The lithospheric magnetic field is an important component of the geomagnetic field,and the oceanic lithosphere exhibits distinct characteristics.Because of its formation mechanisms,evolutionary history,and geomagnetic...The lithospheric magnetic field is an important component of the geomagnetic field,and the oceanic lithosphere exhibits distinct characteristics.Because of its formation mechanisms,evolutionary history,and geomagnetic field polarity reversals,the oceanic lithosphere has significant remanent magnetization,which causes magnetic anomaly stripes parallel to the mid-ocean ridges.However,it is difficult to construct a high-resolution lithospheric magnetic field model in oceanic regions with relatively sparse data or no data.Using forward calculated lithospheric magnetic field data based on an oceanic remanent magnetization(ORM) model with physical and geological foundations as a supplement is a feasible approach.We first collect the latest available oceanic crust age grid,plate motion model,geomagnetic polarity timescale,and oceanic lithosphere thermal structure.Combining the assumptions that the paleo geomagnetic field is a geocentric axial dipole field and that the normal oceanic crust moves only in the horizontal direction,we construct a vertically integrated ORM model of the normal oceanic crust with a known age,including the intensity,inclination,and declination.Both the ORM model and the global induced magnetization(GIM) model are then scaled from two aspects between their forward calculated results and the lithospheric magnetic field model LCS-1.One aspect is the difference in their spherical harmonic power spectra,and the other is the misfit between the grid data over the oceans.We last compare the forward calculated lithospheric magnetic anomaly from the scaled ORM and GIM models with the Macao Science Satellite-1(MSS-1) observed data.The comparison results show that the magnetic anomalies over the normal oceanic crust regions at satellite altitude are mainly contributed by the high-intensity remanent magnetization corresponding to the Cretaceous magnetic quiet period.In these regions,the predicted and observed anomalies show good consistency in spatial distribution,whereas their amplitude differences vary across regions.This result suggests that regional ORM construction should be attempted in future work to address these amplitude discrepancies.展开更多
The combination of dual-main-phase(DMP)(Nd,Ce)-Fe-B magnets and grain boundary diffusion process(GBDP)is currently a research topic for obtaining high-cost performance materials in rare earth permanent magnet fields.T...The combination of dual-main-phase(DMP)(Nd,Ce)-Fe-B magnets and grain boundary diffusion process(GBDP)is currently a research topic for obtaining high-cost performance materials in rare earth permanent magnet fields.The novel structural features of GBDP(Nd,Ce)-Fe-B magnets give a version of different domain reversal processes from those of non-diffused magnets.In this work,the in-situ magnetic domain evolution of the DMP magnets was observed at elevated temperatures,and the temperature demagnetization and coercivity mechanism of the GBDP dual-main-phase(Nd,Ce)-Fe-B magnets are discussed.The results show that the shell composition of different types of grains in DMP magnets is similar,while the magnetic microstructure results indicate the Ce-rich grains tend to demagnetize first.Dy-rich shell with a high anisotropic field caused by GBDP leads to an increase in the nucleation field,which enhances the coercivity.It is found that much more grains exhibit single domain characteristics in the remanent state for GBDP dual-main-phase(Nd,Ce)-Fe-B magnets.In addition,the grains that undergo demagnetization first are Ce-rich or Nd-rich grains,which is different from that of non-diffused magnets.These results were not found in previous studies but can be intuitively characterized from the perspective of magnetic domains in this work,providing a new perspective and understanding of the performance improvement of magnetic materials.展开更多
