Strip-till(ST),including straw mulching in the inter-row and localized fertilization in the intra-row,is a conservation tillage system for improving soil quality and crop growth.However,the yield advantage of maize un...Strip-till(ST),including straw mulching in the inter-row and localized fertilization in the intra-row,is a conservation tillage system for improving soil quality and crop growth.However,the yield advantage of maize under ST compared to conventional tillage(CT)remains unstable,and the strategies to increase maize yield under ST are unclear.This study aims to understand the physiological mechanism underlining maize yield formation under ST by comparing two maize cultivars,DKM753 and DK517,with contrasting yield performance in ST versus CT systems.Compared to CT,ST resulted in a 4.5%yield increase for DKM753 but a 5.6%decrease for DK517.These yield differences were primarily attributed to variations in grain number per ear(GN).During the rapid growth stage(V14-R3),i.e.,two weeks before and after silking,DKM753 showed a 6.7%increase in maximum growth rate(V_(max))and a 6.3%increase in average growth rate(V)under ST,whereas DK517 exhibited decline of 8.5%in V_(max) and 12.3%in V.Significant positive correlations are observed between V_(max) and V with GN under ST(R^(2)=0.79 and R^(2)=0.90,respectively).Enhanced dry matter accumulation in DKM753 under ST was attributed to increased leaf expansion rates,contributing to a larger photosynthate source.The straw mulching and localized nitrogen fertilization increased root-zone nitrogen availability at silking in ST compared to CT.DKM753 had a greater root system which made better use of the soil N and lead to an increased leaf nitrogen accumulation by 14.9%under ST.It is concluded that maize yield under the strip-till system is determined by grain number per ear,which can be increased by increasing nitrogen accumulation,plant growth,and ear development around silking stage.A sound root system can efficiently utilize soil nitrogen resources under the strip-till system,increasing plant nitrogen accumulation and thereby promoting plant growth.展开更多
High-density planting increases maize yield but also canopy crowding and stalk lodging.Aiming this contradiction,a wavy canopy was created using interlaced chemical application(IC)of a plant growth retardant at the V1...High-density planting increases maize yield but also canopy crowding and stalk lodging.Aiming this contradiction,a wavy canopy was created using interlaced chemical application(IC)of a plant growth retardant at the V14 stage with three densities(60,000,75,000,and 90,000 plants ha-1,indicated by D1,D2,and D3,respectively)for two seasons.The results showed that the IC-treated wavy canopy featuring both natural height(IC-H)and dwarfed(IC-L)plants,improved light transmission by 8.54%,8.49%,and 16.49%on average than the corresponding controls(CK)at D1,D2,and D3,respectively.The alleviation of canopy crowding stimulated leaf photosynthesis,sugar availability,basal-internode strength,and decreased plant lodging ratios in both IC-H and IC-L,particularly under higher densities.Meanwhile,the IC populations produced significantly higher yield than CK,with an average increase of 3.38%,16.70%,and 15.28%at D1,D2,and D3,respectively.Collectively,this study proposed a new wavy canopy strategy using plant growth retardant to simultaneously increase yield performance and lodging resistance,thus offering a sustainable solution for further development of high-density maize production.展开更多
Agricultural practices significantly contribute to greenhouse gas(GHG)emissions,necessitating cleaner production technologies to reduce environmental pressure and achieve sustainable maize production.Plastic film mulc...Agricultural practices significantly contribute to greenhouse gas(GHG)emissions,necessitating cleaner production technologies to reduce environmental pressure and achieve sustainable maize production.Plastic film mulching is commonly used in the Loess Plateau region.Incorporating slow-release fertilizers as a replacement for urea within this practice can reduce nitrogen losses and enhance crop productivity.Combining these techniques represents a novel agricultural approach in semi-arid areas.However,the impact of this integration on soil carbon storage(SOCS),carbon footprint(CF),and economic benefits has received limited research attention.Therefore,we conducted an eight-year study(2015-2022)in the semi-arid northwestern region to quantify the effects of four treatments[urea supplied without plastic film mulching(CK-U),slow-release fertilizer supplied without plastic film mulching(CK-S),urea supplied with plastic film mulching(PM-U),and slow-release fertilizer supplied with plastic film mulching(PM-S)]on soil fertility,economic and environmental benefits.The results revealed that nitrogen fertilizer was the primary contributor to total GHG emissions(≥71.97%).Compared to other treatments,PM-S increased average grain yield by 12.01%-37.89%,water use efficiency by 9.19%-23.33%,nitrogen accumulation by 27.07%-66.19%,and net return by 6.21%-29.57%.Furthermore,PM-S decreased CF by 12.87%-44.31%and CF per net return by 14.25%-41.16%.After eight years,PM-S increased SOCS(0-40 cm)by 2.46%,while PM-U decreased it by 7.09%.These findings highlight the positive effects of PM-S on surface soil fertility,economic gains,and environmental benefits in spring maize production on the Loess Plateau,underscoring its potential for widespread adoption and application.展开更多
Synthetic nitrogen(N)fertilizer has made a great contribution to the improvement of soil fertility and productivity,but excessive application of synthetic N fertilizer may cause agroecosystem risks,such as soil acidif...Synthetic nitrogen(N)fertilizer has made a great contribution to the improvement of soil fertility and productivity,but excessive application of synthetic N fertilizer may cause agroecosystem risks,such as soil acidification,groundwater contamination and biodiversity reduction.Meanwhile,organic substitution has received increasing attention for its ecologically and environmentally friendly and productivity benefits.However,the linkages between manure substitution,crop yield and the underlying microbial mechanisms remain uncertain.To bridge this gap,a three-year field experiment was conducted with five fertilization regimes:i)Control,non-fertilization;CF,conventional synthetic fertilizer application;CF_(1/2)M_(1/2),1/2 N input via synthetic fertilizer and 1/2 N input via manure;CF_(1/4)M_(3/4),1/4 N input synthetic fertilizer and 3/4 N input via manure;M,manure application.All fertilization treatments were designed to have equal N input.Our results showed that all manure substituted treatments achieved high soil fertility indexes(SFI)and productivities by increasing the soil organic carbon(SOC),total N(TN)and available phosphorus(AP)concentrations,and by altering the bacterial community diversity and composition compared with CF.SOC,AP,and the soil C:N ratio were mainly responsible for microbial community variations.The co-occurrence network revealed that SOC and AP had strong positive associations with Rhodospirillales and Burkholderiales,while TN and C:N ratio had positive and negative associations with Micromonosporaceae,respectively.These specific taxa are implicated in soil macroelement turnover.Random Forest analysis predicted that both biotic(bacterial composition and Micromonosporaceae)and abiotic(AP,SOC,SFI,and TN)factors had significant effects on crop yield.The present work strengthens our understanding of the effects of manure substitution on crop yield and provides theoretical support for optimizing fertilization strategies.展开更多
The combined use of chemical and organic fertilizers is considered a good method to sustain high crop yield and enhance soil organic carbon (SOC), but it is still unclear when and to what extent chemical fertilizers...The combined use of chemical and organic fertilizers is considered a good method to sustain high crop yield and enhance soil organic carbon (SOC), but it is still unclear when and to what extent chemical fertilizers could be replaced by organic fertilizers. We selected a long-term soil fertility experiment in Gongzhuling, Northeast China Plain to examine the temporal dynamics of crop yield and SOC in response to chemical nitrogen, phosphorus, and potassium (NPK) fertilizers and manure, applied both individually and in combination, over the course of three decades (1980-2010). We aimed to test 1) which fertilizer application is the best for increasing both maize yield and SOC in this region, and 2) whether chemical fertilizers can be replaced by manure to maintain high maize yield and enhance SOC, and if so, when this replacement should be implemented. We observed that NPK fertilizers induced a considerable increase in maize yield in the first 12 years after the initiation of the experiment, but manure addition did not. In the following years, the addition of both NPK fertilizers and manure led to an increase in maize yield. SOC increased considerably in treatments with manure but remained the same or even declined with NPK treatments. The increase in maize yield induced by NPK fertilizers alone declined greatly with increasing SOC, whereas the combination of NPK and manure resulted in high maize yield and a remarkable improvement in SOC stock. Based on these results we suggested that NPK fertilizers could be at least partially replaced by manure to sustain high maize yield after SOC stock has reached 41.96 Mg C ha^-1 in the Northeast China Plain and highly recommend the combined application of chemical fertilizers and manure (i.e., 60 Mg ha^-1).展开更多
