This study presents preliminary results of tidal-induced magnetic field signals extracted from 9 months of data collected by the Macao Science Satellite-1(MSS-1) from November 2023 to July 2024. Tidal signals were iso...This study presents preliminary results of tidal-induced magnetic field signals extracted from 9 months of data collected by the Macao Science Satellite-1(MSS-1) from November 2023 to July 2024. Tidal signals were isolated using sequential modeling techniques by subtracting non-tidal field model predictions from observed magnetic data. The extracted MSS-1 results show strong agreement with those from the Swarm and CryoSat satellites. MSS-1 effectively captures key large-scale tidal-induced magnetic anomalies, mainly due to its unique 41-degree low-inclination orbit, which provides wide coverage of local times. This finding underscores the strong potential of MSS-1 to recover high-resolution global tidal magnetic field models as more MSS-1 data become available.展开更多
The lithospheric magnetic field is an important component of the geomagnetic field,and the oceanic lithosphere exhibits distinct characteristics.Because of its formation mechanisms,evolutionary history,and geomagnetic...The lithospheric magnetic field is an important component of the geomagnetic field,and the oceanic lithosphere exhibits distinct characteristics.Because of its formation mechanisms,evolutionary history,and geomagnetic field polarity reversals,the oceanic lithosphere has significant remanent magnetization,which causes magnetic anomaly stripes parallel to the mid-ocean ridges.However,it is difficult to construct a high-resolution lithospheric magnetic field model in oceanic regions with relatively sparse data or no data.Using forward calculated lithospheric magnetic field data based on an oceanic remanent magnetization(ORM) model with physical and geological foundations as a supplement is a feasible approach.We first collect the latest available oceanic crust age grid,plate motion model,geomagnetic polarity timescale,and oceanic lithosphere thermal structure.Combining the assumptions that the paleo geomagnetic field is a geocentric axial dipole field and that the normal oceanic crust moves only in the horizontal direction,we construct a vertically integrated ORM model of the normal oceanic crust with a known age,including the intensity,inclination,and declination.Both the ORM model and the global induced magnetization(GIM) model are then scaled from two aspects between their forward calculated results and the lithospheric magnetic field model LCS-1.One aspect is the difference in their spherical harmonic power spectra,and the other is the misfit between the grid data over the oceans.We last compare the forward calculated lithospheric magnetic anomaly from the scaled ORM and GIM models with the Macao Science Satellite-1(MSS-1) observed data.The comparison results show that the magnetic anomalies over the normal oceanic crust regions at satellite altitude are mainly contributed by the high-intensity remanent magnetization corresponding to the Cretaceous magnetic quiet period.In these regions,the predicted and observed anomalies show good consistency in spatial distribution,whereas their amplitude differences vary across regions.This result suggests that regional ORM construction should be attempted in future work to address these amplitude discrepancies.展开更多
The combination of dual-main-phase(DMP)(Nd,Ce)-Fe-B magnets and grain boundary diffusion process(GBDP)is currently a research topic for obtaining high-cost performance materials in rare earth permanent magnet fields.T...The combination of dual-main-phase(DMP)(Nd,Ce)-Fe-B magnets and grain boundary diffusion process(GBDP)is currently a research topic for obtaining high-cost performance materials in rare earth permanent magnet fields.The novel structural features of GBDP(Nd,Ce)-Fe-B magnets give a version of different domain reversal processes from those of non-diffused magnets.In this work,the in-situ magnetic domain evolution of the DMP magnets was observed at elevated temperatures,and the temperature demagnetization and coercivity mechanism of the GBDP dual-main-phase(Nd,Ce)-Fe-B magnets are discussed.The results show that the shell composition of different types of grains in DMP magnets is similar,while the magnetic microstructure results indicate the Ce-rich grains tend to demagnetize first.Dy-rich shell with a high anisotropic field caused by GBDP leads to an increase in the nucleation field,which enhances the coercivity.It is found that much more grains exhibit single domain characteristics in the remanent state for GBDP dual-main-phase(Nd,Ce)-Fe-B magnets.In addition,the grains that undergo demagnetization first are Ce-rich or Nd-rich grains,which is different from that of non-diffused magnets.These results were not found in previous studies but can be intuitively characterized from the perspective of magnetic domains in this work,providing a new perspective and understanding of the performance improvement of magnetic materials.展开更多
