitating the implementation of beyond visual line-of-sight(BVLOS)operations,and ensuring a safe and efficient integration of UAS into both controlled and uncontrolled airspace.Detection and management of unidentified or uncooperative UAS’s is also taken care of.To this end,an architecture based on three interacting layers is proposed,with the air traffic control at the highest level,the UAS operator(s)at the bottom,and a UAS service supplier acting as an interface.The platform,with its physical and digital elements,guarantees the effective and efficient interaction among these three layers,including management of contingency scenarios,which require a variation of admissible flight volumes for UAS operations and/or fast trajectory re-planning.The platform,developed within a research project which involved several partners,was tested in a relevant operational scenario at the Grottaglie-Taranto airport in Italy.The operators involved in the tests provided positive feedback on the services provided by the platform and the usability of the interfaces,while also making suggestions for adding new features in future developments.展开更多
To address the current situation where many small enterprises lack efficient management of customer data, this paper proposes a design and implementation plan of a customer relationship management (CRM) system based o...To address the current situation where many small enterprises lack efficient management of customer data, this paper proposes a design and implementation plan of a customer relationship management (CRM) system based on email service. It aims to solve the problems of data dispersion, untimely update and information redundancy in customer management of small and medium-sized enterprises. The system includes four core functional modules: historical email analysis, lead pool management, customer management and email archiving. Through email mining and web crawler technology, the system can extract potential customer information from historical emails and enrich lead data;the lead pool management module supports lead information maintenance, status tracking and conversion of high-value leads;the customer management module realizes the maintenance and dynamic tracking of customer information;the email management module provides the archiving of emails and attachments and the structured storage of basic email information. The system provides automated and intelligent customer information management, improves the work efficiency of sales staff, and provides an efficient customer relationship management solution for enterprises.展开更多
Background: The availability of essential medicines and medical supplies is crucial for effectively delivering healthcare services. In Zambia, the Logistics Management Information System (LMIS) is a key tool for manag...Background: The availability of essential medicines and medical supplies is crucial for effectively delivering healthcare services. In Zambia, the Logistics Management Information System (LMIS) is a key tool for managing the supply chain of these commodities. This study aimed to evaluate the effectiveness of LMIS in ensuring the availability of essential medicines and medical supplies in public hospitals in the Copperbelt Province of Zambia. Materials and Methods: From February to April 2022, a cross-sectional study was conducted in 12 public hospitals across the Copperbelt Province. Data were collected using structured questionnaires, checklists, and stock control cards. The study assessed LMIS availability, training, and knowledge among pharmacy personnel, as well as data accuracy, product availability, and order fill rates. Descriptive statistics were used to analyse the data. Results: All surveyed hospitals had LMIS implemented and were using eLMIS as the primary LMIS. Only 47% and 48% of pharmacy personnel received training in eLMIS and Essential Medicines Logistics Improvement Program (EMLIP), respectively. Most personnel demonstrated good knowledge of LMIS, with 77.7% able to log in to eLMIS Facility Edition, 76.6% able to locate stock control cards in the system, and 78.7% able to perform transactions. However, data accuracy from physical and electronic records varied from 0% to 60%, and product availability ranged from 50% to 80%. Order fill rates from Zambia Medicines and Medical Supplies Agency (ZAMMSA) were consistently below 30%. Discrepancies were observed between physical stock counts and eLMIS records. Conclusion: This study found that most hospitals in the Copperbelt Province of Zambia have implemented LMIS use. While LMIS implementation is high in the Copperbelt Province of Zambia, challenges such as low training levels, data inaccuracies, low product availability, and order fill rates persist. Addressing these issues requires a comprehensive approach, including capacity building, data quality improvement, supply chain coordination, and investment in infrastructure and human resources. Strengthening LMIS effectiveness is crucial for improving healthcare delivery and patient outcomes in Zambia.展开更多