Climate change severely impacts agricultural production, which jeopardizes food security. China is the second largest maize producer in the world and also the largest consumer of maize. Analyzing the impact of climate...Climate change severely impacts agricultural production, which jeopardizes food security. China is the second largest maize producer in the world and also the largest consumer of maize. Analyzing the impact of climate change on maize yields can provide effective guidance to national and international economics and politics. Panel models are unable to determine the group-wise heteroscedasticity, cross-sectional correlation and autocorrelation of datasets, therefore we adopted the feasible generalized least square(FGLS) model to evaluate the impact of climate change on maize yields in China from 1979–2016 and got the following results:(1) During the 1979–2016 period, increases in temperature negatively impacted the maize yield of China. For every 1℃ increase in temperature, the maize yield was reduced by 5.19 kg 667 m^–2(1.7%). Precipitation increased only marginally during this time, and therefore its impact on the maize yield was negligible. For every 1 mm increase in precipitation, the maize yield increased by an insignificant amount of 0.043 kg 667 m^–2(0.014%).(2) The impacts of climate change on maize yield differ spatially, with more significant impacts experienced in southern China. In this region, a 1℃ increase in temperature resulted in a 7.49 kg 667 m^–2 decrease in the maize yield, while the impact of temperature on the maize yield in northern China was insignificant. For every 1 mm increase in precipitation, the maize yield increased by 0.013 kg 667 m^–2 in southern China and 0.066 kg 667 m^–2 in northern China.(3) The resilience of the maize crop to climate change is strong. The marginal effect of temperature in both southern and northern China during the 1990–2016 period was smaller than that for the 1979–2016 period.展开更多
Based on the meteorological data and production data of maize of 10 stations in Northeast China from 1961 to 2006,the primary climatic factors influencing maize yield in different region were studies by the method of ...Based on the meteorological data and production data of maize of 10 stations in Northeast China from 1961 to 2006,the primary climatic factors influencing maize yield in different region were studies by the method of Baier yields models.The result showed that the yield of maize in Heilongjiang and Jilin Province were mainly affected by temperatures,with air temperature increased,the meteorological yield of maize increased.The meteorological yield of maize in Liaoning Province was mainly affected by precipitation and sunshine duration,and different regions had different effects.展开更多
By two years (2007-2008) located fertilizer experiment, the effect of long-term combined application of organic and inorganic fertilizers on black soil fertility and crop yield was investigated in Shuangcheng City, ...By two years (2007-2008) located fertilizer experiment, the effect of long-term combined application of organic and inorganic fertilizers on black soil fertility and crop yield was investigated in Shuangcheng City, Heilongjiang Province. The results showed that the combined application of organic and inorganic fertilizers could increase the organinc matter, alkaline nitrogen, available phosphorus and available potassium. At the same time, the increasing application of organic fertilizer could reduce the soil bulk density and improve the field moisture capacity. Field moisture capacity and organic matter of the combined application of high quantities of organic manure and inorganic fertilizers AtB5 treatment increased the fhstest, organic matter increased by 3.33 g. kg and field moisture capacity increased by 11.25% than the beginning of the experiment. Under the same fertilization, the combined application of organic and inorganic fertilizers' increasing production range was higher than the single chemical fertilizers' which was from 0.8% to 9.4%. The results showed that the combined application of organic and inorganic fertilizers could increase the nutrient contents of soil and also was the highest productivity contribution to black soil fertility. It was the best fertilization structure of increasing productivity level and improving the soil fertility.展开更多
Reducing environmental impacts and improving N utilization are critical to ensuring food security in China.Although root-zone fertilization has been considered an effective strategy to improve nitrogen use efficiency ...Reducing environmental impacts and improving N utilization are critical to ensuring food security in China.Although root-zone fertilization has been considered an effective strategy to improve nitrogen use efficiency (NUE),the effect of controlled-release urea (CRU) applied in conjunction with normal urea in this mode is unclear.Therefore,a 3-year field experiment was conducted using a no-N-added as a control and two fertilization modes (FF,furrow fertilization by manual trenching,i.e.,farmer fertilizer practice;HF:root-zone hole fertilization by point broadcast manually) at 210 kg N ha^(–1) (controlled-release:normal fertilizer=5:5),along with a 1-year in-situ microplot experiment.Maize yield,NUE and N loss were investigated under different fertilization modes.The results showed that compared with FF,HF improved the average yield and N recovery efficiency by 8.5 and 22.3%over three years,respectively.HF had a greater potential for application than FF treatment,which led to increases in dry matter accumulation,total N uptake,SPAD value and LAI.In addition,HF remarkably enhanced the accumulation of ^(15)N derived from fertilizer by 17.2%compared with FF,which in turn reduced the potential loss of^(15)N by 43.8%.HF increased the accumulation of N in the tillage layer of soils at harvest for potential use in the subsequent season relative to FF.Hence,HF could match the N requirement of summer maize,sustain yield,improve NUE and reduce environmental N loss simultaneously.Overall,root-zone hole fertilization with blended CRU and normal urea can represent an effective and promising practice to achieve environmental integrity and food security on the North China Plain,which deserves further application and investigation.展开更多
Soil erosion induced by inappropriate tillage remains a serious problem on many agricultural fields in the humid tropics. Studies were conducted between 2004 and 2006, on an Alfisol in Ogbomoso in the Southern Guinea ...Soil erosion induced by inappropriate tillage remains a serious problem on many agricultural fields in the humid tropics. Studies were conducted between 2004 and 2006, on an Alfisol in Ogbomoso in the Southern Guinea Savanna of Nigeria to evaluate the effectiveness of Vetiver Grass(Vetiveria nigritana) Strips(VGS) under different tillage systems. The experiment was split-plot laid out in a randomized complete block design with two replications on 6% slope with 18 runoff plots. Main plot treatments were tillage systems; Manual Clearing(MC), Ploughing(P) and Ploughing plus Harrowing(PH). Subplot treatments were VGS spaced at intervals of 5 m(eight strips) and 10 m(four strips) with the control(no-vetiver). Runoffs and soil losses were collected after each major storm. Chemical analyses of eroded sediments and runoff were determined. Data were analyzed using ANOVA at p<0.05. The results showed that tillage had no significant reduction in runoffs and soil losses, but they were reduced with MC compared with P and PH. Mean total runoff on 5 and 10 m VGS plots were significantly(p<0.05) lower than that of the control by 74.4% and 45.0%, respectively. Corresponding soils loss on 5 and 10 m VGS plots were 27.1% and 53.5%, respectively. Mean NO3-N levels in runoff water were lower under PH plots than those under MC plots by 79.0% and 66.5%, respectively in 2004 and 2006 growing seasons. VGS spaced at 5 m significantly(p<0.05) reduced NO3-N loss than the control by 108.8% in 2004. Nutrients loads of eroded sediments were consistently higher for the control(no-vetiver) plots and least for 5 m VGS plot. Carbon, nitrogen and phosphorus contents of eroded sediments were 90%-92.4%, 83%-83.6% and 97%-97.8%, respectively, and were lower on 5 m than other treatments. Maize grain yield was significantly(p<0.05) affected by both tillage and VGS spacing only in 2005 growing season. P plot produced higher grain yield than MC and PH by 79.9% and 99.1%, respectively. Also, grain yield on VGS plot was significantly(p<0.05) higher on 5 and 10 m VGS plots than the control by 82.2% and 85.4%, respectively. The significant beneficial effect of PH in producing higher yields was dwarfed by the potential danger of soil erosion in the absence of a soil erosion control measure. The results showed that a balance needed to be struck between mechanical clearance and protective measure against soil erosion.展开更多
This paper analyzed the extreme climatic characteristics of maize in Heilongjiang Province during different growth periods using the climate data and maize yield data from 1961 to 2020,and applied the principal compon...This paper analyzed the extreme climatic characteristics of maize in Heilongjiang Province during different growth periods using the climate data and maize yield data from 1961 to 2020,and applied the principal component analysis to analyze the extent of different extreme climatic events affecting maize yield.The results showed that the extreme cold events showed a decreasing trend,and the extreme warm events showed an increasing trend,and the trend of extreme precipitation change was not obvious.Maize yield was negatively correlated with TN10p(cold nights),TX10p(warm days)and T8(days below the lower temperature limit),and positively correlated with TN90p(warm nights).T34(days above the upper temperature limit)and TX90p(warm days)during the tasseling-milking period were negatively correlated with the maize yield,and this part was concentrated in the southern part of Heilongjiang Province.The maize yield was positively correlated with the extreme precipitation during the seedling period and negatively correlated with the extreme precipitation during the filling-maturity period of maize,but the correlations were not significant.The effects of extreme weather events on maize yield were higher during the seedling and the filling-maturity periods than those during the jointing-tasseling and the tasseling-milking periods.The effects of extreme precipitation on the maize yield were less than those of the extreme temperature during different growth periods in all regions,but the effects of the extreme precipitation on maize yield were significantly higher in the Songnen Plain than those in other regions.There were regional differences in the impact of climate extremes on maize during different growth periods.The area with the greater impact of climate extremes during the seedling period was the Songnen Plain,the areas with the greater impact of climate extremes during the jointing-tasseling period were the northern part of the Sanjiang Plain,and the areas with the greater impact of climate extremes during the filling-maturity period were the Lesser Khingan Mountains and the semi-mountainous areas of Mudanjiang.展开更多