The longitudinal and transverse waves of 2D magnetized complex plasma based on the drivendissipative Langevin dynamics simulation are investigated.The modified Yukawa potential with including the magnetization of back...The longitudinal and transverse waves of 2D magnetized complex plasma based on the drivendissipative Langevin dynamics simulation are investigated.The modified Yukawa potential with including the magnetization of background ions is used to account for the interaction of the charged dust particles.The simulation results are compared with the existing theories including quasilocalized charge approximation and randomphase approximation.In the weak magnetization regime,the wave spectra obtained from Yukawa simulation and modified Yukawa simulation basically are the same.In the strong magnetization regime,the magnetization of background ions and temperature ratio of background electrons to background ions play effects on the wave spectra of the system,particularly for the strongly coupled state.The dust acoustic waves in the weakly coupled state basically are not influenced by the magnetization of background ions.展开更多
Objective To qualitatively assess the diagnostic performance of dynamic contrast enhancement(DCE),diffusionweighted imaging(DWI),and T2-weighted imaging(T2WI),alone or in combination,in the evaluation of breast cancer...Objective To qualitatively assess the diagnostic performance of dynamic contrast enhancement(DCE),diffusionweighted imaging(DWI),and T2-weighted imaging(T2WI),alone or in combination,in the evaluation of breast cancer.Methods We retrospectively reviewed the records of 394 consecutive patients with pathologically confirmed breast lesions who had undergone 3-T magnetic resonance imaging(MRI).The morphological characteristics of breast lesions were evaluated using DCE,DWI,and T2WI based on BI-RADS lexicon descriptors by trained radiologists.Patients were categorized into mass and non-mass groups based on MRI characteristics of the lesions,and the differences between benign and malignant lesions in each group were compared.Clinical prediction models for breast cancer diagnosis were constructed using logistic regression analysis.Diagnostic efficacies were compared using the area under the receiver operating characteristic curve(AUC)and DeLong test.Results For mass-like lesions,all the morphological parameters significantly differentiated benign and malignant lesions on consensus DCE,DWI,and T2WI(P<0.05).The combined method(DCE+DWI+T2WI)had a higher AUC(0.865)than any of the individual modality(DCE:0.786;DWI:0.793;T2WI:0.809)(P<0.05).For non-mass-like lesions,DWI signal intensity was a significant predictor of malignancy(P=0.036),but the model using DWI alone had a low AUC(0.669).Conclusion Morphological assessment using the combination of DCE,DWI,and T2WI provides better diagnostic value in differentiating benign and malignant breast mass-like lesions than assessment with only one of the modalities.展开更多
Structural fine-tuning is of significant importance to enhance the magnetic anisotropy and elucidate the magneto-structural relationship for single molecule magnets(SMMs).For this purpose,two mononuclear Dy^(3+) SMMs:...Structural fine-tuning is of significant importance to enhance the magnetic anisotropy and elucidate the magneto-structural relationship for single molecule magnets(SMMs).For this purpose,two mononuclear Dy^(3+) SMMs:[Dy{HB(pz)3}2(Sal)](1) and [Dy{HB(pz)_(3)}_(2)(MeO-Sal)](2),where HB(pz)_(3)^(-)represents hydro tris(pyrazolyl)borate,Sal denotes salicyiaidehyde and MeO-Sal stands for 5-methoxysalicylaldehyde,were designed and synthesized.Single crystal X-ray diffraction tests show that the two SMMs have very similar eight-coordinated molecule structures,although the introducing of-MeO substituent on salicyiaidehyde ligand induces the changes on the molecule packing mode and the space group.Both the two SMMs have a Dy-O_(aryloxidebond) that is significantly shorter than other Dy-O/N bonds,which defines the orientation of main anisotropy axis of the ground Kramers doublets and engenders the slow relaxation of the magnetization behavior,as evidenced by the magnetic susceptibility and the ab initio calculation.Though with an electron-donating substituent on the axial Sal ligand in 2,the collective magnetic anisotropy is not enhanced and the corresponding magneto-structural relationship is discussed based on the experimental and theoretical calculation results.In addition,as neutral molecules,1 and 2 are soluble in several common organic solvents,like CH_(2)Cl_(2),CHCl_(3),THF and so on.展开更多