BACKGROUND Clozapine,the gold standard for resistant schizophrenia,is underused due to risks like clozapine-induced myocarditis(CIM).Non-specific biomarkers and inconsistent imaging,and the significant overlap with cl...BACKGROUND Clozapine,the gold standard for resistant schizophrenia,is underused due to risks like clozapine-induced myocarditis(CIM).Non-specific biomarkers and inconsistent imaging,and the significant overlap with clozapine-induced pneumonia(CIP)lead to misdiagnosis and premature discontinuation.AIM To develop a diagnostic algorithm for CIM to enhance accuracy,differentiate from CIP,and guide safe clozapine rechallenge.METHODS A systematic review of 119 PubMed studies(published between 1990 and April 2025)was conducted in accordance with PRISMA guidelines.The review analyzed CIM diagnosis and rechallenge outcomes,with a focus on biomarkers,imaging,and collaboration with cardiology.RESULTS CIM diagnosis relies on troponin and C-reactive protein;electrocardiography and echocardiography are inconsistently applied,and cardiac magnetic resonance imaging(CMR)is underused.Rechallenge was successful in 64.7%to 68.9%of 136 cases,with 2.9%resulting in fatal outcomes.Up to 65%of presumed CIM cases lack confirmation.A proposed protocol integrates chest computed tomography to exclude pneumonia and CMR for CIM confirmation,with echocardiography as an alternative.CONCLUSION A protocol involving multidisciplinary collaboration among computed tomography,CMR,and cardiology improves CIM diagnosis.Slow titration prevents CIM;adjust the dose for CIP and discontinue for confirmed CIM.展开更多
BACKGROUND Atrial fibrillation(AF)is a prevalent cardiac arrhythmia associated with significant morbidity and mortality,particularly in patients with concomitant renal dysfunction.Anticoagulation therapy reduces the r...BACKGROUND Atrial fibrillation(AF)is a prevalent cardiac arrhythmia associated with significant morbidity and mortality,particularly in patients with concomitant renal dysfunction.Anticoagulation therapy reduces the risk of thromboembolic complications in AF but presents challenges in patients with renal impairment due to altered pharmacokinetics and increased bleeding risk.AIM To support clinicians in navigating the complexities of anticoagulation in this high-risk population,ensuring optimal outcomes.METHODS The present review followed PRISMA guidelines.Data extraction was conducted using a standardized template that captured key study characteristics:Population demographics,renal function metrics,anticoagulant dosing strategies,and primary and secondary outcomes.For quality assessment,we employed the Cochrane Risk of Bias 2.0 tool for randomized controlled trials.Observational studies were appraised using the Newcastle-Ottawa Scale.RESULTS We analyze data from 16 studies to provide recommendations on optimal anticoagulation strategies,balancing thrombotic and bleeding risks.Current evidence supports the preferential use of apixaban in moderate chronic kidney disease and cautiously in end-stage renal disease,emphasizing the importance of individualized therapy.CONCLUSION The management of anticoagulation in AF patients with renal dysfunction is challenging but critical for reducing stroke risk.展开更多
基金supported by the National Natural Science Foundation of China(22168008,22378085)the Guangxi Natural Science Foundation(2024GXNSFDA010053)+1 种基金the Technology Development Project of Guangxi Bossco Environmental Protection Technology Co.,Ltd(202100039)Innovation Project of Guangxi Graduate Education(YCBZ2024065).
文摘Strategically coupling nanoparticle hybrids and internal thermosensitive molecular switches establishes an innovative paradigm for constructing micro/nanoscale-reconfigurable robots,facilitating energyefficient CO_(2) management in life-support systems of confined space.Here,a micro/nano-reconfigurable robot is constructed from the CO_(2) molecular hunters,temperature-sensitive molecular switch,solar photothermal conversion,and magnetically-driven function engines.The molecular hunters within the molecular extension state can capture 6.19 mmol g^(−1) of CO_(2) to form carbamic acid and ammonium bicarbonate.Interestingly,the molecular switch of the robot activates a molecular curling state that facilitates CO_(2) release through nano-reconfiguration,which is mediated by the temperature-sensitive curling of Pluronic F127 molecular chains during the photothermal desorption.Nano-reconfiguration of robot alters the amino microenvironment,including increasing surface electrostatic potential of the amino group and decreasing overall lowest unoccupied molecular orbital energy level.This weakened the nucleophilic attack ability of the amino group toward the adsorption product derivatives,thereby inhibiting the side reactions that generate hard-to-decompose urea structures,achieving the lowest regeneration temperature of 55℃ reported to date.The engine of the robot possesses non-contact magnetically-driven micro-reconfiguration capability to achieve efficient photothermal regeneration while avoiding local overheating.Notably,the robot successfully prolonged the survival time of mice in the sealed container by up to 54.61%,effectively addressing the issue of carbon suffocation in confined spaces.This work significantly enhances life-support systems for deep-space exploration,while stimulating innovations in sustainable carbon management technologies for terrestrial extreme environments.