To explore the spontaneous magnetization of iron-bearing rare earth ores during suspension roasting,binary minerals containing hematite and bastnaesite were used to investigate the effects of the roasting temperature,...To explore the spontaneous magnetization of iron-bearing rare earth ores during suspension roasting,binary minerals containing hematite and bastnaesite were used to investigate the effects of the roasting temperature,roasting time,and bastnaesite-to-hematite mass ratio on in-situ reduction of hematite in a N_(2)atmosphere.Relevant analytical tests were used to explore the mineral phase evolution during roasting,the magnetism and microstructure of the roasted products,the phase composition,and the surface element valence of concentrate.It was found that magnetic separation of the iron concentrate afforded an iron grade of 68.87%and a recovery of 93.18%under the optimum roasting conditions.During roasting,bastnaesite decomposed to generate CO_(2)and CO,and the compact structure of hematite was gradually destroyed,resulting in microcracks.Subsequently,the CO entered the surface of the hematite through the microcracks and reacted to form a magnetite shell,and the magnetite-encapsulated hematite particles were recovered via low-intensity magnetic separation.展开更多
The longitudinal and transverse waves of 2D magnetized complex plasma based on the drivendissipative Langevin dynamics simulation are investigated.The modified Yukawa potential with including the magnetization of back...The longitudinal and transverse waves of 2D magnetized complex plasma based on the drivendissipative Langevin dynamics simulation are investigated.The modified Yukawa potential with including the magnetization of background ions is used to account for the interaction of the charged dust particles.The simulation results are compared with the existing theories including quasilocalized charge approximation and randomphase approximation.In the weak magnetization regime,the wave spectra obtained from Yukawa simulation and modified Yukawa simulation basically are the same.In the strong magnetization regime,the magnetization of background ions and temperature ratio of background electrons to background ions play effects on the wave spectra of the system,particularly for the strongly coupled state.The dust acoustic waves in the weakly coupled state basically are not influenced by the magnetization of background ions.展开更多
Structural fine-tuning is of significant importance to enhance the magnetic anisotropy and elucidate the magneto-structural relationship for single molecule magnets(SMMs).For this purpose,two mononuclear Dy^(3+) SMMs:...Structural fine-tuning is of significant importance to enhance the magnetic anisotropy and elucidate the magneto-structural relationship for single molecule magnets(SMMs).For this purpose,two mononuclear Dy^(3+) SMMs:[Dy{HB(pz)3}2(Sal)](1) and [Dy{HB(pz)_(3)}_(2)(MeO-Sal)](2),where HB(pz)_(3)^(-)represents hydro tris(pyrazolyl)borate,Sal denotes salicyiaidehyde and MeO-Sal stands for 5-methoxysalicylaldehyde,were designed and synthesized.Single crystal X-ray diffraction tests show that the two SMMs have very similar eight-coordinated molecule structures,although the introducing of-MeO substituent on salicyiaidehyde ligand induces the changes on the molecule packing mode and the space group.Both the two SMMs have a Dy-O_(aryloxidebond) that is significantly shorter than other Dy-O/N bonds,which defines the orientation of main anisotropy axis of the ground Kramers doublets and engenders the slow relaxation of the magnetization behavior,as evidenced by the magnetic susceptibility and the ab initio calculation.Though with an electron-donating substituent on the axial Sal ligand in 2,the collective magnetic anisotropy is not enhanced and the corresponding magneto-structural relationship is discussed based on the experimental and theoretical calculation results.In addition,as neutral molecules,1 and 2 are soluble in several common organic solvents,like CH_(2)Cl_(2),CHCl_(3),THF and so on.展开更多
The manipulation of magnetization and spin polarization using electrical currents represents a fundamental breakthrough in spintronics.It has formed the foundation for data storage and next-generation computing system...The manipulation of magnetization and spin polarization using electrical currents represents a fundamental breakthrough in spintronics.It has formed the foundation for data storage and next-generation computing systems.Spin-transfer torque(STT)and spin-orbit torque(SOT)have emerged as prominent mechanisms in current-driven magnetization switching.However,these approaches typically require critical current densities in the range of 10^(6) to 10^(9) A·cm^(-2),resulting in significant heat generation during data writing processes.Herein,we report the discovery of an ultralow-vertical-current magnetization switching effect in a van der Waals ferromagnetic/ferroelectric heterostructure based on the modulation of the critical magnetic field(H_(C))using small vertical currents,with a critical current density as low as 1.81A·cm^(-2) and an average effective field(H_(eff)/J_(C))as high as 150.3mT·A^(-1)·cm^(2).This unique magnetization switching effect with ultralow-critical-vertical-current densities typically six to nine orders of magnitude lower than those of the STT and SOT provides a new transformative and viable pathway for developing next-generation spintronic and quantum technologies.展开更多