Magnetic tracking technologies have a promising application in detecting the real-time position andattitude of a capsule endoscope.However,most of them need to measure the magnetic moment of a permanentmagnet(PM)embed...Magnetic tracking technologies have a promising application in detecting the real-time position andattitude of a capsule endoscope.However,most of them need to measure the magnetic moment of a permanentmagnet(PM)embedded in the capsule accurately in advance,which can cause inconvenience to practical application.To solve this problem,this paper proposes a magnetic tracking system with the capability of measuring themagnetic moment of the PM automatically.The system is constructed based on a 4×4 magnetic sensor array,whose sensing data is analyzed to determine the magnetic moment by referring to a magnetic dipole model.Withthe determined magnetic moment,a method of fusing the linear calculation and Levenberg-Marquardt algorithmsis proposed to determine the 3D position and 2D attitude of the PM.The experiments verified that the proposedsystem can achieve localization errors of 0.48 mm,0.42 mm,and 0.83 mm and orientation errors of 0.66◦,0.64◦,and 0.87◦for a PM(∅10 mm×10 mm)at vertical heights of 5 cm,10 cm,and 15 cm from the magnetic sensorarray,respectively.展开更多
To explore the spontaneous magnetization of iron-bearing rare earth ores during suspension roasting,binary minerals containing hematite and bastnaesite were used to investigate the effects of the roasting temperature,...To explore the spontaneous magnetization of iron-bearing rare earth ores during suspension roasting,binary minerals containing hematite and bastnaesite were used to investigate the effects of the roasting temperature,roasting time,and bastnaesite-to-hematite mass ratio on in-situ reduction of hematite in a N_(2)atmosphere.Relevant analytical tests were used to explore the mineral phase evolution during roasting,the magnetism and microstructure of the roasted products,the phase composition,and the surface element valence of concentrate.It was found that magnetic separation of the iron concentrate afforded an iron grade of 68.87%and a recovery of 93.18%under the optimum roasting conditions.During roasting,bastnaesite decomposed to generate CO_(2)and CO,and the compact structure of hematite was gradually destroyed,resulting in microcracks.Subsequently,the CO entered the surface of the hematite through the microcracks and reacted to form a magnetite shell,and the magnetite-encapsulated hematite particles were recovered via low-intensity magnetic separation.展开更多
The manipulation of magnetization and spin polarization using electrical currents represents a fundamental breakthrough in spintronics.It has formed the foundation for data storage and next-generation computing system...The manipulation of magnetization and spin polarization using electrical currents represents a fundamental breakthrough in spintronics.It has formed the foundation for data storage and next-generation computing systems.Spin-transfer torque(STT)and spin-orbit torque(SOT)have emerged as prominent mechanisms in current-driven magnetization switching.However,these approaches typically require critical current densities in the range of 10^(6) to 10^(9) A·cm^(-2),resulting in significant heat generation during data writing processes.Herein,we report the discovery of an ultralow-vertical-current magnetization switching effect in a van der Waals ferromagnetic/ferroelectric heterostructure based on the modulation of the critical magnetic field(H_(C))using small vertical currents,with a critical current density as low as 1.81A·cm^(-2) and an average effective field(H_(eff)/J_(C))as high as 150.3mT·A^(-1)·cm^(2).This unique magnetization switching effect with ultralow-critical-vertical-current densities typically six to nine orders of magnitude lower than those of the STT and SOT provides a new transformative and viable pathway for developing next-generation spintronic and quantum technologies.展开更多
CaBaCo_(4)O_(7)has been widely studied because of its distinctive structure and magnetic properties.This study examined the influence of different cooling atmospheres on the structure,magnetic properties,and dielectri...CaBaCo_(4)O_(7)has been widely studied because of its distinctive structure and magnetic properties.This study examined the influence of different cooling atmospheres on the structure,magnetic properties,and dielectric behavior of CaBaCo_(4)O_(7).Samples were cooled under different atmospheric conditions to assess these influences.Our findings indicate that reduced oxygen content leads to increased lattice distortion.Since oxygen atoms play a crucial role in mediating magnetic exchange,oxygen deficiency disrupts long-range magnetic order and promotes short-range antiferromagnetic interactions.Additionally,the cooling atmosphere significantly impacts grain size,thereby affecting the dielectric constant and dielectric loss.In the argon-cooled CaBaCo_(4)O_(7)(Ar)sample,oxygen deficiency reduced dielectric permittivity and increased dielectric loss.展开更多
