Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and ...Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and smart transportation systems.Fog computing tackles a range of challenges,including processing,storage,bandwidth,latency,and reliability,by locally distributing secure information through end nodes.Consisting of endpoints,fog nodes,and back-end cloud infrastructure,it provides advanced capabilities beyond traditional cloud computing.In smart environments,particularly within smart city transportation systems,the abundance of devices and nodes poses significant challenges related to power consumption and system reliability.To address the challenges of latency,energy consumption,and fault tolerance in these environments,this paper proposes a latency-aware,faulttolerant framework for resource scheduling and data management,referred to as the FORD framework,for smart cities in fog environments.This framework is designed to meet the demands of time-sensitive applications,such as those in smart transportation systems.The FORD framework incorporates latency-aware resource scheduling to optimize task execution in smart city environments,leveraging resources from both fog and cloud environments.Through simulation-based executions,tasks are allocated to the nearest available nodes with minimum latency.In the event of execution failure,a fault-tolerantmechanism is employed to ensure the successful completion of tasks.Upon successful execution,data is efficiently stored in the cloud data center,ensuring data integrity and reliability within the smart city ecosystem.展开更多
We propose a Cross-Chain Mapping Blockchain(CCMB)for scalable data management in massive Internet of Things(IoT)networks.Specifically,CCMB aims to improve the scalability of securely storing,tracing,and transmitting I...We propose a Cross-Chain Mapping Blockchain(CCMB)for scalable data management in massive Internet of Things(IoT)networks.Specifically,CCMB aims to improve the scalability of securely storing,tracing,and transmitting IoT behavior and reputation data based on our proposed cross-mapped Behavior Chain(BChain)and Reputation Chain(RChain).To improve off-chain IoT data storage scalability,we show that our lightweight CCMB architecture efficiently utilizes available fog-cloud resources.The scalability of on-chain IoT data tracing is enhanced using our Mapping Smart Contract(MSC)and cross-chain mapping design to perform rapid Reputation-to-Behavior(R2B)traceability queries between BChain and RChain blocks.To maximize off-chain to on-chain throughput,we optimize the CCMB block settings and producers based on a general Poisson Point Process(PPP)network model.The constrained optimization problem is formulated as a Markov Decision Process(MDP),and solved using a dual-network Deep Reinforcement Learning(DRL)algorithm.Simulation results validate CCMB’s scalability advantages in storage,traceability,and throughput.In specific massive IoT scenarios,CCMB can reduce the storage footprint by 50%and traceability query time by 90%,while improving system throughput by 55%compared to existing benchmarks.展开更多
In the context of the rapid development of digital education,the security of educational data has become an increasing concern.This paper explores strategies for the classification and grading of educational data,and ...In the context of the rapid development of digital education,the security of educational data has become an increasing concern.This paper explores strategies for the classification and grading of educational data,and constructs a higher educational data security management and control model centered on the integration of medical and educational data.By implementing a multi-dimensional strategy of dynamic classification,real-time authorization,and secure execution through educational data security levels,dynamic access control is applied to effectively enhance the security and controllability of educational data,providing a secure foundation for data sharing and openness.展开更多
As a new type of production factor in healthcare,healthcare data elements have been rapidly integrated into various health production processes,such as clinical assistance,health management,biological testing,and oper...As a new type of production factor in healthcare,healthcare data elements have been rapidly integrated into various health production processes,such as clinical assistance,health management,biological testing,and operation and supervision[1,2].Healthcare data elements include biolog.ical and clinical data that are related to disease,environ-mental health data that are associated with life,and operational and healthcare management data that are related to healthcare activities(Figure 1).Activities such as the construction of a data value assessment system,the devel-opment of a data circulation and sharing platform,and the authorization of data compliance and operation products support the strong growth momentum of the market for health care data elements in China[3].展开更多
This study aims to investigate the influence of social media on college choice among undergraduates majoring in Big Data Management and Application in China.The study attempts to reveal how information on social media...This study aims to investigate the influence of social media on college choice among undergraduates majoring in Big Data Management and Application in China.The study attempts to reveal how information on social media platforms such as Weibo,WeChat,and Zhihu influences the cognition and choice process of prospective students.By employing an online quantitative survey questionnaire,data were collected from the 2022 and 2023 classes of new students majoring in Big Data Management and Application at Guilin University of Electronic Technology.The aim was to evaluate the role of social media in their college choice process and understand the features and information that most attract prospective students.Social media has become a key factor influencing the college choice decision-making of undergraduates majoring in Big Data Management and Application in China.Students tend to obtain school information through social media platforms and use this information as an important reference in their decision-making process.Higher education institutions should strengthen their social media information dissemination,providing accurate,timely,and attractive information.It is also necessary to ensure effective management of social media platforms,maintain a positive reputation for the school on social media,and increase the interest and trust of prospective students.Simultaneously,educational decision-makers should consider incorporating social media analysis into their recruitment strategies to better attract new student enrollment.This study provides a new perspective for understanding higher education choice behavior in the digital age,particularly by revealing the importance of social media in the educational decision-making process.This has important practical and theoretical implications for higher education institutions,policymakers,and social media platform operators.展开更多