基金supported by the National Natural Science Foundation of China(No.52070057)China Postdoctoral Science Foundation(No.2023M730855)Heilongjiang Postdoctoral Fund(No.LBH-Z22183)for financial support。
文摘Sustainable water,energy and food(WEF)supplies are the bedrock upon which human society depends.Solar-driven interfacial evaporation,combined with electricity generation and cultivation,is a promising approach to mitigate the freshwater,energy and food crises.However,the performance of solar-driven systems decreases significantly during operation due to uncontrollable weather.This study proposes an integrated water/electricity cogeneration-cultivation system with superior thermal management.The energy storage evaporator,consisting of energy storage microcapsules/hydrogel composites,is optimally designed for sustainable desalination,achieving an evaporation rate of around 1.91 kg m^(-2)h^(-1).In the dark,heat released from the phase-change layer supported an evaporation rate of around 0.54kg m^(-2)h^(-1).Reverse electrodialysis harnessed the salinity-gradient energy enhanced during desalination,enabling the long-running WEC system to achieve a power output of~0.3 W m^(-2),which was almost three times higher than that of conventional seawater/surface water mixing.Additionally,an integrated crop irrigation platform utilized system drainage for real-time,on-demand wheat cultivation without secondary contaminants,facilitating seamless WEF integration.This work presents a novel approach to all-day solar water production,electricity generation and crop irrigation,offering a solution and blueprint for the sustainable development of WEF.
文摘Neuromodulation for diabetic peripheral neuropathy represents a significant area of interest in the management of chronic pain associated with this condition.Diabetic peripheral neuropathy,a common complication of diabetes,is characterized by nerve damage due to high blood sugar levels that lead to symptoms,such as pain,tingling,and numbness,primarily in the hands and feet.The aim of this systematic review was to evaluate the efficacy of neuromodulatory techniques as potential therapeutic interventions for patients with diabetic peripheral neuropathy,while also examining recent developments in this domain.The investigation encompassed an array of neuromodulation methods,including frequency rhythmic electrical modulated systems,dorsal root ganglion stimulation,and spinal cord stimulation.This systematic review suggests that neuromodulatory techniques may be useful in the treatment of diabetic peripheral neuropathy.Understanding the advantages of these treatments will enable physicians and other healthcare providers to offer additional options for patients with symptoms refractory to standard pharmacologic treatments.Through these efforts,we may improve quality of life and increase functional capacity in patients suffering from complications related to diabetic neuropathy.
基金National Key R&D Program of China of the 13th Five-Year Plan(No.2018YFD1100704)。
文摘To meet the challenge of mismatches between power supply and demand,modern buildings must schedule flexible energy loads in order to improve the efficiency of power grids.Furthermore,it is essential to understand the effectiveness of flexibility management strategies under different climate conditions and extreme weather events.Using both typical and extreme weather data from cities in five major climate zones of China,this study investigates the energy flexibility potential of an office building under three short-term HVAC management strategies in the context of different climates.The results show that the peak load flexibility and overall energy performance of the three short-term strategies were affected by the surrounding climate conditions.The peak load reduction rate of the pre-cooling and zone temperature reset strategies declined linearly as outdoor temperature increased.Under extreme climate conditions,the daily peak-load time was found to be over two hours earlier than under typical conditions,and the intensive solar radiation found in the extreme conditions can weaken the correlation between peak load reduction and outdoor temperature,risking the ability of a building’s HVAC system to maintain a comfortable indoor environment.
基金supported by the National Natural Science Foundation of China(Nos.42177333 and 31870500)the National Special Program for Key Basic Research of the Ministry of Science and Technology of China(No.2015FY110700)the Jiangsu Agriculture Science and Technology Innovation Fund,China(No.JASTIFCX(20)2003)。
文摘Both straw incorporation and irrigation practices affect biological nitrogen(N)fixation(BNF),but it is still unclear how straw incorporation impacts BNF under continuous(CFI)or intermittent(IFI)flooding irrigation in a rice cropping system.A15N2-labeling chamber system was placed in a rice field to evaluate BNF with straw incorporation under CFI or IFI for 90 d.The nif H(gene encoding the nitrogenase reductase subunit)DNA and c DNA in soil were amplified using real-time quantitative polymerase chain reaction,and high-throughput sequencing was applied to the nif H gene.The total fixed N in the straw incorporation treatment was 14.3 kg ha^(-1)under CFI,being 116%higher than that under IFI(6.62 kg ha^(-1)).Straw incorporation and CFI showed significant interactive effects on the total fixed N and abundances of nif H DNA and c DNA.The increase in BNF was mainly due to the increase in the abundances of heterotrophic diazotrophs such as Desulfovibrio,Azonexus,and Azotobacter.These results indicated that straw incorporation stimulated BNF under CFI relative to IFI,which might ultimately lead to a rapid enhancement of soil fertility.