The two-dimensional kagome lattice serves as a prototypical platform for exploring quantum spin liquids owing to its pronounced geometric frustration.Substantial advancements have been achieved in herbertsmithite and ...The two-dimensional kagome lattice serves as a prototypical platform for exploring quantum spin liquids owing to its pronounced geometric frustration.Substantial advancements have been achieved in herbertsmithite and its structural analogs.These quantum spin liquid candidates exhibit large superexchange interactions yet resist magnetic ordering down to the lowest measurable temperatures,which are typically three or four orders of magnitude below the energy scale of the primary exchange energies.Nevertheless,the existence of unavoidable intrinsic interlayer magnetic impurities leads to persistent debates on their ground states.A breakthrough emerged with the discovery of YCu_(3)(OH)_(6+x)X_(3-x)(X=Cl,Br),a novel material family rigorously verifed to eliminate magnetic impurity interference.This short review highlights critical advances in these materials,emphasizing experimental signatures consistent with a Dirac quantum spin liquid and the observation of a oneninth magnetization plateau and possible quantum oscillations.Local structural characteristics play a crucial role in clarifying the complex emergent quantum phenomena of these materials.Collectively,these fndings establish this material class as a promising platform for investigating quantum spin liquid behavior in two-dimensional kagome lattices.展开更多
We investigate the origin of the 1/3 magnetization plateau in the S=1/2 kagome antiferromagnetic Heisenberg model using the variational Monte Carlo and exact diagonalization methods,to account for the recent experimen...We investigate the origin of the 1/3 magnetization plateau in the S=1/2 kagome antiferromagnetic Heisenberg model using the variational Monte Carlo and exact diagonalization methods,to account for the recent experimental observations in YCu_(3)(OH)_(6+x)Br_(3-x)and YCu_(3)(OD)_(6+x)Br_(3-x).We identify three degenerate valencebond-solid(VBS)states forming a√3×√3 unit cell.These states exhibit David-star patterns in the spin moment distribution with only two fractional values-1/3 and 2/3,and are related through translational transformations.While the spin correlations in these VBS states are found to be short-range,resembling a quantum spin liquid,we show that they have a vanishing topological entanglement entropy and thus are topologically trivial many-body states.Our theoretical results provide strong evidence that the 1/3 magnetization plateau observed in recent experiments arises from these√3×√3 VBS states with fractional spin moments.展开更多
After the fabrication of magnetic resonance superconducting magnets,the magnetic field inhomogeneity needs to be accurately measured for subsequent shimming.However,conventional measurement methods are susceptible to ...After the fabrication of magnetic resonance superconducting magnets,the magnetic field inhomogeneity needs to be accurately measured for subsequent shimming.However,conventional measurement methods are susceptible to magnetic fields,have poor compatibility,and are difficult to adapt to various types of magnets.This paper proposes a new field measuring system based on a three-axis movable platform.The system utilizes non-magnetic materials and an innovative hand-wheel lifting design that can be adapted to various aperture magnets,thus obviating the necessity for electrically driven equipment and addressing safety concerns in strong magnetic fields.In addition,the measurement system offers high accuracy up to 1 mm and a wide measurable range.The fields of 3 T and 7 T magnets were mapped using the designed system with diameter of spherical volume(DSV)of 160 mm and 130 mm,respectively.Experimental results demonstrate that the magnetic field measurement system has strong compatibility and can accurately map the magnetic field at arbitrary positions,which is critical for shimming studies.展开更多