As an introductory course for the emerging major of big data management and application,“Introduction to Big Data”has not yet formed a curriculum standard and implementation plan that is widely accepted and used by ...As an introductory course for the emerging major of big data management and application,“Introduction to Big Data”has not yet formed a curriculum standard and implementation plan that is widely accepted and used by everyone.To this end,we discuss some of our explorations and attempts in the construction and teaching process of big data courses for the major of big data management and application from the perspective of course planning,course implementation,and course summary.After interviews with students and feedback from questionnaires,students are highly satisfied with some of the teaching measures and programs currently adopted.展开更多
With the rise of data-intensive research,data literacy has become a critical capability for improving scientific data quality and achieving artificial intelligence(AI)readiness.In the biomedical domain,data are charac...With the rise of data-intensive research,data literacy has become a critical capability for improving scientific data quality and achieving artificial intelligence(AI)readiness.In the biomedical domain,data are characterized by high complexity and privacy sensitivity,calling for robust and systematic data management skills.This paper reviews current trends in scientific data governance and the evolving policy landscape,highlighting persistent challenges such as inconsistent standards,semantic misalignment,and limited awareness of compliance.These issues are largely rooted in the lack of structured training and practical support for researchers.In response,this study builds on existing data literacy frameworks and integrates the specific demands of biomedical research to propose a comprehensive,lifecycle-oriented data literacy competency model with an emphasis on ethics and regulatory awareness.Furthermore,it outlines a tiered training strategy tailored to different research stages—undergraduate,graduate,and professional,offering theoretical foundations and practical pathways for universities and research institutions to advance data literacy education.展开更多
The Internet of Things(IoT)technology provides new impetus for the development of building intelligence.This research focuses on the intelligent design and management of buildings based on IoT engineering.It expounds ...The Internet of Things(IoT)technology provides new impetus for the development of building intelligence.This research focuses on the intelligent design and management of buildings based on IoT engineering.It expounds on the system design principles such as sensor technology,communication network technology,and data storage and analysis,and analyzes the key points of design,including design requirement analysis,equipment layout,and system integration.Through specific cases,it demonstrates the application practice of the system in buildings,and presents the application effect of intelligent system management with multi-parameter values,providing theoretical and practical references for the development of building intelligence and helping to achieve efficient,energy-saving,and safe building operation.展开更多
National Population Health Data Center(NPHDC)is one of China's 20 national-level science data centers,jointly designated by the Ministry of Science and Technology and the Ministry of Finance.Operated by the Chines...National Population Health Data Center(NPHDC)is one of China's 20 national-level science data centers,jointly designated by the Ministry of Science and Technology and the Ministry of Finance.Operated by the Chinese Academy of Medical Sciences under the oversight of the National Health Commission,NPHDC adheres to national regulations including the Scientific Data Management Measures and the National Science and Technology Infrastructure Service Platform Management Measures,and is committed to collecting,integrating,managing,and sharing biomedical and health data through openaccess platform,fostering open sharing and engaging in international cooperation.展开更多
On the basis of PDM(product data management) definition and its connotation, the factors to ensure implementation success are analyzed. The definition phase, analysis phase, design phase, build and test phase, and pos...On the basis of PDM(product data management) definition and its connotation, the factors to ensure implementation success are analyzed. The definition phase, analysis phase, design phase, build and test phase, and post production phase during PDM implementation are described. The implementation is divided into ten processes, which consist of the above different phases. The relationships between phases and processes are illustrated. Finally, a workflow is proposed to guide the implementing at a fixed price.展开更多
The CifNet network multi-well data management system is developed for 100MB or 1000MB local network environments which are used in Chinese oil industry. The kernel techniques of CifNet system include: 1, establishing ...The CifNet network multi-well data management system is developed for 100MB or 1000MB local network environments which are used in Chinese oil industry. The kernel techniques of CifNet system include: 1, establishing a high efficient and low cost network multi-well data management architecture based on the General Logging Curve Theory and the Cif data format; 2, implementing efficient visit and transmission of multi-well data in C/S local network based on TCP/IP protocol; 3,ensuring the safety of multi-well data in store, visit and application based on Unix operating system security. By using CifNet system, the researcher in office or at home can visit curves of any borehole in any working area of any oilfield. The application foreground of CifNet system is also commented.展开更多