CaBaCo_(4)O_(7)has been widely studied because of its distinctive structure and magnetic properties.This study examined the influence of different cooling atmospheres on the structure,magnetic properties,and dielectri...CaBaCo_(4)O_(7)has been widely studied because of its distinctive structure and magnetic properties.This study examined the influence of different cooling atmospheres on the structure,magnetic properties,and dielectric behavior of CaBaCo_(4)O_(7).Samples were cooled under different atmospheric conditions to assess these influences.Our findings indicate that reduced oxygen content leads to increased lattice distortion.Since oxygen atoms play a crucial role in mediating magnetic exchange,oxygen deficiency disrupts long-range magnetic order and promotes short-range antiferromagnetic interactions.Additionally,the cooling atmosphere significantly impacts grain size,thereby affecting the dielectric constant and dielectric loss.In the argon-cooled CaBaCo_(4)O_(7)(Ar)sample,oxygen deficiency reduced dielectric permittivity and increased dielectric loss.展开更多
We investigate the origin of the 1/3 magnetization plateau in the S=1/2 kagome antiferromagnetic Heisenberg model using the variational Monte Carlo and exact diagonalization methods,to account for the recent experimen...We investigate the origin of the 1/3 magnetization plateau in the S=1/2 kagome antiferromagnetic Heisenberg model using the variational Monte Carlo and exact diagonalization methods,to account for the recent experimental observations in YCu_(3)(OH)_(6+x)Br_(3-x)and YCu_(3)(OD)_(6+x)Br_(3-x).We identify three degenerate valencebond-solid(VBS)states forming a√3×√3 unit cell.These states exhibit David-star patterns in the spin moment distribution with only two fractional values-1/3 and 2/3,and are related through translational transformations.While the spin correlations in these VBS states are found to be short-range,resembling a quantum spin liquid,we show that they have a vanishing topological entanglement entropy and thus are topologically trivial many-body states.Our theoretical results provide strong evidence that the 1/3 magnetization plateau observed in recent experiments arises from these√3×√3 VBS states with fractional spin moments.展开更多
本研究旨在建立一种高效、快速、选择性测定食品中痕量汞的方法。通过溶剂热法及后续的巯基化修饰,成功制备了一种新型巯基功能化磁性介孔二氧化硅(Thiol-functionalized Magnetic Mesoporous Silica,记为mSS@Fe_(3)O_(4))吸附剂。将该...本研究旨在建立一种高效、快速、选择性测定食品中痕量汞的方法。通过溶剂热法及后续的巯基化修饰,成功制备了一种新型巯基功能化磁性介孔二氧化硅(Thiol-functionalized Magnetic Mesoporous Silica,记为mSS@Fe_(3)O_(4))吸附剂。将该吸附剂用于磁性固相萃取(MSPE),结合原子荧光光谱法(AFS),构建了一种分析食品中痕量汞的新方法。通过X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)等手段对材料进行了表征,证实了巯基已成功接枝到磁性介孔二氧化硅表面。系统优化了萃取过程中的关键参数,包括样品pH值、吸附时间、吸附剂用量、洗脱液组成和上样体积。结果表明,归因于材料的介孔结构和高比表面积,吸附平衡在1 min内即可达到,实现了对Hg^(2+)的快速富集。在最优条件下,该吸附剂对Hg^(2+)的理论最大吸附容量(qm)为67.89 mg/g;在回收率保持>90%时,最大上样体积为200 mL,预浓缩因子可达200。该方法具有较宽的pH值(1~13)适用范围和优异的抗基质干扰能力。方法线性范围为0.10~4.0μg/L(相关系数r=0.9996),方法检出限(MDL)为0.012μg/kg,对空白样品进行7次平行测定的相对标准偏差(RSD)为2.4%(n=7)。通过对国家标准物质和多种实际样品(草鱼、大米等)的加标回收实验,验证了方法的准确性和可靠性,回收率在94.0%~106%。该方法集快速、高效、高选择性与高灵敏度于一体,为食品中痕量汞的常规监测提供了有力的技术支持。展开更多
After spinal cord injury,impairment of the sensorimotor circuit can lead to dysfunction in the motor,sensory,proprioceptive,and autonomic nervous systems.Functional recovery is often hindered by constraints on the tim...After spinal cord injury,impairment of the sensorimotor circuit can lead to dysfunction in the motor,sensory,proprioceptive,and autonomic nervous systems.Functional recovery is often hindered by constraints on the timing of interventions,combined with the limitations of current methods.To address these challenges,various techniques have been developed to aid in the repair and reconstruction of neural circuits at different stages of injury.Notably,neuromodulation has garnered considerable attention for its potential to enhance nerve regeneration,provide neuroprotection,restore neurons,and regulate the neural reorganization of circuits within the cerebral cortex and corticospinal tract.To improve the effectiveness of these interventions,the implementation of multitarget early interventional neuromodulation strategies,such as electrical and magnetic stimulation,is recommended to enhance functional recovery across different phases of nerve injury.This review concisely outlines the challenges encountered following spinal cord injury,synthesizes existing neurostimulation techniques while emphasizing neuroprotection,repair,and regeneration of impaired connections,and advocates for multi-targeted,task-oriented,and timely interventions.展开更多
