With net zero carbon emissions targets approaching over the next 20 to 30 years, the water industry must act now to develop energy efficient techniques and designs to reduce emissions and reduce the carbon footprint o...With net zero carbon emissions targets approaching over the next 20 to 30 years, the water industry must act now to develop energy efficient techniques and designs to reduce emissions and reduce the carbon footprint of water utility providers. There is also the potential for significant energy and therefore financial savings to be realised from the adoption of more energy efficient designs approaches. Water utility providers account for a significant proportion of national electricity consumption. The purpose of this research is to determine if, over the long term, opting for a larger diameter pipe at design stage can lead to significant financial and emissions savings for water utility providers when considering pumping mains. Pumping mains are widely used throughout the water and wastewater industry where a gravity solution is not possible. 72 hypothetical water main design scenarios were analysed and the long term financial and environmental impact of each hypothetical water main was assessed. It was found across all design scenarios that larger diameter water mains were capable of delivering the same rate of flow of smaller diameter pipes at a much reduced velocity and requiring reduced pumping power. It was concluded that pumped mains of larger diameters can ultimately be more energy efficient and cost effective over the long term when selected in favour of smaller diameter pumped mains in otherwise identical design scenarios.展开更多
The influence of the axial mount position of the guide vane on the pressure fluctuation in a nuclear pump(AP1000)is investigated.The characteristics of the three-dimensional flow inside the nuclear pump are analyzed b...The influence of the axial mount position of the guide vane on the pressure fluctuation in a nuclear pump(AP1000)is investigated.The characteristics of the three-dimensional flow inside the nuclear pump are analyzed by means of numerical simulation.Results indicate that when the axial relative distance between the guide vane and the pumping chamber is reduced,in conditions of“small flow,”the efficiency of the pump increases,the pressure inside the pumping chamber decreases,while the losses related to the guide vane grow.Under large flow conditions,as the efficiency of the pump decreases,the losses for the guide vane and the pumping chamber increase.The pressure fluctuation in the annular pumping chamber is basically determined by the rotation frequency and the blade passing frequency.The magnitude of these fluctuations is affected by the guide vane axial position.In particular,the smallest possible amplitude is obtained when the outlet central plane of the guide vane coincides with the outlet axis of the pumping chamber.展开更多
文摘With net zero carbon emissions targets approaching over the next 20 to 30 years, the water industry must act now to develop energy efficient techniques and designs to reduce emissions and reduce the carbon footprint of water utility providers. There is also the potential for significant energy and therefore financial savings to be realised from the adoption of more energy efficient designs approaches. Water utility providers account for a significant proportion of national electricity consumption. The purpose of this research is to determine if, over the long term, opting for a larger diameter pipe at design stage can lead to significant financial and emissions savings for water utility providers when considering pumping mains. Pumping mains are widely used throughout the water and wastewater industry where a gravity solution is not possible. 72 hypothetical water main design scenarios were analysed and the long term financial and environmental impact of each hypothetical water main was assessed. It was found across all design scenarios that larger diameter water mains were capable of delivering the same rate of flow of smaller diameter pipes at a much reduced velocity and requiring reduced pumping power. It was concluded that pumped mains of larger diameters can ultimately be more energy efficient and cost effective over the long term when selected in favour of smaller diameter pumped mains in otherwise identical design scenarios.
基金supported by the National Natural Science Foundation of China(No.51469013).
文摘The influence of the axial mount position of the guide vane on the pressure fluctuation in a nuclear pump(AP1000)is investigated.The characteristics of the three-dimensional flow inside the nuclear pump are analyzed by means of numerical simulation.Results indicate that when the axial relative distance between the guide vane and the pumping chamber is reduced,in conditions of“small flow,”the efficiency of the pump increases,the pressure inside the pumping chamber decreases,while the losses related to the guide vane grow.Under large flow conditions,as the efficiency of the pump decreases,the losses for the guide vane and the pumping chamber increase.The pressure fluctuation in the annular pumping chamber is basically determined by the rotation frequency and the blade passing frequency.The magnitude of these fluctuations is affected by the guide vane axial position.In particular,the smallest possible amplitude is obtained when the outlet central plane of the guide vane coincides with the outlet axis of the pumping chamber.