The mining industry faces a number of challenges that promote the adoption of new technologies.Big data,which is driven by the accelerating progress of information and communication technology,is one of the promising ...The mining industry faces a number of challenges that promote the adoption of new technologies.Big data,which is driven by the accelerating progress of information and communication technology,is one of the promising technologies that can reshape the entire mining landscape.Despite numerous attempts to apply big data in the mining industry,fundamental problems of big data,especially big data management(BDM),in the mining industry persist.This paper aims to fill the gap by presenting the basics of BDM.This work provides a brief introduction to big data and BDM,and it discusses the challenges encountered by the mining industry to indicate the necessity of implementing big data.It also summarizes data sources in the mining industry and presents the potential benefits of big data to the mining industry.This work also envisions a future in which a global database project is established and big data is used together with other technologies(i.e.,automation),supported by government policies and following international standards.This paper also outlines the precautions for the utilization of BDM in the mining industry.展开更多
The wealth of user data acts as a fuel for network intelligence toward the sixth generation wireless networks(6G).Due to data heterogeneity and dynamics,decentralized data management(DM)is desirable for achieving tran...The wealth of user data acts as a fuel for network intelligence toward the sixth generation wireless networks(6G).Due to data heterogeneity and dynamics,decentralized data management(DM)is desirable for achieving transparent data operations across network domains,and blockchain can be a promising solution.However,the increasing data volume and stringent data privacy-preservation requirements in 6G bring significantly technical challenge to balance transparency,efficiency,and privacy requirements in decentralized blockchain-based DM.In this paper,we investigate blockchain solutions to address the challenge.First,we explore the consensus protocols and scalability mechanisms in blockchains and discuss the roles of DM stakeholders in blockchain architectures.Second,we investigate the authentication and authorization requirements for DM stakeholders.Third,we categorize DM privacy requirements and study blockchain-based mechanisms for collaborative data processing.Subsequently,we present research issues and potential solutions for blockchain-based DM toward 6G from these three perspectives.Finally,we conclude this paper and discuss future research directions.展开更多
The basic frame and the design idea of J2EE-based Product Data Management (PDM) system are presented. This paper adopts the technology of Object-Oriented to realize the database design and builds the information model...The basic frame and the design idea of J2EE-based Product Data Management (PDM) system are presented. This paper adopts the technology of Object-Oriented to realize the database design and builds the information model of this PDM system. The integration key technology of PDM and CAD systems are discussed, the isomerous interface characteristics between CAD and PDM systems are analyzed, and finally, the integration mode of the PDM and CAD systems is given. Using these technologies, the integration of PDM and CAD systems is realized and the consistence of data in PDM and CAD systems is kept. Finally, the Product Data Management system is developed, which has been tested on development process of the hydraulic generator. The running process is stable and safety.展开更多
Connected and autonomous vehicles are seeing their dawn at this moment.They provide numerous benefits to vehicle owners,manufacturers,vehicle service providers,insurance companies,etc.These vehicles generate a large a...Connected and autonomous vehicles are seeing their dawn at this moment.They provide numerous benefits to vehicle owners,manufacturers,vehicle service providers,insurance companies,etc.These vehicles generate a large amount of data,which makes privacy and security a major challenge to their success.The complicated machine-led mechanics of connected and autonomous vehicles increase the risks of privacy invasion and cyber security violations for their users by making them more susceptible to data exploitation and vulnerable to cyber-attacks than any of their predecessors.This could have a negative impact on how well-liked CAVs are with the general public,give them a poor name at this early stage of their development,put obstacles in the way of their adoption and expanded use,and complicate the economic models for their future operations.On the other hand,congestion is still a bottleneck for traffic management and planning.This research paper presents a blockchain-based framework that protects the privacy of vehicle owners and provides data security by storing vehicular data on the blockchain,which will be used further for congestion detection and mitigation.Numerous devices placed along the road are used to communicate with passing cars and collect their data.The collected data will be compiled periodically to find the average travel time of vehicles and traffic density on a particular road segment.Furthermore,this data will be stored in the memory pool,where other devices will also store their data.After a predetermined amount of time,the memory pool will be mined,and data will be uploaded to the blockchain in the form of blocks that will be used to store traffic statistics.The information is then used in two different ways.First,the blockchain’s final block will provide real-time traffic data,triggering an intelligent traffic signal system to reduce congestion.Secondly,the data stored on the blockchain will provide historical,statistical data that can facilitate the analysis of traffic conditions according to past behavior.展开更多