This paper presents the structural design and dynamic analysis of the magnetic field of the collector of machining wastes. From the viewpoint of energy the magnetic coupled force exerted on machining wastes by the no...This paper presents the structural design and dynamic analysis of the magnetic field of the collector of machining wastes. From the viewpoint of energy the magnetic coupled force exerted on machining wastes by the nonuniform magnetic field of a permanent magnet has been discussed. The difficult problem that machining wastes attracted by a permanent magnet above the iron base platform has been solved.展开更多
We prepared Co_(x)Pt_(100-x)(x=40,45,50,55,60)nanoparticles by the sol-gel method.The phase composition and crystal structure,morphology and microstructure,and magnetic properties of the samples were characterized and...We prepared Co_(x)Pt_(100-x)(x=40,45,50,55,60)nanoparticles by the sol-gel method.The phase composition and crystal structure,morphology and microstructure,and magnetic properties of the samples were characterized and tested using X-ray diffraction(XRD),transmission electron microscopy(TEM),and vibrating sample magnetometer(VSM),respectively.The results demonstrate that the coercivity of CoPt nanoparticles can be effectively controlled by adjusting the atomic ratio of Co and Pt in the samples.Among the compositions studied,the Co_(45)Pt_(55)sample synthesized by the sol-gel method exhibits smaller grain size and a coercivity as high as 6.65×10^(5) A/m is achieved.The morphology and microstructure of the nanoparticles were analyzed by TEM images,indicating that a slight excess of Pt can effectively enhance the coercivity of CoPt nanoparticles.展开更多
基金supported by the National Natural Science Foundation of China (41804067, 42174090, 42250101, and 42250103)the Science Research Project of the Hebei Education Department (BJK2024107)+3 种基金the Hebei Natural Science Foundation (D2022403044)the Opening Fund of the Key Laboratory of Geological Survey and Evaluation of the Ministry of Education (GLAB2023ZR02)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources (MSFGPMR2022-4)the Excellent Young Scientist Fund of Hebei GEO University (YQ202403)。
文摘The lithospheric magnetic field is an important component of the geomagnetic field,and the oceanic lithosphere exhibits distinct characteristics.Because of its formation mechanisms,evolutionary history,and geomagnetic field polarity reversals,the oceanic lithosphere has significant remanent magnetization,which causes magnetic anomaly stripes parallel to the mid-ocean ridges.However,it is difficult to construct a high-resolution lithospheric magnetic field model in oceanic regions with relatively sparse data or no data.Using forward calculated lithospheric magnetic field data based on an oceanic remanent magnetization(ORM) model with physical and geological foundations as a supplement is a feasible approach.We first collect the latest available oceanic crust age grid,plate motion model,geomagnetic polarity timescale,and oceanic lithosphere thermal structure.Combining the assumptions that the paleo geomagnetic field is a geocentric axial dipole field and that the normal oceanic crust moves only in the horizontal direction,we construct a vertically integrated ORM model of the normal oceanic crust with a known age,including the intensity,inclination,and declination.Both the ORM model and the global induced magnetization(GIM) model are then scaled from two aspects between their forward calculated results and the lithospheric magnetic field model LCS-1.One aspect is the difference in their spherical harmonic power spectra,and the other is the misfit between the grid data over the oceans.We last compare the forward calculated lithospheric magnetic anomaly from the scaled ORM and GIM models with the Macao Science Satellite-1(MSS-1) observed data.The comparison results show that the magnetic anomalies over the normal oceanic crust regions at satellite altitude are mainly contributed by the high-intensity remanent magnetization corresponding to the Cretaceous magnetic quiet period.In these regions,the predicted and observed anomalies show good consistency in spatial distribution,whereas their amplitude differences vary across regions.This result suggests that regional ORM construction should be attempted in future work to address these amplitude discrepancies.