Using the determinant quantum Monte Carlo method,we explore a rich phase diagram featuring strain-induced metal-insulator and magnetic phase transitions in an interacting two-dimensional Dirac fermion system.Asymmetri...Using the determinant quantum Monte Carlo method,we explore a rich phase diagram featuring strain-induced metal-insulator and magnetic phase transitions in an interacting two-dimensional Dirac fermion system.Asymmetric strain applied along the zigzag crystal direction drives the semimetallic regime into a band-insulating phase,or it breaks the antiferromagnetic order of the Mott insulator,inducing a nonmagnetic insulating phase under strong correlations.The critical strain required for band gap opening or for a transport phase transition is significantly reduced in the presence of Coulomb repulsion,while increasing interaction strength makes it more difficult for strain to induce a nonmagnetic phase transition.In addition,we measure in detail the band gap modulation by strain and identify a doping effect whereby doping inhibits band gap opening.Our results provide an effective way to tune the transport gap,which could help extend the applications of graphene,whose zero band gap currently limits its use.展开更多
BACKGROUND Irritable bowel syndrome(IBS)is a prevalent functional gastrointestinal(FGITD)disorder,the diagnosis is based on Rome Criteria and other subjective tools.Because IBS overlaps with other FGITD and organic di...BACKGROUND Irritable bowel syndrome(IBS)is a prevalent functional gastrointestinal(FGITD)disorder,the diagnosis is based on Rome Criteria and other subjective tools.Because IBS overlaps with other FGITD and organic diseases,and the subjective tools do not apply to patients with cognitive decline,objective diagnostic tools are important in this category of patients.AIM To discuss the role of imaging in IBS diagnosis.METHODS We systematically searched three databases for articles published in the English language with no limitation to a specific period.The literature search was conducted in June and July 2024.The keywords used are IBS and functional bowel disorders,computed tomography,Magnetic Resonance Imaging,functional brain magnetic resonance imaging(MRI),and static brain MRI,and were linked with the terms"AND"and"OR".Out of the 679 articles,578 remained after duplication removal.However,50 full texts were used in the review.RESULTS Magnetic resonance imaging is superior due to its sensitivity,lack of radiation exposure,and lack of need for bowel preparation.Patients with IBS had smaller colonic and rectal volumes compared to healthy controls and functional constipation.Dynamic and static Magnetic Resonance Imaging of the brain showed increased activity,thinning,and increased volumes in specific areas of pain modulation.The above abnormalities are not uniform and vary significantly according to the type of IBS,the duration and intensity of symptoms,gender,and culture.CONCLUSION Magnetic resonance imaging shows smaller colonic and rectal volumes,and increased activity,thinning,and increased volumes in specific areas of pain modulation.Large trials incorporating all above limitations are needed.展开更多
BACKGROUND Trichotillomania is a challenging to treat psychiatric disorder,with limited evidence for pharmacotherapy.Treatment typically involves medication,cognitive behavioral therapy,and behavioral interventions.Re...BACKGROUND Trichotillomania is a challenging to treat psychiatric disorder,with limited evidence for pharmacotherapy.Treatment typically involves medication,cognitive behavioral therapy,and behavioral interventions.Recently,transcranial magnetic stimulation(TMS)has emerged as a potential treatment strategy.AIM To assess the role of TMS in treating trichotillomania.METHODS A systematic search using specific terms was done in PubMed and Scopus databases for articles published until May 17,2024,related to trichotillomania and TMS.The search included randomized controlled trials,open-label studies,case series,case reports,and retrospective chart reviews,following the Preferred Items for Systematic Reviews and Meta-Analysis guideline.RESULTS We identified 32 articles(6 in PubMed and 26 in Scopus).After removing duplicates and articles that did not meet the selection criteria,we conducted a final analysis of four articles.These included one retrospective study,two case series,and one case study,with a total of 22 patients diagnosed with trichotillomania enrolled across all four studies.The brain areas targeted were the supplementary motor area(SMA),pre-SMA,and left dorsolateral prefrontal cortex.The studies reported an improvement in the severity of symptoms of trichotillomania in the majority of patients with negligible side effects.Nevertheless,it is important to note that the existing studies are mostly of low to moderate quality.CONCLUSION Early evidence suggests repetitive TMS and accelerated continuous theta burst stimulation can help treat trichotillomania adjunctively to other treatments.展开更多