Remote-sensing data acquired by satellite imageries have a wide scope in agricultural applications owing to their synoptic and repetitive coverage. This study reports the development of an operational spectro-agromete...Remote-sensing data acquired by satellite imageries have a wide scope in agricultural applications owing to their synoptic and repetitive coverage. This study reports the development of an operational spectro-agrometereological yield model for maize crop derived from time series data of SPOT VEGETATION, actual and potential evapotranspiration and rainfall estimate satellite data for the years 2003-2012. Indices of these input data were utilized to validate their strength in explaining grain yield recorded by the Central Statistical Agency through correlation analyses. Crop masking at crop land area was applied and refined using agro-ecological zones suitable for maize. Rainfall estimates and average Normalized Difference Vegetation Index were found highly correlated to maize yield with the former accounting for 85% variation and the latter 80%, respectively. The developed spectro-agrometeorological yield model was successfully validated against the predicted Zone level yields estimated by Central Statistical Agency (r<sup>2</sup> = 0.88, RMSE = 1.405 q·ha<sup>-1</sup> and 21% coefficient of variation). Thus, remote sensing and geographical information system based maize yield forecast improved quality and timelines of the data besides distinguishing yield production levels/areas and making intervention very easy for the decision makers thereby proving the clear potential of spectro-agrometeorological factors for maize yield forecasting, particularly for Ethiopia.展开更多
This study aimed to identify the physiological mechanisms enabling low-N-tolerant maize cultivar to maintain higher photosynthesis and yield under low-N,low-light,and combined stress.In a three-year field trial of low...This study aimed to identify the physiological mechanisms enabling low-N-tolerant maize cultivar to maintain higher photosynthesis and yield under low-N,low-light,and combined stress.In a three-year field trial of low-N-tolerant and low-N-sensitive maize cultivars under two N fertilization(normal N:240 kg N ha^(−1);low-N:150 kg N ha^(−1))and two light conditions(normal light;low-light:35%light reduction),the tolerant cultivar showed higher net photosynthetic rate than the sensitive one.Random Forest analysis and Structural Equation Modeling identified PSI donor-side limitation(elevated Y_(ND))as the key photosynthetic constraint.The tolerant cultivar maintained higher D1 and PsaA protein levels and preferentially allocated photosynthetic N to electron transport.This strategy reduced Y_(ND)and sustained photosystem stability,thus improving carboxylation efficiency and resulting in higher photosynthesis.展开更多
Excessive use of N fertilizers(driven by high-yield goals)and its consequent environmental problems are becoming increasingly acute in agricultural systems.A 2-year field experiment was conducted to investigate the ef...Excessive use of N fertilizers(driven by high-yield goals)and its consequent environmental problems are becoming increasingly acute in agricultural systems.A 2-year field experiment was conducted to investigate the effects of three N application methods(application of solid granular urea once(OF)or twice(TF),application of solid granular urea mixed with controlled-release urea once(MF),and six N rates(0,60,120,180,240,and 300 kg N ha^(-1))on maize yield,economic benefits,N use efficiency,and soil N balance in the maize(Zea mays L.)film mulching system on the Loess Plateau,China.The grain yield and economic return of maize were significantly affected by the N rate and application method.Compared with the OF treatment,the MF treatment not only increased the maize yield(increased by 9.0-16.7%)but also improved the economic return(increased by 10.9-25.8%).The agronomic N use efficiency(NAE),N partial factor productivity(NPFP)and recovery N efficiency(NRE)were significantly improved by 19.3-66.7,9.0-16.7 and 40.2-71.5%,respectively,compared with the OF treatment.The economic optimal N rate(EONR)of the OF,TF,and MF was 145.6,147.2,and 144.9 kg ha^(-1) in 2019,and 206.4,186.4,and 146.0 kg ha^(-1) in 2020,respectively.The apparent soil N loss at EONR of the OF,TF,and MF were 97.1-100.5,78.5-79.3,and 50.5-68.1 kg ha^(-1),respectively.These results support MF as a one-time N application method for delivering high yields and economic benefits,with low N input requirements within film mulching spring maize system on the Loess Plateau.展开更多
Maize(Zea mays L.)is one of the world's most important staple crops,and is used for manufacturing food,feed,and industrial products.A key factor in maize yield is the grain weight,which directly influences product...Maize(Zea mays L.)is one of the world's most important staple crops,and is used for manufacturing food,feed,and industrial products.A key factor in maize yield is the grain weight,which directly influences productivity.In this study,we revealed the role of smk23 in maize kernel development.The ethyl methanesulfonate mutant smk23 is characterized by substantially reduced kernel weight.Through map-based cloning,smk23 was found to be located on Chr5 and encode a putative B-type response regulator,Zm RR5.A change from G to A occurs in the coding sequence of Zm RR5,resulting in the early termination of smk23.In Arabidopsis,B-type response regulators are involved in cytokinin signaling.Histological analysis and in situ hybridization of the mutant revealed abnormal endosperm development,particularly in the basal endosperm transfer layer(BETL),a specialized tissue critical for nutrient transport from the maternal tissues to the developing kernel.Zm RR5 positively regulates key genes involved in BETL development and function,including MRP1 and TCRR1.Furthermore,RNA sequencing revealed that several genes closely linked to BETL development,including BETL2,MEG1,and MN1,were significantly downregulated in smk23.These genes are essential for nutrient transport,tissue development and signal transduction.In addition,haploid analysis of Zm RR5 revealed natural variations(Hap 2)that may contribute to the increased kernel yield.Disruption of Zm RR5 function in smk23 leads to defects in BETL development,impairing its ability to transport nutrients,and ultimately resulting in a smaller kernel size.This study provides new insights into the molecular mechanisms through which Zm RR5 regulates maize kernel development and offers potential strategies for improving grain yield.展开更多
The yield of maize(Zea mays L.)is highly influenced by nitrogen fertilization.This study investigated the impact of nitrogen fertilization on morphophysiological traits in maize(Zea mays L.)and developed algorithms to...The yield of maize(Zea mays L.)is highly influenced by nitrogen fertilization.This study investigated the impact of nitrogen fertilization on morphophysiological traits in maize(Zea mays L.)and developed algorithms to relate manual phenotyping and digital phenotyping of maize with leaf nitrogen and digital field image traits.The experiment included three hybrid maize varieties,V1(Hybrid 981),V2(BARI Hybrid maize-9),and V3(Hybrid P3396),which were evaluated across three nitrogen levels(N1=100 kg N ha^(−1),N2=200 kg N ha^(−1),N3=300 kg N ha^(−1))in a split-plot design with three replications.The results revealed that nitrogen levels(N),varieties(V),and their interactions(V×N)significantly influenced traits such as plant height(PH),leaf area index(LAI),normalized difference vegetation index(NDVI),canopy cover(CC),chlorophyll content(Chl a and Chl b),leaf nitrogen content(LNC),total dry matter(TDM),and grain yield.The hybrid P3396 with 300 kg N ha^(−1)(V3N3)achieved the highest grain yield of 14.45 t ha^(−1),which was statistically similar to that of Hybrid 981 and 300 kg N ha^(−1)(V1N3).Nitrogen significantly improved dry matter accumulation,leaf area,and physiological parameters,with maximum values recorded during flowering.The NDVI,CC,and SPAD were strongly correlated with LNC and TDM,highlighting their potential as indicators for nitrogen management.The digital imaging traits analysed via software effectively differentiated the nitrogen treatments,demonstrating their utility for precise nitrogen application.In conclusion,nitrogen fertilization at 300 kg N ha^(−1) optimized the growth and yield of hybrid maize,with Hybrid P3396 performing best.This study underscores the role of advanced phenotyping tools in improving nitrogen use efficiency and sustainable maize production.展开更多