基金supported by the National Key Research and Development Program of China(Nos.2021YFB3503003,2021YFB3503100,and 2022YFB3505401).
文摘The combination of dual-main-phase(DMP)(Nd,Ce)-Fe-B magnets and grain boundary diffusion process(GBDP)is currently a research topic for obtaining high-cost performance materials in rare earth permanent magnet fields.The novel structural features of GBDP(Nd,Ce)-Fe-B magnets give a version of different domain reversal processes from those of non-diffused magnets.In this work,the in-situ magnetic domain evolution of the DMP magnets was observed at elevated temperatures,and the temperature demagnetization and coercivity mechanism of the GBDP dual-main-phase(Nd,Ce)-Fe-B magnets are discussed.The results show that the shell composition of different types of grains in DMP magnets is similar,while the magnetic microstructure results indicate the Ce-rich grains tend to demagnetize first.Dy-rich shell with a high anisotropic field caused by GBDP leads to an increase in the nucleation field,which enhances the coercivity.It is found that much more grains exhibit single domain characteristics in the remanent state for GBDP dual-main-phase(Nd,Ce)-Fe-B magnets.In addition,the grains that undergo demagnetization first are Ce-rich or Nd-rich grains,which is different from that of non-diffused magnets.These results were not found in previous studies but can be intuitively characterized from the perspective of magnetic domains in this work,providing a new perspective and understanding of the performance improvement of magnetic materials.
基金the financial support from the National Key R&D Program of China(No.2022YFC2905800)the National Natural Science Foundation of China(Nos.52174242,52130406)。
文摘To explore the spontaneous magnetization of iron-bearing rare earth ores during suspension roasting,binary minerals containing hematite and bastnaesite were used to investigate the effects of the roasting temperature,roasting time,and bastnaesite-to-hematite mass ratio on in-situ reduction of hematite in a N_(2)atmosphere.Relevant analytical tests were used to explore the mineral phase evolution during roasting,the magnetism and microstructure of the roasted products,the phase composition,and the surface element valence of concentrate.It was found that magnetic separation of the iron concentrate afforded an iron grade of 68.87%and a recovery of 93.18%under the optimum roasting conditions.During roasting,bastnaesite decomposed to generate CO_(2)and CO,and the compact structure of hematite was gradually destroyed,resulting in microcracks.Subsequently,the CO entered the surface of the hematite through the microcracks and reacted to form a magnetite shell,and the magnetite-encapsulated hematite particles were recovered via low-intensity magnetic separation.
基金Supported by National Natural Science Foundation of China(12275354,11805272)College Students'Innovative Entrepreneurial Training Plan Program of Civil Aviation University of China(202210059079)。
文摘The longitudinal and transverse waves of 2D magnetized complex plasma based on the drivendissipative Langevin dynamics simulation are investigated.The modified Yukawa potential with including the magnetization of background ions is used to account for the interaction of the charged dust particles.The simulation results are compared with the existing theories including quasilocalized charge approximation and randomphase approximation.In the weak magnetization regime,the wave spectra obtained from Yukawa simulation and modified Yukawa simulation basically are the same.In the strong magnetization regime,the magnetization of background ions and temperature ratio of background electrons to background ions play effects on the wave spectra of the system,particularly for the strongly coupled state.The dust acoustic waves in the weakly coupled state basically are not influenced by the magnetization of background ions.