Due to the extensive use of various intelligent terminals and the popularity of network social tools,a large amount of data in the field of medical emerged.How to manage these massive data safely and reliably has beco...Due to the extensive use of various intelligent terminals and the popularity of network social tools,a large amount of data in the field of medical emerged.How to manage these massive data safely and reliably has become an important challenge for the medical network community.This paper proposes a data management framework of medical network community based on Consortium Blockchain(CB)and Federated learning(FL),which realizes the data security sharing between medical institutions and research institutions.Under this framework,the data security sharing mechanism of medical network community based on smart contract and the data privacy protection mechanism based on FL and alliance chain are designed to ensure the security of data and the privacy of important data in medical network community,respectively.An intelligent contract system based on Keyed-Homomorphic Public Key(KH-PKE)Encryption scheme is designed,so that medical data can be saved in the CB in the form of ciphertext,and the automatic sharing of data is realized.Zero knowledge mechanism is used to ensure the correctness of shared data.Moreover,the zero-knowledge mechanism introduces the dynamic group signature mechanism of chosen ciphertext attack(CCA)anonymity,which makes the scheme more efficient in computing and communication cost.In the end of this paper,the performance of the scheme is analyzed fromboth asymptotic and practical aspects.Through experimental comparative analysis,the scheme proposed in this paper is more effective and feasible.展开更多
In order to realize the modernized miningmanagementi the authors. based on the practice of a specified mine, developed the application software of the broken ore drawing data management system for sublevel caving thro...In order to realize the modernized miningmanagementi the authors. based on the practice of a specified mine, developed the application software of the broken ore drawing data management system for sublevel caving through the study on FOXBASE computer language. This paper elabo-rates the overall conception of this system , indicates the main task which should he completed in this system and introduces its module structure and main functions.展开更多
Product data management (PDM) has been accepted as an important tool for the manufacturing industries. In recent years, more and mor e researches have been conducted in the development of PDM. Their research area s in...Product data management (PDM) has been accepted as an important tool for the manufacturing industries. In recent years, more and mor e researches have been conducted in the development of PDM. Their research area s include system design, integration of object-oriented technology, data distri bution, collaborative and distributed manufacturing working environment, secur ity, and web-based integration. However, there are limitations on their rese arches. In particular, they cannot cater for PDM in distributed manufacturing e nvironment. This is especially true in South China, where many Hong Kong (HK) ma nufacturers have moved their production plants to different locations in Pearl R iver Delta for cost reduction. However, they retain their main offices in HK. Development of PDM system is inherently complex. Product related data cover prod uct name, product part number (product identification), drawings, material speci fications, dimension requirement, quality specification, test result, log size, production schedules, product data version and date of release, special tooling (e.g. jig and fixture), mould design, project engineering in charge, cost spread sheets, while process data includes engineering release, engineering change info rmation management, and other workflow related to the process information. Accor ding to Cornelissen et al., the contemporary PDM system should contains manageme nt functions in structure, retrieval, release, change, and workflow. In system design, development and implementation, a formal specification is nece ssary. However, there is no formal representation model for PDM system. Theref ore a graphical representation model is constructed to express the various scena rios of interactions between users and the PDM system. Statechart is then used to model the operations of PDM system, Fig.1. Statechart model bridges the curr ent gap between requirements, scenarios, and the initial design specifications o f PDM system. After properly analyzing the PDM system, a new distributed PDM (DPDM) system is proposed. Both graphical representation and statechart models are constructed f or the new DPDM system, Fig.2. New product data of DPDM and new system function s are then investigated to support product information flow in the new distribut ed environment. It is found that statecharts allow formal representations to capture the informa tion and control flows of both PDM and DPDM. In particular, statechart offers a dditional expressive power, when compared to conventional state transition diagr am, in terms of hierarchy, concurrency, history, and timing for DPDM behavioral modeling.展开更多
PDM (product data management) is one kind of techniques based on software and database, which integrates information and process related to products. But it is not enough to perform the complication of PDM in enterpri...PDM (product data management) is one kind of techniques based on software and database, which integrates information and process related to products. But it is not enough to perform the complication of PDM in enterprises. Then the mechanism to harmonize all kinds of information and process is needed. The paper introduces a novel approach to implement the intelligent monitor of PDM based on MAS (multi agent system). It carries out the management of information and process by MC (monitor center). The paper first puts forward the architecture of the whole system, then defines the structure of MC and its interoperation mode.展开更多
Combined with the current status of Antarctic data management and the characteristics of polar science data resulted from Chinese Antarctic and Arctic Research Expeditions, the Chinese Polar Science Database System(CP...Combined with the current status of Antarctic data management and the characteristics of polar science data resulted from Chinese Antarctic and Arctic Research Expeditions, the Chinese Polar Science Database System(CPSDS) has been designed and established in 2002. The infrastructure, technical standard, mechanism of sharing data of this system are reviewed in this article. Meanwhile, the development of Chinese polar data management is summarized. As the metadata is the powerful and useful tool for managing and disseminating scientific data, the metadata is also used as “search engine” of CPSDS. Besides, the trend of data management and sharing is also discussed.展开更多
基金supported by the Deanship of Scientific Research and Graduate Studies at King Khalid University under research grant number(R.G.P.2/93/45).