Objective:Although bariatric surgeries are widely performed around the world,patients frequently experience the recurrence of pre-existing gastroesophageal reflux disease(GERD)symptoms or develop new symptoms,some of ...Objective:Although bariatric surgeries are widely performed around the world,patients frequently experience the recurrence of pre-existing gastroesophageal reflux disease(GERD)symptoms or develop new symptoms,some of which are resistant to medical treatment.This study investigates the effect and outcome of magnetic sphincter augmentation(MSA),a minimally invasive treatment for GERD,in this population.Methods:A thorough search of the PubMed,Cochrane,Scopus,Web of Science,and Google Scholar databases from inception until June 6,2024 was performed to retrieve relevant studies that evaluated the effects of MSA on the GERD health-related quality of life(GERD-HRQL)score and the reduction in proton pump inhibitor(PPI)use in patients who underwent bariatric surgery.The“meta”package in RStudio version 2023.12.0 t 369 was used.Results:A total of eight studies were included in the systematic review and seven studies were included in the meta-analysis.MSA significantly reduced the GERD-HRQL score(MD?27.55[95%CI:30.99 to24.11],p<0.01)and PPI use(RR?0.23[95%CI:0.16 to 0.33],p<0.01).Conclusion:MSA is a viable treatment option for patients with GERD symptoms who undergo bariatric surgery.This approach showed promising results in terms of reducing the GERD-HRQL score and reducing the use of PPI.展开更多
In recent years,due to the scarcity of domestic radioisotopes,the Chinese government has strongly supported the development of dedicated radioisotope production facilities.This paper presents conceptual design simulat...In recent years,due to the scarcity of domestic radioisotopes,the Chinese government has strongly supported the development of dedicated radioisotope production facilities.This paper presents conceptual design simulations of an 11 MeV,50μA,H^(-) compact superconducting cyclotron for radioisotope production.This paper focuses primarily on four aspects:magnet system design,central region configuration,beam dynamics analysis,and extraction system design.This paper outlines the cyclotron's primary parameters and key steps in the development process.展开更多
Background:Building upon our previous work that developed a folate receptor-mediated,euphaorbia factor L1-loaded PLGA microsphere system integrating active and magnetic targeting for theranostics,further investigation...Background:Building upon our previous work that developed a folate receptor-mediated,euphaorbia factor L1-loaded PLGA microsphere system integrating active and magnetic targeting for theranostics,further investigation into its in vivo pharmacokinetics and tissue distribution is warranted despite its demonstrated biocompatibility and safety.Methods:A UPLC-MS/MS method was established to determine the concentration of euphorbia sterol in rat plasma and mouse tissue homogenates,healthy male SD rats and KM mice were administered in groups,drug concentrations at different time points were determined,pharmacokinetic parameters were analyzed by DAS software,and data were processed by SAS software.Results:The proposed method met the requirements of biological sample detection.The plasma pharmacokinetics of rats showed that the drug concentration in the microsphere group was lower than that in the injection group,and the parameters such as mean residence time(MRT(0–t)),half-life(T1/2z)and apparent volume of distribution(Vz)were significantly different from those in the solution group.The distribution of mouse tissues showed that the drug concentrations in the liver and lung tissues of the microsphere preparation group were higher than those in the injection group,and the drug concentrations in the lung and liver tissues were more distributed.Conclusion:The targeted drug delivery system changed the pharmacokinetic behavior and tissue distribution of euphorbia sterol,slowed down plasma elimination,prolonged the half-life,and improved the targeting of drugs in lung and liver tissues and the magnetic targeting effect of lungs.展开更多
Belt conveyors are extensively utilized in mining and power industries.In a typical coal mine conveyor system,coal is transported over distances exceeding 2 km,involving more than 20000 idlers,which far exceeds a reas...Belt conveyors are extensively utilized in mining and power industries.In a typical coal mine conveyor system,coal is transported over distances exceeding 2 km,involving more than 20000 idlers,which far exceeds a reasonable manual inspection capacity.Given that idlers typically have a lifespan of 1-2 years,there is an urgent need for a rapid,cost-effective,and intelligent safety monitoring system.However,current embedded systems face prohibitive replacement costs,while conventional monitoring technologies suffer from inefficiency at low rotational speeds and lack systematic structural optimization frameworks for diverse idler types and parameters.To