This study aimed at understanding the impacts of the seasonal hydroclimatic variables on maize yield and developing of statistical crop model for future maize yield prediction over Tanzania. The food security of the c...This study aimed at understanding the impacts of the seasonal hydroclimatic variables on maize yield and developing of statistical crop model for future maize yield prediction over Tanzania. The food security of the country is basically determined by availability of maize. Unfortunately, agriculture over the country is mainly rain fed hence highly endangered by the detrimental consequences of climate change and variability. Observed climate data was acquired from Tanzania Meteorological Authority (TMA) and Maize yield data from Food and Agriculture Organization (FAO). The study used the Mann-Kendall test and Sen’s slope for trend and magnitude detection in minimum, maximum temperature and rainfall at the 95% confidence level. The results have shown that rainfall is decreasing over the country and especially during the growing season but increasing during short rains season. Characteristics of seasonal climatic variables, cycle during growing period were linked to maize yield, and high (low) yield was reported during anomalous wet (dry) growing seasons. This portrays seasonal dependence of maize production. Statistical crop model was built by aggregating spatial regions that have statistically significant relation with maize yield. Results show that, 58.8% of yield variance is linked to seasonal hydroclimate variability. Rainfall emerged as the dominant predictor variable for maize yield since it accounts for 44.1% of yield variance. The modeled and observed yields exhibit statistically substantial relationship (r = 0.78) hence depicting high credence of the built statistical crop model. Also, the results revealed a decreasing trend in Maize yield with further Lessing trend is projected to proceed in the future. This calls for adaptation and implementation of appropriate regional measures to raise maize production in order to feed the burgeoning human population amidst climate change.展开更多
Plastic film is an important resource in agricultural production,but it takes hundreds of years to degrade completely in natural environment.The large-scale use of plastic film will inevitably lead to serious environm...Plastic film is an important resource in agricultural production,but it takes hundreds of years to degrade completely in natural environment.The large-scale use of plastic film will inevitably lead to serious environmental pollution.One way to solve the problem is to develop a substitutable mulching film,such as a biodegradable film that can ultimately be decomposed to water,carbon dioxide,and soil organic matter by micro-organisms.In this study,a 2-year experiment was conducted to determine the degradation properties of a biodegradable plastic film,including degradation rate,surface microstructure,tensile strength and elongation at break,and the effects of different mulching treatments on soil temperature and maize yield.The mulching experiment was conducted with three different biodegradable plastic films with different degradation rates,using a common plastic film and a non-mulched treatment as control.With the addition of the additives for degradation in the biodegradable plastic films,the degradation rates increased significantly,which were 7.2%-17.8%in 2017 and 18.1%-35.2%in 2018 after maize harvesting.However,the degradation occurred mainly on the ridge side.The decrease in tensile strength and elongation was proportional to the degradation rate of the degradable film.The SEM results indicated that the surface microstructures of the biodegradable films were loose and heterogeneous after maize harvesting.Biodegradable plastic film mulching increased the soil temperature at soil depths of 5 cm,15 cm,and 25 cm,over the maize’s entire growth period,by 3.1℃-3.2℃ in 2017 and 1.2℃-2.1℃ in 2018 compared with the non-mulched treatment.The biodegradable plastic film increased the maize yield by 10.4%-14.3%in 2017 and 11.6%-24.7%in 2018.The soil temperature and maize yield increases were statistically significant;however,with respect to maize qualities,there were no statistically significant increases among the five treatments.This study shows that biodegradable plastic film can be used as a substitute for common plastic film.However,the ingredients in biodegradable plastic films should be improved further to ensure that they can be degraded completely after crop harvest.展开更多
There have been many studies on soil quality and crop yield using different biochar application amounts,but few studies have focused on the combination of different methods and amounts of biochar application in modera...There have been many studies on soil quality and crop yield using different biochar application amounts,but few studies have focused on the combination of different methods and amounts of biochar application in moderately degraded Mollisols.In this study,the methods of mixing biochar evenly with the soil of the plough layer(0-20 cm depth)[homogeneous biochar application(HO)]and burying biochar above the soil plow pan(under 20 cm depth)(heterogeneous biochar application(HE))were used to reveal how biochar application methods influenced soil quality,crop yield and agronomic characteristics in moderately degraded Mollisols(soil organic matter(SOM),30.33 g kg^(−1)).The biochar application amounts were 0(control),10(level 1),20(level 2),and 40(level 3)t ha^(−1)in both the HO and HE treatments.The results showed that,compared with control,HO3 significantly increased maize yield in the first year,and HO2,HO3,HE2 and HE3 continuously increased maize yield in the next three years but not significantly.HO1 and HE1 had the lowest maize yield.HO2 tended to delay maize leaf senescence.There was a posi-tive linear relationship between soil quality index(SQI)and biochar application amount in HO.Compared with other treatments,the pH,EC,SOM,available phosphorus,sucrase and catalase activities were highest in HO3.However,the effects of HE on soil quality and crop productivity were limited at first but gradually increased with time.Overall,HO3 was beneficial for improving the soil quality and crop productivity in Mollisols for short-term cultivation(3-year),while HE showed an effect over time.展开更多
In sub-humid Northeast China,plastic film mulching(PFM)is increasingly used with drip irrigation system in maize(Zea mays L.)to cope with seasonal droughts and low temperatures during seedling stage.Although there wer...In sub-humid Northeast China,plastic film mulching(PFM)is increasingly used with drip irrigation system in maize(Zea mays L.)to cope with seasonal droughts and low temperatures during seedling stage.Although there were several studies showing the benefits of PFM on maize production in the region,quantification of the effects of PFM in sub-humid Northeast China are still lacking.Hybrid-Maize model has a special version that can not only simulate the effects of PFM on reduction of soil evaporation and rise of topsoil temperature,but also simulate the effects of PFM on crop development and other physiological processes.This paper reports how to verify the Hybrid-Maize model against observations and then applying the model to quantify effects of PFM on grain yield and water use efficiency(WUE)under irrigated scenarios.The Hybrid-Maize model was added the heating effects of PFM on rising surface-soil temperature and promoting subsequent crop development by establishing equations between surface-soil temperature and air temperature before V6 stage.A 3-year field experiment including maize growth and yield data measured at a drip-irrigated field in Heilongjiang Province was used to serve the model calibration.The simulated results indicated that the Hybrid-Maize model performed well in simulation of seasonal soil water storage and in-season aboveground dry matter in three years,but overestimated the leaf area index(LAI)for both treatments and underestimated the final aboveground dry matter at maturity for mulched treatments.Although the Hybrid-Maize model overestimated the grain yield and WUE,it did still reflect the effects of PFM on increasing grain yield and WUE during the three growing seasons.The average simulated grain yield and WUE for mulched treatments were 8%and 13%greater compared to non-mulched treatments using 30 years weather data,which were in agreement with observations that average grain yield and WUE was 11%and 14%increased by PFM,respectively.For evapotranspiration(ET),the average simulated ET for mulched treatments was 22 mm less than non-mulched treatments mainly due to less soil evaporation.For simulated irrigation requirements,at most 69 mm of irrigation water could be saved by PFM.In conclusion,PFM with drip irrigation could improve irrigated maize production in sub-humid Northeast China.展开更多
基金the National Key Research and Development Program of China(2022YFD1500705)National Natural Science Foundation of China(U19A2035)for financial support。
文摘Strip-till(ST),including straw mulching in the inter-row and localized fertilization in the intra-row,is a conservation tillage system for improving soil quality and crop growth.However,the yield advantage of maize under ST compared to conventional tillage(CT)remains unstable,and the strategies to increase maize yield under ST are unclear.This study aims to understand the physiological mechanism underlining maize yield formation under ST by comparing two maize cultivars,DKM753 and DK517,with contrasting yield performance in ST versus CT systems.Compared to CT,ST resulted in a 4.5%yield increase for DKM753 but a 5.6%decrease for DK517.These yield differences were primarily attributed to variations in grain number per ear(GN).During the rapid growth stage(V14-R3),i.e.,two weeks before and after silking,DKM753 showed a 6.7%increase in maximum growth rate(V_(max))and a 6.3%increase in average growth rate(V)under ST,whereas DK517 exhibited decline of 8.5%in V_(max) and 12.3%in V.Significant positive correlations are observed between V_(max) and V with GN under ST(R^(2)=0.79 and R^(2)=0.90,respectively).Enhanced dry matter accumulation in DKM753 under ST was attributed to increased leaf expansion rates,contributing to a larger photosynthate source.The straw mulching and localized nitrogen fertilization increased root-zone nitrogen availability at silking in ST compared to CT.DKM753 had a greater root system which made better use of the soil N and lead to an increased leaf nitrogen accumulation by 14.9%under ST.It is concluded that maize yield under the strip-till system is determined by grain number per ear,which can be increased by increasing nitrogen accumulation,plant growth,and ear development around silking stage.A sound root system can efficiently utilize soil nitrogen resources under the strip-till system,increasing plant nitrogen accumulation and thereby promoting plant growth.