文摘Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and smart transportation systems.Fog computing tackles a range of challenges,including processing,storage,bandwidth,latency,and reliability,by locally distributing secure information through end nodes.Consisting of endpoints,fog nodes,and back-end cloud infrastructure,it provides advanced capabilities beyond traditional cloud computing.In smart environments,particularly within smart city transportation systems,the abundance of devices and nodes poses significant challenges related to power consumption and system reliability.To address the challenges of latency,energy consumption,and fault tolerance in these environments,this paper proposes a latency-aware,faulttolerant framework for resource scheduling and data management,referred to as the FORD framework,for smart cities in fog environments.This framework is designed to meet the demands of time-sensitive applications,such as those in smart transportation systems.The FORD framework incorporates latency-aware resource scheduling to optimize task execution in smart city environments,leveraging resources from both fog and cloud environments.Through simulation-based executions,tasks are allocated to the nearest available nodes with minimum latency.In the event of execution failure,a fault-tolerantmechanism is employed to ensure the successful completion of tasks.Upon successful execution,data is efficiently stored in the cloud data center,ensuring data integrity and reliability within the smart city ecosystem.
基金supported in part by the National Key Research and Development Program of China under Grant 2023YFB3106900the National Natural Science Foundation of China under Grant 62171113the China Scholarship Council under Grant 202406080100.
文摘We propose a Cross-Chain Mapping Blockchain(CCMB)for scalable data management in massive Internet of Things(IoT)networks.Specifically,CCMB aims to improve the scalability of securely storing,tracing,and transmitting IoT behavior and reputation data based on our proposed cross-mapped Behavior Chain(BChain)and Reputation Chain(RChain).To improve off-chain IoT data storage scalability,we show that our lightweight CCMB architecture efficiently utilizes available fog-cloud resources.The scalability of on-chain IoT data tracing is enhanced using our Mapping Smart Contract(MSC)and cross-chain mapping design to perform rapid Reputation-to-Behavior(R2B)traceability queries between BChain and RChain blocks.To maximize off-chain to on-chain throughput,we optimize the CCMB block settings and producers based on a general Poisson Point Process(PPP)network model.The constrained optimization problem is formulated as a Markov Decision Process(MDP),and solved using a dual-network Deep Reinforcement Learning(DRL)algorithm.Simulation results validate CCMB’s scalability advantages in storage,traceability,and throughput.In specific massive IoT scenarios,CCMB can reduce the storage footprint by 50%and traceability query time by 90%,while improving system throughput by 55%compared to existing benchmarks.
基金supported by:the 2023 Basic Public Welfare Research Project of the Wenzhou Science and Technology Bureau“Research on Multi-Source Data Classification and Grading Standards and Intelligent Algorithms for Higher Education Institutions”(Project No.G2023094)Major Humanities and Social Sciences Research Projects in Zhejiang higher education institutions(Grant/Award Number:2024QN061)2023 Basic Public Welfare Research Project of Wenzhou(No.:S2023014).
文摘In the context of the rapid development of digital education,the security of educational data has become an increasing concern.This paper explores strategies for the classification and grading of educational data,and constructs a higher educational data security management and control model centered on the integration of medical and educational data.By implementing a multi-dimensional strategy of dynamic classification,real-time authorization,and secure execution through educational data security levels,dynamic access control is applied to effectively enhance the security and controllability of educational data,providing a secure foundation for data sharing and openness.
基金supported by National Natural Science Foundation of China(Grants 72474022,71974011,72174022,71972012,71874009)"BIT think tank"Promotion Plan of Science and Technology Innovation Program of Beijing Institute of Technology(Grants 2024CX14017,2023CX13029).