address these challenges,this paper introduces an integrated,on-site detachable self-powered idler condition monitoring system(ICMS).This system combines energy harvesting based on the magnetic modulation technology with wireless condition monitoring capabilities.Specifically,it develops a data-driven model integrating convolutional neural networks(CNNs) with genetic algorithms(GAs).The conventional testing results show that the data-driven model not only significantly accelerates the parameter response time,but also achieves a prediction accuracy of 92.95%.The in-situ experiments conducted in coal mines demonstrate the system's reliability and monitoring functionality under both no-load and fullload conditions.This research provides an innovative self-powered condition monitoring solution and develops an efficient data-driven model,offering feasible online monitoring approaches for smart mine construction.展开更多
基金financially supported by the National Natural Science Foundation of China(42250102,42250101)the Macao Foundation and Macao Science and Technology Development Fund(0001/2019/A1)the Pre-research Project on Civil Aerospace Technologies funded by China National Space Administration(D020303)。
文摘This study presents preliminary results of tidal-induced magnetic field signals extracted from 9 months of data collected by the Macao Science Satellite-1(MSS-1) from November 2023 to July 2024. Tidal signals were isolated using sequential modeling techniques by subtracting non-tidal field model predictions from observed magnetic data. The extracted MSS-1 results show strong agreement with those from the Swarm and CryoSat satellites. MSS-1 effectively captures key large-scale tidal-induced magnetic anomalies, mainly due to its unique 41-degree low-inclination orbit, which provides wide coverage of local times. This finding underscores the strong potential of MSS-1 to recover high-resolution global tidal magnetic field models as more MSS-1 data become available.
基金supported by the National Natural Science Foundation of China (41804067, 42174090, 42250101, and 42250103)the Science Research Project of the Hebei Education Department (BJK2024107)+3 种基金the Hebei Natural Science Foundation (D2022403044)the Opening Fund of the Key Laboratory of Geological Survey and Evaluation of the Ministry of Education (GLAB2023ZR02)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources (MSFGPMR2022-4)the Excellent Young Scientist Fund of Hebei GEO University (YQ202403)。
文摘The lithospheric magnetic field is an important component of the geomagnetic field,and the oceanic lithosphere exhibits distinct characteristics.Because of its formation mechanisms,evolutionary history,and geomagnetic field polarity reversals,the oceanic lithosphere has significant remanent magnetization,which causes magnetic anomaly stripes parallel to the mid-ocean ridges.However,it is difficult to construct a high-resolution lithospheric magnetic field model in oceanic regions with relatively sparse data or no data.Using forward calculated lithospheric magnetic field data based on an oceanic remanent magnetization(ORM) model with physical and geological foundations as a supplement is a feasible approach.We first collect the latest available oceanic crust age grid,plate motion model,geomagnetic polarity timescale,and oceanic lithosphere thermal structure.Combining the assumptions that the paleo geomagnetic field is a geocentric axial dipole field and that the normal oceanic crust moves only in the horizontal direction,we construct a vertically integrated ORM model of the normal oceanic crust with a known age,including the intensity,inclination,and declination.Both the ORM model and the global induced magnetization(GIM) model are then scaled from two aspects between their forward calculated results and the lithospheric magnetic field model LCS-1.One aspect is the difference in their spherical harmonic power spectra,and the other is the misfit between the grid data over the oceans.We last compare the forward calculated lithospheric magnetic anomaly from the scaled ORM and GIM models with the Macao Science Satellite-1(MSS-1) observed data.The comparison results show that the magnetic anomalies over the normal oceanic crust regions at satellite altitude are mainly contributed by the high-intensity remanent magnetization corresponding to the Cretaceous magnetic quiet period.In these regions,the predicted and observed anomalies show good consistency in spatial distribution,whereas their amplitude differences vary across regions.This result suggests that regional ORM construction should be attempted in future work to address these amplitude discrepancies.
基金supported by the National Key Research and Development Program of China(Nos.2021YFB3503003,2021YFB3503100,and 2022YFB3505401).