基金Project supported by the Nature Science Foundation of Shaanxi Province (2023-JC-YB-137)National Natural Science Foundation of China (21901200)。
文摘Structural fine-tuning is of significant importance to enhance the magnetic anisotropy and elucidate the magneto-structural relationship for single molecule magnets(SMMs).For this purpose,two mononuclear Dy^(3+) SMMs:[Dy{HB(pz)3}2(Sal)](1) and [Dy{HB(pz)_(3)}_(2)(MeO-Sal)](2),where HB(pz)_(3)^(-)represents hydro tris(pyrazolyl)borate,Sal denotes salicyiaidehyde and MeO-Sal stands for 5-methoxysalicylaldehyde,were designed and synthesized.Single crystal X-ray diffraction tests show that the two SMMs have very similar eight-coordinated molecule structures,although the introducing of-MeO substituent on salicyiaidehyde ligand induces the changes on the molecule packing mode and the space group.Both the two SMMs have a Dy-O_(aryloxidebond) that is significantly shorter than other Dy-O/N bonds,which defines the orientation of main anisotropy axis of the ground Kramers doublets and engenders the slow relaxation of the magnetization behavior,as evidenced by the magnetic susceptibility and the ab initio calculation.Though with an electron-donating substituent on the axial Sal ligand in 2,the collective magnetic anisotropy is not enhanced and the corresponding magneto-structural relationship is discussed based on the experimental and theoretical calculation results.In addition,as neutral molecules,1 and 2 are soluble in several common organic solvents,like CH_(2)Cl_(2),CHCl_(3),THF and so on.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFE0134600)the Interdisciplinary Research Program of Huazhong University of Science and Technology(Grant No.2023JCYJ007)+3 种基金the China Postdoctoral Science Foundation(Grant No.2022M711234)the National Natural Science Foundation of China(Grant Nos.52272152,61674063,and 62074061)the Natural Science Foundation of Hubei Province,China(Grant No.2022CFA031)the Foundation of Shenzhen Science and Technology Innovation Committee(Grant Nos.JCYJ20180504170444967,JCYJ20210324142010030,and JCYJ20230807143614031)。
文摘The manipulation of magnetization and spin polarization using electrical currents represents a fundamental breakthrough in spintronics.It has formed the foundation for data storage and next-generation computing systems.Spin-transfer torque(STT)and spin-orbit torque(SOT)have emerged as prominent mechanisms in current-driven magnetization switching.However,these approaches typically require critical current densities in the range of 10^(6) to 10^(9) A·cm^(-2),resulting in significant heat generation during data writing processes.Herein,we report the discovery of an ultralow-vertical-current magnetization switching effect in a van der Waals ferromagnetic/ferroelectric heterostructure based on the modulation of the critical magnetic field(H_(C))using small vertical currents,with a critical current density as low as 1.81A·cm^(-2) and an average effective field(H_(eff)/J_(C))as high as 150.3mT·A^(-1)·cm^(2).This unique magnetization switching effect with ultralow-critical-vertical-current densities typically six to nine orders of magnitude lower than those of the STT and SOT provides a new transformative and viable pathway for developing next-generation spintronic and quantum technologies.
基金Project supported by the Key Research Project of Colleges and Universities of Henan Province(Grant No.23A140017)the Research Project of Department of Science and Technology of Henan Province(Grant No.242102231072)+1 种基金the National Natural Sciences Foundation of China(Grant No.52402336)the special fund of the Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences“New magnetic materials and structural devices for 5G communication”(Grant No.E41602QB01).