文摘As a new type of production factor in healthcare,healthcare data elements have been rapidly integrated into various health production processes,such as clinical assistance,health management,biological testing,and operation and supervision[1,2].Healthcare data elements include biolog.ical and clinical data that are related to disease,environ-mental health data that are associated with life,and operational and healthcare management data that are related to healthcare activities(Figure 1).Activities such as the construction of a data value assessment system,the devel-opment of a data circulation and sharing platform,and the authorization of data compliance and operation products support the strong growth momentum of the market for health care data elements in China[3].
文摘This study aims to investigate the influence of social media on college choice among undergraduates majoring in Big Data Management and Application in China.The study attempts to reveal how information on social media platforms such as Weibo,WeChat,and Zhihu influences the cognition and choice process of prospective students.By employing an online quantitative survey questionnaire,data were collected from the 2022 and 2023 classes of new students majoring in Big Data Management and Application at Guilin University of Electronic Technology.The aim was to evaluate the role of social media in their college choice process and understand the features and information that most attract prospective students.Social media has become a key factor influencing the college choice decision-making of undergraduates majoring in Big Data Management and Application in China.Students tend to obtain school information through social media platforms and use this information as an important reference in their decision-making process.Higher education institutions should strengthen their social media information dissemination,providing accurate,timely,and attractive information.It is also necessary to ensure effective management of social media platforms,maintain a positive reputation for the school on social media,and increase the interest and trust of prospective students.Simultaneously,educational decision-makers should consider incorporating social media analysis into their recruitment strategies to better attract new student enrollment.This study provides a new perspective for understanding higher education choice behavior in the digital age,particularly by revealing the importance of social media in the educational decision-making process.This has important practical and theoretical implications for higher education institutions,policymakers,and social media platform operators.
文摘As an introductory course for the emerging major of big data management and application,“Introduction to Big Data”has not yet formed a curriculum standard and implementation plan that is widely accepted and used by everyone.To this end,we discuss some of our explorations and attempts in the construction and teaching process of big data courses for the major of big data management and application from the perspective of course planning,course implementation,and course summary.After interviews with students and feedback from questionnaires,students are highly satisfied with some of the teaching measures and programs currently adopted.
文摘With the rise of data-intensive research,data literacy has become a critical capability for improving scientific data quality and achieving artificial intelligence(AI)readiness.In the biomedical domain,data are characterized by high complexity and privacy sensitivity,calling for robust and systematic data management skills.This paper reviews current trends in scientific data governance and the evolving policy landscape,highlighting persistent challenges such as inconsistent standards,semantic misalignment,and limited awareness of compliance.These issues are largely rooted in the lack of structured training and practical support for researchers.In response,this study builds on existing data literacy frameworks and integrates the specific demands of biomedical research to propose a comprehensive,lifecycle-oriented data literacy competency model with an emphasis on ethics and regulatory awareness.Furthermore,it outlines a tiered training strategy tailored to different research stages—undergraduate,graduate,and professional,offering theoretical foundations and practical pathways for universities and research institutions to advance data literacy education.
文摘The Internet of Things(IoT)technology provides new impetus for the development of building intelligence.This research focuses on the intelligent design and management of buildings based on IoT engineering.It expounds on the system design principles such as sensor technology,communication network technology,and data storage and analysis,and analyzes the key points of design,including design requirement analysis,equipment layout,and system integration.Through specific cases,it demonstrates the application practice of the system in buildings,and presents the application effect of intelligent system management with multi-parameter values,providing theoretical and practical references for the development of building intelligence and helping to achieve efficient,energy-saving,and safe building operation.
文摘National Population Health Data Center(NPHDC)is one of China's 20 national-level science data centers,jointly designated by the Ministry of Science and Technology and the Ministry of Finance.Operated by the Chinese Academy of Medical Sciences under the oversight of the National Health Commission,NPHDC adheres to national regulations including the Scientific Data Management Measures and the National Science and Technology Infrastructure Service Platform Management Measures,and is committed to collecting,integrating,managing,and sharing biomedical and health data through openaccess platform,fostering open sharing and engaging in international cooperation.
文摘On the basis of PDM(product data management) definition and its connotation, the factors to ensure implementation success are analyzed. The definition phase, analysis phase, design phase, build and test phase, and post production phase during PDM implementation are described. The implementation is divided into ten processes, which consist of the above different phases. The relationships between phases and processes are illustrated. Finally, a workflow is proposed to guide the implementing at a fixed price.