基金supported by the National Natural Science Foundation of China(72225012)the National Key Research and Development Program of China(2023YFB4302901)+1 种基金the National Natural Science Foundation of China(72288101,71822101,and 62201577)the Safety Capability Building Fund of the Civil Aviation Administration of China(ASSA2023/19).
文摘With the anticipated growth in air traffic complexity in the coming years,future civil aviation transportation system(CATS)is transforming into a complex cyber–physical–social system,surpassing all previous experiences in the history of civil aviation safety management.Therefore,a new safety concept based on a system-of-systems(SoS)perspective is proposed for the next-generation aviation.This article begins by elucidating the complexity of existing aviation risks and emphasizing the necessity for an updated safety concept.It then presents the challenges of current safety management and potential solutions from the new SoS perspective.To address future risks,the concept of SoS safety is introduced with the inspiration of the human immune system in terms of capability,logic,and architecture,which can serve as a guiding framework and methodology for safety engineering in complex large-scale CATS.This concept indicates the transition from“process and outcome-oriented”to“capability-oriented”intelligent safety management.Our research highlights the development directions and potential technological areas that need to be addressed at different stages of SoS safety.The integration of SoS design and operation through rapid iterations enabled by artificial intelligence(AI)will ultimately achieve endogenous SoS safety.
基金the funding and generous support of the National Natural Science Foundation of China(52103263,52271249)the Key Project of International Science&Technology Cooperation of Shaanxi Province(2023-GHZD-09)+5 种基金the Key Project of Science Foundation of Education Department of Shaanxi Province(22JY011)the Key Project of Scientific Research and Development of Shaanxi Province(2023GXLH-070)the Qinchuangyuan"Scientist+Engineer"Team of Shaanxi Province(2023KXJ-069)the Key Research and Development Program of Shaanxi(2023-YBGY-488)the Sci-tech Innovation Team of Shaanxi Province(2024RS-CXTD-46)the Key Research and Development Program of Shaanxi Province(2020ZDLGY13-11).
文摘All-season thermal management with zero energy consumption and emissions is more crucial to global decarbonization over traditional energy-intensive cooling/heating systems.However,the static single thermal management for cooling or heating fails to self-regulate the temperature in dynamic seasonal temperature condition.Herein,inspired by the dual-temperature regulation function of the fur color changes on the backs and abdomens of penguins,a smart thermal management composite hydrogel(PNA@H-PM Gel)system was subtly created though an"on-demand"dual-layer structure design strategy.The PNA@H-PM Gel system features synchronous solar and thermal radiation modulation as well as tunable phase transition temperatures to meet the variable seasonal thermal requirements and energy-saving demands via self-adaptive radiative cooling and solar heating regulation.Furthermore,this system demonstrates superb modulations of both the solar reflectance(ΔR=0.74)and thermal emissivity(ΔE=0.52)in response to ambient temperature changes,highlighting efficient temperature regulation with average radiative cooling and solar heating effects of 9.6℃in summer and 6.1℃in winter,respectively.Moreover,compared to standard building baselines,the PNA@H-PM Gel presents a more substantial energy-saving cooling/heating potentials for energy-efficient buildings across various regions and climates.This novel solution,inspired by penguins in the real world,will offer a fresh approach for producing intelligent,energy-saving thermal management materials,and serve for temperature regulation under dynamic climate conditions and even throughout all seasons.