文摘CaBaCo_(4)O_(7)has been widely studied because of its distinctive structure and magnetic properties.This study examined the influence of different cooling atmospheres on the structure,magnetic properties,and dielectric behavior of CaBaCo_(4)O_(7).Samples were cooled under different atmospheric conditions to assess these influences.Our findings indicate that reduced oxygen content leads to increased lattice distortion.Since oxygen atoms play a crucial role in mediating magnetic exchange,oxygen deficiency disrupts long-range magnetic order and promotes short-range antiferromagnetic interactions.Additionally,the cooling atmosphere significantly impacts grain size,thereby affecting the dielectric constant and dielectric loss.In the argon-cooled CaBaCo_(4)O_(7)(Ar)sample,oxygen deficiency reduced dielectric permittivity and increased dielectric loss.
基金supported by the National Key Projects for Research and Development of China(Grant Nos.2021YFA1400400 and 2024YFA1408104)the National Natural Science Foundation of China(Grant Nos.12434005,12374137,and 92165205).
文摘We investigate the origin of the 1/3 magnetization plateau in the S=1/2 kagome antiferromagnetic Heisenberg model using the variational Monte Carlo and exact diagonalization methods,to account for the recent experimental observations in YCu_(3)(OH)_(6+x)Br_(3-x)and YCu_(3)(OD)_(6+x)Br_(3-x).We identify three degenerate valencebond-solid(VBS)states forming a√3×√3 unit cell.These states exhibit David-star patterns in the spin moment distribution with only two fractional values-1/3 and 2/3,and are related through translational transformations.While the spin correlations in these VBS states are found to be short-range,resembling a quantum spin liquid,we show that they have a vanishing topological entanglement entropy and thus are topologically trivial many-body states.Our theoretical results provide strong evidence that the 1/3 magnetization plateau observed in recent experiments arises from these√3×√3 VBS states with fractional spin moments.
基金supported by the National Key Research and Development Program of China,No.2023YFC3603705(to DX)the National Natural Science Foundation of China,No.82302866(to YZ).
文摘After spinal cord injury,impairment of the sensorimotor circuit can lead to dysfunction in the motor,sensory,proprioceptive,and autonomic nervous systems.Functional recovery is often hindered by constraints on the timing of interventions,combined with the limitations of current methods.To address these challenges,various techniques have been developed to aid in the repair and reconstruction of neural circuits at different stages of injury.Notably,neuromodulation has garnered considerable attention for its potential to enhance nerve regeneration,provide neuroprotection,restore neurons,and regulate the neural reorganization of circuits within the cerebral cortex and corticospinal tract.To improve the effectiveness of these interventions,the implementation of multitarget early interventional neuromodulation strategies,such as electrical and magnetic stimulation,is recommended to enhance functional recovery across different phases of nerve injury.This review concisely outlines the challenges encountered following spinal cord injury,synthesizes existing neurostimulation techniques while emphasizing neuroprotection,repair,and regeneration of impaired connections,and advocates for multi-targeted,task-oriented,and timely interventions.
文摘This paper presents the structural design and dynamic analysis of the magnetic field of the collector of machining wastes. From the viewpoint of energy the magnetic coupled force exerted on machining wastes by the nonuniform magnetic field of a permanent magnet has been discussed. The difficult problem that machining wastes attracted by a permanent magnet above the iron base platform has been solved.
基金Funded by the National Natural Science Foundation of China(No.52371169)。
文摘We prepared Co_(x)Pt_(100-x)(x=40,45,50,55,60)nanoparticles by the sol-gel method.The phase composition and crystal structure,morphology and microstructure,and magnetic properties of the samples were characterized and tested using X-ray diffraction(XRD),transmission electron microscopy(TEM),and vibrating sample magnetometer(VSM),respectively.The results demonstrate that the coercivity of CoPt nanoparticles can be effectively controlled by adjusting the atomic ratio of Co and Pt in the samples.Among the compositions studied,the Co_(45)Pt_(55)sample synthesized by the sol-gel method exhibits smaller grain size and a coercivity as high as 6.65×10^(5) A/m is achieved.The morphology and microstructure of the nanoparticles were analyzed by TEM images,indicating that a slight excess of Pt can effectively enhance the coercivity of CoPt nanoparticles.