基金supported by the National Key Research and Development Program of China(2023YFD2303302,2022YFD2300803)the National Natural Science Foundation of China(32160445)the China Agriculture Research System of MOF and MARA(CARS-02-16).
文摘High-density planting increases maize yield but also canopy crowding and stalk lodging.Aiming this contradiction,a wavy canopy was created using interlaced chemical application(IC)of a plant growth retardant at the V14 stage with three densities(60,000,75,000,and 90,000 plants ha-1,indicated by D1,D2,and D3,respectively)for two seasons.The results showed that the IC-treated wavy canopy featuring both natural height(IC-H)and dwarfed(IC-L)plants,improved light transmission by 8.54%,8.49%,and 16.49%on average than the corresponding controls(CK)at D1,D2,and D3,respectively.The alleviation of canopy crowding stimulated leaf photosynthesis,sugar availability,basal-internode strength,and decreased plant lodging ratios in both IC-H and IC-L,particularly under higher densities.Meanwhile,the IC populations produced significantly higher yield than CK,with an average increase of 3.38%,16.70%,and 15.28%at D1,D2,and D3,respectively.Collectively,this study proposed a new wavy canopy strategy using plant growth retardant to simultaneously increase yield performance and lodging resistance,thus offering a sustainable solution for further development of high-density maize production.
基金supported by the National Natural Science Foundation of China(No.32071980)the Key Projects of Shaanxi Agricultural Collaborative Innovation and Extension Alliance(No.LMZD202201)+1 种基金the Key R&D Project in Shaanxi Province(No.2021LLRH-07)Shaanxi Natural Scientific Basic Research Program project(No.2022JQ-157).
文摘Agricultural practices significantly contribute to greenhouse gas(GHG)emissions,necessitating cleaner production technologies to reduce environmental pressure and achieve sustainable maize production.Plastic film mulching is commonly used in the Loess Plateau region.Incorporating slow-release fertilizers as a replacement for urea within this practice can reduce nitrogen losses and enhance crop productivity.Combining these techniques represents a novel agricultural approach in semi-arid areas.However,the impact of this integration on soil carbon storage(SOCS),carbon footprint(CF),and economic benefits has received limited research attention.Therefore,we conducted an eight-year study(2015-2022)in the semi-arid northwestern region to quantify the effects of four treatments[urea supplied without plastic film mulching(CK-U),slow-release fertilizer supplied without plastic film mulching(CK-S),urea supplied with plastic film mulching(PM-U),and slow-release fertilizer supplied with plastic film mulching(PM-S)]on soil fertility,economic and environmental benefits.The results revealed that nitrogen fertilizer was the primary contributor to total GHG emissions(≥71.97%).Compared to other treatments,PM-S increased average grain yield by 12.01%-37.89%,water use efficiency by 9.19%-23.33%,nitrogen accumulation by 27.07%-66.19%,and net return by 6.21%-29.57%.Furthermore,PM-S decreased CF by 12.87%-44.31%and CF per net return by 14.25%-41.16%.After eight years,PM-S increased SOCS(0-40 cm)by 2.46%,while PM-U decreased it by 7.09%.These findings highlight the positive effects of PM-S on surface soil fertility,economic gains,and environmental benefits in spring maize production on the Loess Plateau,underscoring its potential for widespread adoption and application.
基金supported by the National Key Research and Development Program of China(2022YFD2301403-2)the Major Special Project of Anhui Province,China(2021d06050003)+2 种基金the Postdoctoral Foundation of Anhui Province,China(2022B638)the Special Project of Zhongke Bengbu Technology Transfer Center,China(ZKBB202103)the Grant of the President Foundation of Hefei Institutes of Physical Science of Chinese Academy of Sciences(YZJJ2023QN37)。
文摘Synthetic nitrogen(N)fertilizer has made a great contribution to the improvement of soil fertility and productivity,but excessive application of synthetic N fertilizer may cause agroecosystem risks,such as soil acidification,groundwater contamination and biodiversity reduction.Meanwhile,organic substitution has received increasing attention for its ecologically and environmentally friendly and productivity benefits.However,the linkages between manure substitution,crop yield and the underlying microbial mechanisms remain uncertain.To bridge this gap,a three-year field experiment was conducted with five fertilization regimes:i)Control,non-fertilization;CF,conventional synthetic fertilizer application;CF_(1/2)M_(1/2),1/2 N input via synthetic fertilizer and 1/2 N input via manure;CF_(1/4)M_(3/4),1/4 N input synthetic fertilizer and 3/4 N input via manure;M,manure application.All fertilization treatments were designed to have equal N input.Our results showed that all manure substituted treatments achieved high soil fertility indexes(SFI)and productivities by increasing the soil organic carbon(SOC),total N(TN)and available phosphorus(AP)concentrations,and by altering the bacterial community diversity and composition compared with CF.SOC,AP,and the soil C:N ratio were mainly responsible for microbial community variations.The co-occurrence network revealed that SOC and AP had strong positive associations with Rhodospirillales and Burkholderiales,while TN and C:N ratio had positive and negative associations with Micromonosporaceae,respectively.These specific taxa are implicated in soil macroelement turnover.Random Forest analysis predicted that both biotic(bacterial composition and Micromonosporaceae)and abiotic(AP,SOC,SFI,and TN)factors had significant effects on crop yield.The present work strengthens our understanding of the effects of manure substitution on crop yield and provides theoretical support for optimizing fertilization strategies.
基金Financial supports are from the National Natural Science Foundation of China(41571298,41620104006)the Special Fund for Agro-scientific Research in the Public Interest,China(201203030,201303126)the National Key Technologies R&D Program of China(2012BAD14B04)
文摘The combined use of chemical and organic fertilizers is considered a good method to sustain high crop yield and enhance soil organic carbon (SOC), but it is still unclear when and to what extent chemical fertilizers could be replaced by organic fertilizers. We selected a long-term soil fertility experiment in Gongzhuling, Northeast China Plain to examine the temporal dynamics of crop yield and SOC in response to chemical nitrogen, phosphorus, and potassium (NPK) fertilizers and manure, applied both individually and in combination, over the course of three decades (1980-2010). We aimed to test 1) which fertilizer application is the best for increasing both maize yield and SOC in this region, and 2) whether chemical fertilizers can be replaced by manure to maintain high maize yield and enhance SOC, and if so, when this replacement should be implemented. We observed that NPK fertilizers induced a considerable increase in maize yield in the first 12 years after the initiation of the experiment, but manure addition did not. In the following years, the addition of both NPK fertilizers and manure led to an increase in maize yield. SOC increased considerably in treatments with manure but remained the same or even declined with NPK treatments. The increase in maize yield induced by NPK fertilizers alone declined greatly with increasing SOC, whereas the combination of NPK and manure resulted in high maize yield and a remarkable improvement in SOC stock. Based on these results we suggested that NPK fertilizers could be at least partially replaced by manure to sustain high maize yield after SOC stock has reached 41.96 Mg C ha^-1 in the Northeast China Plain and highly recommend the combined application of chemical fertilizers and manure (i.e., 60 Mg ha^-1).