文摘The CifNet network multi-well data management system is developed for 100MB or 1000MB local network environments which are used in Chinese oil industry. The kernel techniques of CifNet system include: 1, establishing a high efficient and low cost network multi-well data management architecture based on the General Logging Curve Theory and the Cif data format; 2, implementing efficient visit and transmission of multi-well data in C/S local network based on TCP/IP protocol; 3,ensuring the safety of multi-well data in store, visit and application based on Unix operating system security. By using CifNet system, the researcher in office or at home can visit curves of any borehole in any working area of any oilfield. The application foreground of CifNet system is also commented.
文摘The mining industry faces a number of challenges that promote the adoption of new technologies.Big data,which is driven by the accelerating progress of information and communication technology,is one of the promising technologies that can reshape the entire mining landscape.Despite numerous attempts to apply big data in the mining industry,fundamental problems of big data,especially big data management(BDM),in the mining industry persist.This paper aims to fill the gap by presenting the basics of BDM.This work provides a brief introduction to big data and BDM,and it discusses the challenges encountered by the mining industry to indicate the necessity of implementing big data.It also summarizes data sources in the mining industry and presents the potential benefits of big data to the mining industry.This work also envisions a future in which a global database project is established and big data is used together with other technologies(i.e.,automation),supported by government policies and following international standards.This paper also outlines the precautions for the utilization of BDM in the mining industry.
基金supported by research grants from Huawei Technologies Canada and from the Natural Sciences and Engineering Research Council(NSERC)of Canada.
文摘The wealth of user data acts as a fuel for network intelligence toward the sixth generation wireless networks(6G).Due to data heterogeneity and dynamics,decentralized data management(DM)is desirable for achieving transparent data operations across network domains,and blockchain can be a promising solution.However,the increasing data volume and stringent data privacy-preservation requirements in 6G bring significantly technical challenge to balance transparency,efficiency,and privacy requirements in decentralized blockchain-based DM.In this paper,we investigate blockchain solutions to address the challenge.First,we explore the consensus protocols and scalability mechanisms in blockchains and discuss the roles of DM stakeholders in blockchain architectures.Second,we investigate the authentication and authorization requirements for DM stakeholders.Third,we categorize DM privacy requirements and study blockchain-based mechanisms for collaborative data processing.Subsequently,we present research issues and potential solutions for blockchain-based DM toward 6G from these three perspectives.Finally,we conclude this paper and discuss future research directions.
基金Sponsored by Scientific Technology Development Project of Heilongjiang (Grant No.WH05A01) and Scientific Research Foundation of Harbin Institute of Technology(Grant No.HIT.MD2003.21).
文摘The basic frame and the design idea of J2EE-based Product Data Management (PDM) system are presented. This paper adopts the technology of Object-Oriented to realize the database design and builds the information model of this PDM system. The integration key technology of PDM and CAD systems are discussed, the isomerous interface characteristics between CAD and PDM systems are analyzed, and finally, the integration mode of the PDM and CAD systems is given. Using these technologies, the integration of PDM and CAD systems is realized and the consistence of data in PDM and CAD systems is kept. Finally, the Product Data Management system is developed, which has been tested on development process of the hydraulic generator. The running process is stable and safety.
基金funded by the Deanship of Scientific Research at King Khalid University,Kingdom of Saudi Arabia for large group Research Project under grant number:RGP2/249/44.
文摘Connected and autonomous vehicles are seeing their dawn at this moment.They provide numerous benefits to vehicle owners,manufacturers,vehicle service providers,insurance companies,etc.These vehicles generate a large amount of data,which makes privacy and security a major challenge to their success.The complicated machine-led mechanics of connected and autonomous vehicles increase the risks of privacy invasion and cyber security violations for their users by making them more susceptible to data exploitation and vulnerable to cyber-attacks than any of their predecessors.This could have a negative impact on how well-liked CAVs are with the general public,give them a poor name at this early stage of their development,put obstacles in the way of their adoption and expanded use,and complicate the economic models for their future operations.On the other hand,congestion is still a bottleneck for traffic management and planning.This research paper presents a blockchain-based framework that protects the privacy of vehicle owners and provides data security by storing vehicular data on the blockchain,which will be used further for congestion detection and mitigation.Numerous devices placed along the road are used to communicate with passing cars and collect their data.The collected data will be compiled periodically to find the average travel time of vehicles and traffic density on a particular road segment.Furthermore,this data will be stored in the memory pool,where other devices will also store their data.After a predetermined amount of time,the memory pool will be mined,and data will be uploaded to the blockchain in the form of blocks that will be used to store traffic statistics.The information is then used in two different ways.First,the blockchain’s final block will provide real-time traffic data,triggering an intelligent traffic signal system to reduce congestion.Secondly,the data stored on the blockchain will provide historical,statistical data that can facilitate the analysis of traffic conditions according to past behavior.