文摘Distributed Federated Learning(DFL)technology enables participants to cooperatively train a shared model while preserving the privacy of their local datasets,making it a desirable solution for decentralized and privacy-preserving Web3 scenarios.However,DFL faces incentive and security challenges in the decentralized framework.To address these issues,this paper presents a Hierarchical Blockchain-enabled DFL(HBDFL)system,which provides a generic solution framework for the DFL-related applications.The proposed system consists of four major components,including a model contribution-based reward mechanism,a Proof of Elapsed Time and Accuracy(PoETA)consensus algorithm,a Distributed Reputation-based Verification Mechanism(DRTM)and an Accuracy-Dependent Throughput Management(ADTM)mechanism.The model contribution-based rewarding mechanism incentivizes network nodes to train models with their local datasets,while the PoETA consensus algorithm optimizes the tradeoff between the shared model accuracy and system throughput.The DRTM improves the system efficiency in consensus,and the ADTM mechanism guarantees that the throughput performance remains within a predefined range while improving the shared model accuracy.The performance of the proposed HBDFL system is evaluated by numerical simulations,with the results showing that the system improves the accuracy of the shared model while maintaining high throughput and ensuring security.
基金jointly supported by the National Natural Science Foundation of China(71821001,72371109,72071088,72074089,and 51938004)Strategic Study Project of Chinese Academy of Engineering(2022-JB-02)Project of Interdisciplinary Research Support Program in Huazhong University of Science and Technology(2023-32)。
文摘The complexity of coupled risks,which refer to the compounded effects of interacting uncertainties across multiple interdependent objectives,is inherent to cities functioning as dynamic,interdependent systems.A disruption in one domain ripples across various urban systems,often with unforeseen consequences.Central to this complexity are people,whose behaviors,needs,and vulnerabilities shape risk evolution and response effectiveness.Realizing cities as complex systems centered on human needs and behaviors is essential to understanding the complexities of coupled urban risks.This paper adopts a complex systems perspective to examine the intricacies of coupled urban risks,emphasizing the critical role of human decisions and behavior in shaping these dynamics.We focus on two key dimensions:cascading hazards in urban environments and cascading failures across interdependent exposed systems in cities.Existing risk assessment models often fail to capture the complexity of these processes,particularly when factoring in human decision-making.To tackle these challenges,we advocate for a standardized taxonomy of cascading hazards,urban components,and their interactions.At its core is a people-centric perspective,emphasizing the bidirectional interactions between people and the systems that serve them.Building on this foundation,we argue the need for an integrated,people-centric risk assessment framework that evaluates event impacts in relation to the hierarchical needs of people and incorporates their preparedness and response capacities.By leveraging real-time data,advanced simulations,and innovative validation methods,this framework aims to enhance the accuracy of coupled urban risk modeling.To effectively manage coupled urban risks,cities can draw from proven strategies in real complex systems.However,given the escalating uncertainties and complexities associated with climate change,prioritizing people-centric strategies is crucial.This approach will empower cities to build resilience not only against known hazards but also against evolving and unforeseen challenges in an increasingly uncertain world.
基金supported by the National Natural Science Foundation of China(NSFC)under grant No.62204235。
文摘This paper introduces a high-precision bandgap reference(BGR)designed for battery management systems(BMS),fea-turing an ultra-low temperature coefficient(TC)and line sensitivity(LS).The BGR employs a current-mode scheme with chopped op-amps and internal clock generators to eliminate op-amp offset.A low dropout regulator(LDO)and a pre-regula-tor enhance output driving and LS,respectively.Curvature compensation enhances the TC by addressing higher-order nonlinear-ity.These approaches,effective near room temperature,employs trimming at both 20 and 60°C.When combined with fixed cur-vature correction currents,it achieves an ultra-low TC for each chip.Implemented in a CMOS 180 nm process,the BGR occu-pies 0.548 mm²and operates at 2.5 V with 84μA current draw from a 5 V supply.An average TC of 2.69 ppm/℃ with two-point trimming and 0.81 ppm/℃ with multi-point trimming are achieved over the temperature range of-40 to 125℃.It accommo-dates a load current of 1 mA and an LS of 42 ppm/V,making it suitable for precise BMS applications.