基金funded by the National Natural Science Foundation of China (71703159)the Central Public-interest Scientific Institution Basal Research Fund, China (YBYWAII-2019-08, YBYW-AII-2020-08 and JBYW-AII-2020-52)the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences (CAAS-ZDRW202012)。
文摘Climate change severely impacts agricultural production, which jeopardizes food security. China is the second largest maize producer in the world and also the largest consumer of maize. Analyzing the impact of climate change on maize yields can provide effective guidance to national and international economics and politics. Panel models are unable to determine the group-wise heteroscedasticity, cross-sectional correlation and autocorrelation of datasets, therefore we adopted the feasible generalized least square(FGLS) model to evaluate the impact of climate change on maize yields in China from 1979–2016 and got the following results:(1) During the 1979–2016 period, increases in temperature negatively impacted the maize yield of China. For every 1℃ increase in temperature, the maize yield was reduced by 5.19 kg 667 m^–2(1.7%). Precipitation increased only marginally during this time, and therefore its impact on the maize yield was negligible. For every 1 mm increase in precipitation, the maize yield increased by an insignificant amount of 0.043 kg 667 m^–2(0.014%).(2) The impacts of climate change on maize yield differ spatially, with more significant impacts experienced in southern China. In this region, a 1℃ increase in temperature resulted in a 7.49 kg 667 m^–2 decrease in the maize yield, while the impact of temperature on the maize yield in northern China was insignificant. For every 1 mm increase in precipitation, the maize yield increased by 0.013 kg 667 m^–2 in southern China and 0.066 kg 667 m^–2 in northern China.(3) The resilience of the maize crop to climate change is strong. The marginal effect of temperature in both southern and northern China during the 1990–2016 period was smaller than that for the 1979–2016 period.
基金Supported by National Science and Technology R&D Program(2006BAD04B02)~~
文摘Based on the meteorological data and production data of maize of 10 stations in Northeast China from 1961 to 2006,the primary climatic factors influencing maize yield in different region were studies by the method of Baier yields models.The result showed that the yield of maize in Heilongjiang and Jilin Province were mainly affected by temperatures,with air temperature increased,the meteorological yield of maize increased.The meteorological yield of maize in Liaoning Province was mainly affected by precipitation and sunshine duration,and different regions had different effects.
基金Supported by Black Soil Conservation Tillage and Oriented Cultivation Technology Research (GB06B107-1)Innovation Fund of Northeast Agricultural University (CXP7003-3-3)+1 种基金Northeast Agricultural University and the Scientific Research Fund of Heilongjiang Province to Black CollegesUniversities Cold Key Laboratory of Utilization and Protection of Open-funded Projects (GXS08-5)
文摘By two years (2007-2008) located fertilizer experiment, the effect of long-term combined application of organic and inorganic fertilizers on black soil fertility and crop yield was investigated in Shuangcheng City, Heilongjiang Province. The results showed that the combined application of organic and inorganic fertilizers could increase the organinc matter, alkaline nitrogen, available phosphorus and available potassium. At the same time, the increasing application of organic fertilizer could reduce the soil bulk density and improve the field moisture capacity. Field moisture capacity and organic matter of the combined application of high quantities of organic manure and inorganic fertilizers AtB5 treatment increased the fhstest, organic matter increased by 3.33 g. kg and field moisture capacity increased by 11.25% than the beginning of the experiment. Under the same fertilization, the combined application of organic and inorganic fertilizers' increasing production range was higher than the single chemical fertilizers' which was from 0.8% to 9.4%. The results showed that the combined application of organic and inorganic fertilizers could increase the nutrient contents of soil and also was the highest productivity contribution to black soil fertility. It was the best fertilization structure of increasing productivity level and improving the soil fertility.
基金financially supported by the National Key Research and Development Program of China(2017YFD0301106)。
文摘Reducing environmental impacts and improving N utilization are critical to ensuring food security in China.Although root-zone fertilization has been considered an effective strategy to improve nitrogen use efficiency (NUE),the effect of controlled-release urea (CRU) applied in conjunction with normal urea in this mode is unclear.Therefore,a 3-year field experiment was conducted using a no-N-added as a control and two fertilization modes (FF,furrow fertilization by manual trenching,i.e.,farmer fertilizer practice;HF:root-zone hole fertilization by point broadcast manually) at 210 kg N ha^(–1) (controlled-release:normal fertilizer=5:5),along with a 1-year in-situ microplot experiment.Maize yield,NUE and N loss were investigated under different fertilization modes.The results showed that compared with FF,HF improved the average yield and N recovery efficiency by 8.5 and 22.3%over three years,respectively.HF had a greater potential for application than FF treatment,which led to increases in dry matter accumulation,total N uptake,SPAD value and LAI.In addition,HF remarkably enhanced the accumulation of ^(15)N derived from fertilizer by 17.2%compared with FF,which in turn reduced the potential loss of^(15)N by 43.8%.HF increased the accumulation of N in the tillage layer of soils at harvest for potential use in the subsequent season relative to FF.Hence,HF could match the N requirement of summer maize,sustain yield,improve NUE and reduce environmental N loss simultaneously.Overall,root-zone hole fertilization with blended CRU and normal urea can represent an effective and promising practice to achieve environmental integrity and food security on the North China Plain,which deserves further application and investigation.
文摘Soil erosion induced by inappropriate tillage remains a serious problem on many agricultural fields in the humid tropics. Studies were conducted between 2004 and 2006, on an Alfisol in Ogbomoso in the Southern Guinea Savanna of Nigeria to evaluate the effectiveness of Vetiver Grass(Vetiveria nigritana) Strips(VGS) under different tillage systems. The experiment was split-plot laid out in a randomized complete block design with two replications on 6% slope with 18 runoff plots. Main plot treatments were tillage systems; Manual Clearing(MC), Ploughing(P) and Ploughing plus Harrowing(PH). Subplot treatments were VGS spaced at intervals of 5 m(eight strips) and 10 m(four strips) with the control(no-vetiver). Runoffs and soil losses were collected after each major storm. Chemical analyses of eroded sediments and runoff were determined. Data were analyzed using ANOVA at p<0.05. The results showed that tillage had no significant reduction in runoffs and soil losses, but they were reduced with MC compared with P and PH. Mean total runoff on 5 and 10 m VGS plots were significantly(p<0.05) lower than that of the control by 74.4% and 45.0%, respectively. Corresponding soils loss on 5 and 10 m VGS plots were 27.1% and 53.5%, respectively. Mean NO3-N levels in runoff water were lower under PH plots than those under MC plots by 79.0% and 66.5%, respectively in 2004 and 2006 growing seasons. VGS spaced at 5 m significantly(p<0.05) reduced NO3-N loss than the control by 108.8% in 2004. Nutrients loads of eroded sediments were consistently higher for the control(no-vetiver) plots and least for 5 m VGS plot. Carbon, nitrogen and phosphorus contents of eroded sediments were 90%-92.4%, 83%-83.6% and 97%-97.8%, respectively, and were lower on 5 m than other treatments. Maize grain yield was significantly(p<0.05) affected by both tillage and VGS spacing only in 2005 growing season. P plot produced higher grain yield than MC and PH by 79.9% and 99.1%, respectively. Also, grain yield on VGS plot was significantly(p<0.05) higher on 5 and 10 m VGS plots than the control by 82.2% and 85.4%, respectively. The significant beneficial effect of PH in producing higher yields was dwarfed by the potential danger of soil erosion in the absence of a soil erosion control measure. The results showed that a balance needed to be struck between mechanical clearance and protective measure against soil erosion.