基金supported by the NSFC(No.62072249)Yongjun Ren received the grant and the URLs to sponsors’websites is https://www.nsfc.gov.cn/.
文摘Due to the extensive use of various intelligent terminals and the popularity of network social tools,a large amount of data in the field of medical emerged.How to manage these massive data safely and reliably has become an important challenge for the medical network community.This paper proposes a data management framework of medical network community based on Consortium Blockchain(CB)and Federated learning(FL),which realizes the data security sharing between medical institutions and research institutions.Under this framework,the data security sharing mechanism of medical network community based on smart contract and the data privacy protection mechanism based on FL and alliance chain are designed to ensure the security of data and the privacy of important data in medical network community,respectively.An intelligent contract system based on Keyed-Homomorphic Public Key(KH-PKE)Encryption scheme is designed,so that medical data can be saved in the CB in the form of ciphertext,and the automatic sharing of data is realized.Zero knowledge mechanism is used to ensure the correctness of shared data.Moreover,the zero-knowledge mechanism introduces the dynamic group signature mechanism of chosen ciphertext attack(CCA)anonymity,which makes the scheme more efficient in computing and communication cost.In the end of this paper,the performance of the scheme is analyzed fromboth asymptotic and practical aspects.Through experimental comparative analysis,the scheme proposed in this paper is more effective and feasible.
文摘In order to realize the modernized miningmanagementi the authors. based on the practice of a specified mine, developed the application software of the broken ore drawing data management system for sublevel caving through the study on FOXBASE computer language. This paper elabo-rates the overall conception of this system , indicates the main task which should he completed in this system and introduces its module structure and main functions.
文摘Product data management (PDM) has been accepted as an important tool for the manufacturing industries. In recent years, more and mor e researches have been conducted in the development of PDM. Their research area s include system design, integration of object-oriented technology, data distri bution, collaborative and distributed manufacturing working environment, secur ity, and web-based integration. However, there are limitations on their rese arches. In particular, they cannot cater for PDM in distributed manufacturing e nvironment. This is especially true in South China, where many Hong Kong (HK) ma nufacturers have moved their production plants to different locations in Pearl R iver Delta for cost reduction. However, they retain their main offices in HK. Development of PDM system is inherently complex. Product related data cover prod uct name, product part number (product identification), drawings, material speci fications, dimension requirement, quality specification, test result, log size, production schedules, product data version and date of release, special tooling (e.g. jig and fixture), mould design, project engineering in charge, cost spread sheets, while process data includes engineering release, engineering change info rmation management, and other workflow related to the process information. Accor ding to Cornelissen et al., the contemporary PDM system should contains manageme nt functions in structure, retrieval, release, change, and workflow. In system design, development and implementation, a formal specification is nece ssary. However, there is no formal representation model for PDM system. Theref ore a graphical representation model is constructed to express the various scena rios of interactions between users and the PDM system. Statechart is then used to model the operations of PDM system, Fig.1. Statechart model bridges the curr ent gap between requirements, scenarios, and the initial design specifications o f PDM system. After properly analyzing the PDM system, a new distributed PDM (DPDM) system is proposed. Both graphical representation and statechart models are constructed f or the new DPDM system, Fig.2. New product data of DPDM and new system function s are then investigated to support product information flow in the new distribut ed environment. It is found that statecharts allow formal representations to capture the informa tion and control flows of both PDM and DPDM. In particular, statechart offers a dditional expressive power, when compared to conventional state transition diagr am, in terms of hierarchy, concurrency, history, and timing for DPDM behavioral modeling.
文摘PDM (product data management) is one kind of techniques based on software and database, which integrates information and process related to products. But it is not enough to perform the complication of PDM in enterprises. Then the mechanism to harmonize all kinds of information and process is needed. The paper introduces a novel approach to implement the intelligent monitor of PDM based on MAS (multi agent system). It carries out the management of information and process by MC (monitor center). The paper first puts forward the architecture of the whole system, then defines the structure of MC and its interoperation mode.
文摘Combined with the current status of Antarctic data management and the characteristics of polar science data resulted from Chinese Antarctic and Arctic Research Expeditions, the Chinese Polar Science Database System(CPSDS) has been designed and established in 2002. The infrastructure, technical standard, mechanism of sharing data of this system are reviewed in this article. Meanwhile, the development of Chinese polar data management is summarized. As the metadata is the powerful and useful tool for managing and disseminating scientific data, the metadata is also used as “search engine” of CPSDS. Besides, the trend of data management and sharing is also discussed.