基金supported by the Ecological Conservation and High-Quality Development of the Yellow River Basin Program,China(2022-YRUC-010102)the Second Tibetan Plateau Scientific Expedition and Research Program,China(20190ZKK0405)the Basic Research Fund Project of Innovation Team of Novel Forage Germplasm and Sustainable Utilization of Grassland Resources,China(BR22-12-07)。
文摘There is growing interest in introducing ecological risks(ERs)and ecosystem services(ESs)into environmental policies and practices.However,the integration of ESs and ERs into actual decision-making remains insufficient.We simulated the spatiotemporal dynamics of ESs(e.g.,carbon storage,water yield,habitat quality,and soil conservation)and ERs in the upper reach of the Yellow River(URYR)from 2000 to 2100.Additionally,we explored their relationships by combining the InVEST model and a landscape ecological risk model with CMIP6 data.Our main findings showed that regional ERs change in response to land use and environmental dynamics.Specifically,the ER area decreased by 27,673 m^(2)during 2000-2020,but it is projected to increase by 13,273,438,and 68 m^(2)under the SSP1-2.6,SSP2-4.5,and SSP5-8.5 scenarios,respectively.We also observed remarkable spatial differences in ESs and ERs between past and future scenarios.For instance,the source area of the URYR exhibited high ESs and low ERs(P<0.001),while the ESs and ERs are declining and increasing,respectively,in the northeastern URYR(P<0.05).Finally,we proposed a spatial optimization framework to improve ESs and reduce ERs,which will support regional sustainable development.
文摘Modern aircraft tend to use fuel thermal management systems to cool onboard heat sources.However,the design of heat transfer architectures for fuel thermal management systems relies on the experience of the engineers and lacks theoretical guidance.This paper proposes a concise graph representation method based on graph theory for fuel thermal management systems,which can represent all possible connections between subsystems.A generalized optimization algorithm is proposed for fuel thermal management system architecture to minimize the heat sink.This algorithm can autonomously arrange subsystems with heat production differences and efficiently utilize the architecture of the fuel heat sink.At the same time,two evaluation indices are proposed from the perspective of subsystems.These indices intuitively and clearly show that the reason for the high efficiency of heat sink utilization is the balanced and moderate cooling of each subsystem and verify the rationality of the architecture optimization method.A set of simulations are also conducted,which demonstrate that the fuel tank temperature has no effect on the performance of the architecture.This paper provides a reference for the architectural design of aircraft fuel thermal management systems.The metrics used in this paper can also be utilized to evaluate the existing architecture.
基金supported by the Deanship of Scientific Research and Graduate Studies at King Khalid University under research grant number(R.G.P.2/93/45).
文摘Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and smart transportation systems.Fog computing tackles a range of challenges,including processing,storage,bandwidth,latency,and reliability,by locally distributing secure information through end nodes.Consisting of endpoints,fog nodes,and back-end cloud infrastructure,it provides advanced capabilities beyond traditional cloud computing.In smart environments,particularly within smart city transportation systems,the abundance of devices and nodes poses significant challenges related to power consumption and system reliability.To address the challenges of latency,energy consumption,and fault tolerance in these environments,this paper proposes a latency-aware,faulttolerant framework for resource scheduling and data management,referred to as the FORD framework,for smart cities in fog environments.This framework is designed to meet the demands of time-sensitive applications,such as those in smart transportation systems.The FORD framework incorporates latency-aware resource scheduling to optimize task execution in smart city environments,leveraging resources from both fog and cloud environments.Through simulation-based executions,tasks are allocated to the nearest available nodes with minimum latency.In the event of execution failure,a fault-tolerantmechanism is employed to ensure the successful completion of tasks.Upon successful execution,data is efficiently stored in the cloud data center,ensuring data integrity and reliability within the smart city ecosystem.
文摘Humans have always engaged with their surroundings and the ecology in which they live.However,during the industrial age,this contact has been more intense and has had a substantial impact on environment and ecosystems.For example,overexploitation of natural resources,mining,pollution,and deforestation are all elements that negatively affect biodiversity and natural resources.Few studies have been conducted to evaluate the damage caused,despite the significant uncontrolled pressure from human activity.However,maintaining its environment is essential to the survival of coastal fishing.Goal:This study’s goal was to evaluate how human activity affected Tabounsou’s coastal ecology in order to suggest remedial actions for sustainable management.The following was the methodological approach used:executive consultation and archival analysis;stakeholder survey(locals,farmers,salt producers,fishers,and loggers);inventory of species;anthropogenic activity inventory;evaluation of how human activity affects aquatic life in the research region;suggestion and action for sustainable management;Outcome:Executive consultation indicated that the main issues are:construction projects that reduce the estuary’s surface area;agricultural practices such as woodcutting and salt farming;the rise in resource exploitation;noncompliance with fisheries laws;and the catching of young fish.Eighty-three percent of fisherman ditch their nets on the coast after using them,but only seventeen percent burn them.With a 75%frequency rate,the same survey indicates that most fisherman fish around the coast.In the Tabounsou area,according to loggers’survey,68%of the wood cut is Rhizophora,24%is Avicennia,and 8%is Laguncularia.Three fish stocks,representing nine families and nine species,were identified by the species inventory.At 18%and 15%,respectively,the actors most frequently capture the species Pseudotolithus elongatus and Arius parkii.According to a poll of 30 farmers,90%of them apply fertilizer to their soil,while only 10%do not.During the dry season,salt is grown.According to two actors,Bougna Toro Toro produces 100 kg of salt per day,followed by Khoumawadé,which produces 80 kg,and Toumbibougni,which produces 70 kg.