基金Supported by the"Thirteenth Five-Year"Key Research and Development Project Sub-project"Integration and Demonstration of Spring Maize Solar and Hot Water Resources Utilization Technology in Humid Areas of Heilongjiang Province"(2018YFD0300103-1)。
文摘This paper analyzed the extreme climatic characteristics of maize in Heilongjiang Province during different growth periods using the climate data and maize yield data from 1961 to 2020,and applied the principal component analysis to analyze the extent of different extreme climatic events affecting maize yield.The results showed that the extreme cold events showed a decreasing trend,and the extreme warm events showed an increasing trend,and the trend of extreme precipitation change was not obvious.Maize yield was negatively correlated with TN10p(cold nights),TX10p(warm days)and T8(days below the lower temperature limit),and positively correlated with TN90p(warm nights).T34(days above the upper temperature limit)and TX90p(warm days)during the tasseling-milking period were negatively correlated with the maize yield,and this part was concentrated in the southern part of Heilongjiang Province.The maize yield was positively correlated with the extreme precipitation during the seedling period and negatively correlated with the extreme precipitation during the filling-maturity period of maize,but the correlations were not significant.The effects of extreme weather events on maize yield were higher during the seedling and the filling-maturity periods than those during the jointing-tasseling and the tasseling-milking periods.The effects of extreme precipitation on the maize yield were less than those of the extreme temperature during different growth periods in all regions,but the effects of the extreme precipitation on maize yield were significantly higher in the Songnen Plain than those in other regions.There were regional differences in the impact of climate extremes on maize during different growth periods.The area with the greater impact of climate extremes during the seedling period was the Songnen Plain,the areas with the greater impact of climate extremes during the jointing-tasseling period were the northern part of the Sanjiang Plain,and the areas with the greater impact of climate extremes during the filling-maturity period were the Lesser Khingan Mountains and the semi-mountainous areas of Mudanjiang.
文摘Remote-sensing data acquired by satellite imageries have a wide scope in agricultural applications owing to their synoptic and repetitive coverage. This study reports the development of an operational spectro-agrometereological yield model for maize crop derived from time series data of SPOT VEGETATION, actual and potential evapotranspiration and rainfall estimate satellite data for the years 2003-2012. Indices of these input data were utilized to validate their strength in explaining grain yield recorded by the Central Statistical Agency through correlation analyses. Crop masking at crop land area was applied and refined using agro-ecological zones suitable for maize. Rainfall estimates and average Normalized Difference Vegetation Index were found highly correlated to maize yield with the former accounting for 85% variation and the latter 80%, respectively. The developed spectro-agrometeorological yield model was successfully validated against the predicted Zone level yields estimated by Central Statistical Agency (r<sup>2</sup> = 0.88, RMSE = 1.405 q·ha<sup>-1</sup> and 21% coefficient of variation). Thus, remote sensing and geographical information system based maize yield forecast improved quality and timelines of the data besides distinguishing yield production levels/areas and making intervention very easy for the decision makers thereby proving the clear potential of spectro-agrometeorological factors for maize yield forecasting, particularly for Ethiopia.
基金supported by the Key Program of Natural Science Foundation of Sichuan Province(2022NSFSC0013)National Key Research and Development Program of China(2022YFD1901603,2023YFD2301902).
文摘This study aimed to identify the physiological mechanisms enabling low-N-tolerant maize cultivar to maintain higher photosynthesis and yield under low-N,low-light,and combined stress.In a three-year field trial of low-N-tolerant and low-N-sensitive maize cultivars under two N fertilization(normal N:240 kg N ha^(−1);low-N:150 kg N ha^(−1))and two light conditions(normal light;low-light:35%light reduction),the tolerant cultivar showed higher net photosynthetic rate than the sensitive one.Random Forest analysis and Structural Equation Modeling identified PSI donor-side limitation(elevated Y_(ND))as the key photosynthetic constraint.The tolerant cultivar maintained higher D1 and PsaA protein levels and preferentially allocated photosynthetic N to electron transport.This strategy reduced Y_(ND)and sustained photosystem stability,thus improving carboxylation efficiency and resulting in higher photosynthesis.
基金financially supported by the National Key R&D Program of China (2022YFD1900702 and 2021YFD1900700)the Key Research and Development Program of Shaanxi, China (2023-ZDLNY-52)the National Natural Science Foundation of China (42077102)
文摘Excessive use of N fertilizers(driven by high-yield goals)and its consequent environmental problems are becoming increasingly acute in agricultural systems.A 2-year field experiment was conducted to investigate the effects of three N application methods(application of solid granular urea once(OF)or twice(TF),application of solid granular urea mixed with controlled-release urea once(MF),and six N rates(0,60,120,180,240,and 300 kg N ha^(-1))on maize yield,economic benefits,N use efficiency,and soil N balance in the maize(Zea mays L.)film mulching system on the Loess Plateau,China.The grain yield and economic return of maize were significantly affected by the N rate and application method.Compared with the OF treatment,the MF treatment not only increased the maize yield(increased by 9.0-16.7%)but also improved the economic return(increased by 10.9-25.8%).The agronomic N use efficiency(NAE),N partial factor productivity(NPFP)and recovery N efficiency(NRE)were significantly improved by 19.3-66.7,9.0-16.7 and 40.2-71.5%,respectively,compared with the OF treatment.The economic optimal N rate(EONR)of the OF,TF,and MF was 145.6,147.2,and 144.9 kg ha^(-1) in 2019,and 206.4,186.4,and 146.0 kg ha^(-1) in 2020,respectively.The apparent soil N loss at EONR of the OF,TF,and MF were 97.1-100.5,78.5-79.3,and 50.5-68.1 kg ha^(-1),respectively.These results support MF as a one-time N application method for delivering high yields and economic benefits,with low N input requirements within film mulching spring maize system on the Loess Plateau.
基金supported by National Key Research and Development Program of China(2023YFD1200500,2022YFD1201700)the National Natural Science Foundation of China(32071921)+1 种基金Key Research and Development Program of Shandong Province,China(2021LZGC022)the Taishan Scholars Project。
文摘Maize(Zea mays L.)is one of the world's most important staple crops,and is used for manufacturing food,feed,and industrial products.A key factor in maize yield is the grain weight,which directly influences productivity.In this study,we revealed the role of smk23 in maize kernel development.The ethyl methanesulfonate mutant smk23 is characterized by substantially reduced kernel weight.Through map-based cloning,smk23 was found to be located on Chr5 and encode a putative B-type response regulator,Zm RR5.A change from G to A occurs in the coding sequence of Zm RR5,resulting in the early termination of smk23.In Arabidopsis,B-type response regulators are involved in cytokinin signaling.Histological analysis and in situ hybridization of the mutant revealed abnormal endosperm development,particularly in the basal endosperm transfer layer(BETL),a specialized tissue critical for nutrient transport from the maternal tissues to the developing kernel.Zm RR5 positively regulates key genes involved in BETL development and function,including MRP1 and TCRR1.Furthermore,RNA sequencing revealed that several genes closely linked to BETL development,including BETL2,MEG1,and MN1,were significantly downregulated in smk23.These genes are essential for nutrient transport,tissue development and signal transduction.In addition,haploid analysis of Zm RR5 revealed natural variations(Hap 2)that may contribute to the increased kernel yield.Disruption of Zm RR5 function in smk23 leads to defects in BETL development,impairing its ability to transport nutrients,and ultimately resulting in a smaller kernel size.This study provides new insights into the molecular mechanisms through which Zm RR5 regulates maize kernel development and offers potential strategies for improving grain yield.
基金supported by the Bangladesh Agricultural Research Insti-tute,Gazipur-1701,Bangladesh.This research was also funded by Taif University,Saudi Arabia,Project No.(TU-DSPP-2024-07).