文摘This study analyzes the causes and effects of climate change in the upper Niger River basin and the implementation of local adaptation strategies based on EMS(Environmental Management Systems).It aims to strengthen ecological resilience and sustainable natural resource management practices through training,awareness-raising,and community participation.The work was conducted in three rural communes in the Kissidougou prefecture,located in the Faranah administrative region.Data collection and analysis tools included questionnaires,GPS devices,digital devices,laptops,and Excel and SPSS software.The methodology employed a participatory and multidisciplinary approach combining a literature review,surveys of 163 respondents,semi-structured interviews with 16 key informants,training for 218 technical staff and local elected officials(30%of whom were women),and awareness-raising activities for 1,800 participants in local languages.Five community forests covering 443.58 hectares were integrated into management plans,concerted,under the coordination of the NGO APARFE.The results show an increase in average temperature(+0.8°C since 1960),a decrease in rainfall(-5.3 mm/month),and increased vulnerability of populations dependent on agriculture.The integration of the EMS(Environmental Management System)has led to improvements in environmental governance,community forest management,awareness of sustainable agricultural practices,and the inclusion of women(51%of participants).In short,the EMS is an effective tool for strengthening community resilience and environmental sustainability.
基金supported by the European Union and Italian Ministry of University and Research through the call PON Research and Innovation 2014-2020,Axis Ⅱ,Action 2,project AcrOSS(Environment for Safe Operations of Remotely Piloted Aircraft),project number ARS01_00702-CUP:F36C18000210005.
文摘The use of unmanned aerial system(UAS)in congested airspace and/or in the proximity of critical infrastructure poses several challenges as far as safe and secure operations are concerned.The paper provides a detailed description of the architecture and workflow of a platform for UAS traffic management(UTM),designed to pave the way for increased,improved and safer UAS operations in the civil airspace.In particular,access to low-altitude airspace for UAS operations is managed,while facilitating the implementation of beyond visual line-of-sight(BVLOS)operations,and ensuring a safe and efficient integration of UAS into both controlled and uncontrolled airspace.Detection and management of unidentified or uncooperative UAS’s is also taken care of.To this end,an architecture based on three interacting layers is proposed,with the air traffic control at the highest level,the UAS operator(s)at the bottom,and a UAS service supplier acting as an interface.The platform,with its physical and digital elements,guarantees the effective and efficient interaction among these three layers,including management of contingency scenarios,which require a variation of admissible flight volumes for UAS operations and/or fast trajectory re-planning.The platform,developed within a research project which involved several partners,was tested in a relevant operational scenario at the Grottaglie-Taranto airport in Italy.The operators involved in the tests provided positive feedback on the services provided by the platform and the usability of the interfaces,while also making suggestions for adding new features in future developments.
文摘To address the current situation where many small enterprises lack efficient management of customer data, this paper proposes a design and implementation plan of a customer relationship management (CRM) system based on email service. It aims to solve the problems of data dispersion, untimely update and information redundancy in customer management of small and medium-sized enterprises. The system includes four core functional modules: historical email analysis, lead pool management, customer management and email archiving. Through email mining and web crawler technology, the system can extract potential customer information from historical emails and enrich lead data;the lead pool management module supports lead information maintenance, status tracking and conversion of high-value leads;the customer management module realizes the maintenance and dynamic tracking of customer information;the email management module provides the archiving of emails and attachments and the structured storage of basic email information. The system provides automated and intelligent customer information management, improves the work efficiency of sales staff, and provides an efficient customer relationship management solution for enterprises.