文摘The yield of maize(Zea mays L.)is highly influenced by nitrogen fertilization.This study investigated the impact of nitrogen fertilization on morphophysiological traits in maize(Zea mays L.)and developed algorithms to relate manual phenotyping and digital phenotyping of maize with leaf nitrogen and digital field image traits.The experiment included three hybrid maize varieties,V1(Hybrid 981),V2(BARI Hybrid maize-9),and V3(Hybrid P3396),which were evaluated across three nitrogen levels(N1=100 kg N ha^(−1),N2=200 kg N ha^(−1),N3=300 kg N ha^(−1))in a split-plot design with three replications.The results revealed that nitrogen levels(N),varieties(V),and their interactions(V×N)significantly influenced traits such as plant height(PH),leaf area index(LAI),normalized difference vegetation index(NDVI),canopy cover(CC),chlorophyll content(Chl a and Chl b),leaf nitrogen content(LNC),total dry matter(TDM),and grain yield.The hybrid P3396 with 300 kg N ha^(−1)(V3N3)achieved the highest grain yield of 14.45 t ha^(−1),which was statistically similar to that of Hybrid 981 and 300 kg N ha^(−1)(V1N3).Nitrogen significantly improved dry matter accumulation,leaf area,and physiological parameters,with maximum values recorded during flowering.The NDVI,CC,and SPAD were strongly correlated with LNC and TDM,highlighting their potential as indicators for nitrogen management.The digital imaging traits analysed via software effectively differentiated the nitrogen treatments,demonstrating their utility for precise nitrogen application.In conclusion,nitrogen fertilization at 300 kg N ha^(−1) optimized the growth and yield of hybrid maize,with Hybrid P3396 performing best.This study underscores the role of advanced phenotyping tools in improving nitrogen use efficiency and sustainable maize production.
文摘This study aimed at understanding the impacts of the seasonal hydroclimatic variables on maize yield and developing of statistical crop model for future maize yield prediction over Tanzania. The food security of the country is basically determined by availability of maize. Unfortunately, agriculture over the country is mainly rain fed hence highly endangered by the detrimental consequences of climate change and variability. Observed climate data was acquired from Tanzania Meteorological Authority (TMA) and Maize yield data from Food and Agriculture Organization (FAO). The study used the Mann-Kendall test and Sen’s slope for trend and magnitude detection in minimum, maximum temperature and rainfall at the 95% confidence level. The results have shown that rainfall is decreasing over the country and especially during the growing season but increasing during short rains season. Characteristics of seasonal climatic variables, cycle during growing period were linked to maize yield, and high (low) yield was reported during anomalous wet (dry) growing seasons. This portrays seasonal dependence of maize production. Statistical crop model was built by aggregating spatial regions that have statistically significant relation with maize yield. Results show that, 58.8% of yield variance is linked to seasonal hydroclimate variability. Rainfall emerged as the dominant predictor variable for maize yield since it accounts for 44.1% of yield variance. The modeled and observed yields exhibit statistically substantial relationship (r = 0.78) hence depicting high credence of the built statistical crop model. Also, the results revealed a decreasing trend in Maize yield with further Lessing trend is projected to proceed in the future. This calls for adaptation and implementation of appropriate regional measures to raise maize production in order to feed the burgeoning human population amidst climate change.
基金This research was financially supported by the Province Natural Science Foundation of Liaoning(20180550617)the Special Program for National Key Research and Development Project of China(2018YFD0300301)the Special Fund for Agro-scientific Research in the Public Interest of China(201503105&201303125).
文摘Plastic film is an important resource in agricultural production,but it takes hundreds of years to degrade completely in natural environment.The large-scale use of plastic film will inevitably lead to serious environmental pollution.One way to solve the problem is to develop a substitutable mulching film,such as a biodegradable film that can ultimately be decomposed to water,carbon dioxide,and soil organic matter by micro-organisms.In this study,a 2-year experiment was conducted to determine the degradation properties of a biodegradable plastic film,including degradation rate,surface microstructure,tensile strength and elongation at break,and the effects of different mulching treatments on soil temperature and maize yield.The mulching experiment was conducted with three different biodegradable plastic films with different degradation rates,using a common plastic film and a non-mulched treatment as control.With the addition of the additives for degradation in the biodegradable plastic films,the degradation rates increased significantly,which were 7.2%-17.8%in 2017 and 18.1%-35.2%in 2018 after maize harvesting.However,the degradation occurred mainly on the ridge side.The decrease in tensile strength and elongation was proportional to the degradation rate of the degradable film.The SEM results indicated that the surface microstructures of the biodegradable films were loose and heterogeneous after maize harvesting.Biodegradable plastic film mulching increased the soil temperature at soil depths of 5 cm,15 cm,and 25 cm,over the maize’s entire growth period,by 3.1℃-3.2℃ in 2017 and 1.2℃-2.1℃ in 2018 compared with the non-mulched treatment.The biodegradable plastic film increased the maize yield by 10.4%-14.3%in 2017 and 11.6%-24.7%in 2018.The soil temperature and maize yield increases were statistically significant;however,with respect to maize qualities,there were no statistically significant increases among the five treatments.This study shows that biodegradable plastic film can be used as a substitute for common plastic film.However,the ingredients in biodegradable plastic films should be improved further to ensure that they can be degraded completely after crop harvest.
基金the National Key Research and Development Program of China(2021YFD1500801)the National Natural Science Foundation of China(42177321).
文摘There have been many studies on soil quality and crop yield using different biochar application amounts,but few studies have focused on the combination of different methods and amounts of biochar application in moderately degraded Mollisols.In this study,the methods of mixing biochar evenly with the soil of the plough layer(0-20 cm depth)[homogeneous biochar application(HO)]and burying biochar above the soil plow pan(under 20 cm depth)(heterogeneous biochar application(HE))were used to reveal how biochar application methods influenced soil quality,crop yield and agronomic characteristics in moderately degraded Mollisols(soil organic matter(SOM),30.33 g kg^(−1)).The biochar application amounts were 0(control),10(level 1),20(level 2),and 40(level 3)t ha^(−1)in both the HO and HE treatments.The results showed that,compared with control,HO3 significantly increased maize yield in the first year,and HO2,HO3,HE2 and HE3 continuously increased maize yield in the next three years but not significantly.HO1 and HE1 had the lowest maize yield.HO2 tended to delay maize leaf senescence.There was a posi-tive linear relationship between soil quality index(SQI)and biochar application amount in HO.Compared with other treatments,the pH,EC,SOM,available phosphorus,sucrase and catalase activities were highest in HO3.However,the effects of HE on soil quality and crop productivity were limited at first but gradually increased with time.Overall,HO3 was beneficial for improving the soil quality and crop productivity in Mollisols for short-term cultivation(3-year),while HE showed an effect over time.
基金supported by the National Natural Science Foundation of China(Grant No.51479211)Ministry of Science and Technology of the People’s Republic of China(Grant No.2014BAD12B05)Chinese Scholarship Council(Grant No.201506350059).
文摘In sub-humid Northeast China,plastic film mulching(PFM)is increasingly used with drip irrigation system in maize(Zea mays L.)to cope with seasonal droughts and low temperatures during seedling stage.Although there were several studies showing the benefits of PFM on maize production in the region,quantification of the effects of PFM in sub-humid Northeast China are still lacking.Hybrid-Maize model has a special version that can not only simulate the effects of PFM on reduction of soil evaporation and rise of topsoil temperature,but also simulate the effects of PFM on crop development and other physiological processes.This paper reports how to verify the Hybrid-Maize model against observations and then applying the model to quantify effects of PFM on grain yield and water use efficiency(WUE)under irrigated scenarios.The Hybrid-Maize model was added the heating effects of PFM on rising surface-soil temperature and promoting subsequent crop development by establishing equations between surface-soil temperature and air temperature before V6 stage.A 3-year field experiment including maize growth and yield data measured at a drip-irrigated field in Heilongjiang Province was used to serve the model calibration.The simulated results indicated that the Hybrid-Maize model performed well in simulation of seasonal soil water storage and in-season aboveground dry matter in three years,but overestimated the leaf area index(LAI)for both treatments and underestimated the final aboveground dry matter at maturity for mulched treatments.Although the Hybrid-Maize model overestimated the grain yield and WUE,it did still reflect the effects of PFM on increasing grain yield and WUE during the three growing seasons.The average simulated grain yield and WUE for mulched treatments were 8%and 13%greater compared to non-mulched treatments using 30 years weather data,which were in agreement with observations that average grain yield and WUE was 11%and 14%increased by PFM,respectively.For evapotranspiration(ET),the average simulated ET for mulched treatments was 22 mm less than non-mulched treatments mainly due to less soil evaporation.For simulated irrigation requirements,at most 69 mm of irrigation water could be saved by PFM.In conclusion,PFM with drip irrigation could improve irrigated maize production in sub-humid Northeast China.