文摘Background: The availability of essential medicines and medical supplies is crucial for effectively delivering healthcare services. In Zambia, the Logistics Management Information System (LMIS) is a key tool for managing the supply chain of these commodities. This study aimed to evaluate the effectiveness of LMIS in ensuring the availability of essential medicines and medical supplies in public hospitals in the Copperbelt Province of Zambia. Materials and Methods: From February to April 2022, a cross-sectional study was conducted in 12 public hospitals across the Copperbelt Province. Data were collected using structured questionnaires, checklists, and stock control cards. The study assessed LMIS availability, training, and knowledge among pharmacy personnel, as well as data accuracy, product availability, and order fill rates. Descriptive statistics were used to analyse the data. Results: All surveyed hospitals had LMIS implemented and were using eLMIS as the primary LMIS. Only 47% and 48% of pharmacy personnel received training in eLMIS and Essential Medicines Logistics Improvement Program (EMLIP), respectively. Most personnel demonstrated good knowledge of LMIS, with 77.7% able to log in to eLMIS Facility Edition, 76.6% able to locate stock control cards in the system, and 78.7% able to perform transactions. However, data accuracy from physical and electronic records varied from 0% to 60%, and product availability ranged from 50% to 80%. Order fill rates from Zambia Medicines and Medical Supplies Agency (ZAMMSA) were consistently below 30%. Discrepancies were observed between physical stock counts and eLMIS records. Conclusion: This study found that most hospitals in the Copperbelt Province of Zambia have implemented LMIS use. While LMIS implementation is high in the Copperbelt Province of Zambia, challenges such as low training levels, data inaccuracies, low product availability, and order fill rates persist. Addressing these issues requires a comprehensive approach, including capacity building, data quality improvement, supply chain coordination, and investment in infrastructure and human resources. Strengthening LMIS effectiveness is crucial for improving healthcare delivery and patient outcomes in Zambia.
文摘BACKGROUND Clozapine,the gold standard for resistant schizophrenia,is underused due to risks like clozapine-induced myocarditis(CIM).Non-specific biomarkers and inconsistent imaging,and the significant overlap with clozapine-induced pneumonia(CIP)lead to misdiagnosis and premature discontinuation.AIM To develop a diagnostic algorithm for CIM to enhance accuracy,differentiate from CIP,and guide safe clozapine rechallenge.METHODS A systematic review of 119 PubMed studies(published between 1990 and April 2025)was conducted in accordance with PRISMA guidelines.The review analyzed CIM diagnosis and rechallenge outcomes,with a focus on biomarkers,imaging,and collaboration with cardiology.RESULTS CIM diagnosis relies on troponin and C-reactive protein;electrocardiography and echocardiography are inconsistently applied,and cardiac magnetic resonance imaging(CMR)is underused.Rechallenge was successful in 64.7%to 68.9%of 136 cases,with 2.9%resulting in fatal outcomes.Up to 65%of presumed CIM cases lack confirmation.A proposed protocol integrates chest computed tomography to exclude pneumonia and CMR for CIM confirmation,with echocardiography as an alternative.CONCLUSION A protocol involving multidisciplinary collaboration among computed tomography,CMR,and cardiology improves CIM diagnosis.Slow titration prevents CIM;adjust the dose for CIP and discontinue for confirmed CIM.
文摘BACKGROUND Atrial fibrillation(AF)is a prevalent cardiac arrhythmia associated with significant morbidity and mortality,particularly in patients with concomitant renal dysfunction.Anticoagulation therapy reduces the risk of thromboembolic complications in AF but presents challenges in patients with renal impairment due to altered pharmacokinetics and increased bleeding risk.AIM To support clinicians in navigating the complexities of anticoagulation in this high-risk population,ensuring optimal outcomes.METHODS The present review followed PRISMA guidelines.Data extraction was conducted using a standardized template that captured key study characteristics:Population demographics,renal function metrics,anticoagulant dosing strategies,and primary and secondary outcomes.For quality assessment,we employed the Cochrane Risk of Bias 2.0 tool for randomized controlled trials.Observational studies were appraised using the Newcastle-Ottawa Scale.RESULTS We analyze data from 16 studies to provide recommendations on optimal anticoagulation strategies,balancing thrombotic and bleeding risks.Current evidence supports the preferential use of apixaban in moderate chronic kidney disease and cautiously in end-stage renal disease,emphasizing the importance of individualized therapy.CONCLUSION The management of anticoagulation in AF patients with renal dysfunction is challenging but critical for reducing stroke risk.