文摘The combination of dual-main-phase(DMP)(Nd,Ce)-Fe-B magnets and grain boundary diffusion process(GBDP)is currently a research topic for obtaining high-cost performance materials in rare earth permanent magnet fields.The novel structural features of GBDP(Nd,Ce)-Fe-B magnets give a version of different domain reversal processes from those of non-diffused magnets.In this work,the in-situ magnetic domain evolution of the DMP magnets was observed at elevated temperatures,and the temperature demagnetization and coercivity mechanism of the GBDP dual-main-phase(Nd,Ce)-Fe-B magnets are discussed.The results show that the shell composition of different types of grains in DMP magnets is similar,while the magnetic microstructure results indicate the Ce-rich grains tend to demagnetize first.Dy-rich shell with a high anisotropic field caused by GBDP leads to an increase in the nucleation field,which enhances the coercivity.It is found that much more grains exhibit single domain characteristics in the remanent state for GBDP dual-main-phase(Nd,Ce)-Fe-B magnets.In addition,the grains that undergo demagnetization first are Ce-rich or Nd-rich grains,which is different from that of non-diffused magnets.These results were not found in previous studies but can be intuitively characterized from the perspective of magnetic domains in this work,providing a new perspective and understanding of the performance improvement of magnetic materials.
基金Supported by National Natural Science Foundation of China(12275354,11805272)College Students'Innovative Entrepreneurial Training Plan Program of Civil Aviation University of China(202210059079)。
文摘The longitudinal and transverse waves of 2D magnetized complex plasma based on the drivendissipative Langevin dynamics simulation are investigated.The modified Yukawa potential with including the magnetization of background ions is used to account for the interaction of the charged dust particles.The simulation results are compared with the existing theories including quasilocalized charge approximation and randomphase approximation.In the weak magnetization regime,the wave spectra obtained from Yukawa simulation and modified Yukawa simulation basically are the same.In the strong magnetization regime,the magnetization of background ions and temperature ratio of background electrons to background ions play effects on the wave spectra of the system,particularly for the strongly coupled state.The dust acoustic waves in the weakly coupled state basically are not influenced by the magnetization of background ions.
文摘Objective To qualitatively assess the diagnostic performance of dynamic contrast enhancement(DCE),diffusionweighted imaging(DWI),and T2-weighted imaging(T2WI),alone or in combination,in the evaluation of breast cancer.Methods We retrospectively reviewed the records of 394 consecutive patients with pathologically confirmed breast lesions who had undergone 3-T magnetic resonance imaging(MRI).The morphological characteristics of breast lesions were evaluated using DCE,DWI,and T2WI based on BI-RADS lexicon descriptors by trained radiologists.Patients were categorized into mass and non-mass groups based on MRI characteristics of the lesions,and the differences between benign and malignant lesions in each group were compared.Clinical prediction models for breast cancer diagnosis were constructed using logistic regression analysis.Diagnostic efficacies were compared using the area under the receiver operating characteristic curve(AUC)and DeLong test.Results For mass-like lesions,all the morphological parameters significantly differentiated benign and malignant lesions on consensus DCE,DWI,and T2WI(P<0.05).The combined method(DCE+DWI+T2WI)had a higher AUC(0.865)than any of the individual modality(DCE:0.786;DWI:0.793;T2WI:0.809)(P<0.05).For non-mass-like lesions,DWI signal intensity was a significant predictor of malignancy(P=0.036),but the model using DWI alone had a low AUC(0.669).Conclusion Morphological assessment using the combination of DCE,DWI,and T2WI provides better diagnostic value in differentiating benign and malignant breast mass-like lesions than assessment with only one of the modalities.
基金Project supported by the Nature Science Foundation of Shaanxi Province (2023-JC-YB-137)National Natural Science Foundation of China (21901200)。
文摘Structural fine-tuning is of significant importance to enhance the magnetic anisotropy and elucidate the magneto-structural relationship for single molecule magnets(SMMs).For this purpose,two mononuclear Dy^(3+) SMMs:[Dy{HB(pz)3}2(Sal)](1) and [Dy{HB(pz)_(3)}_(2)(MeO-Sal)](2),where HB(pz)_(3)^(-)represents hydro tris(pyrazolyl)borate,Sal denotes salicyiaidehyde and MeO-Sal stands for 5-methoxysalicylaldehyde,were designed and synthesized.Single crystal X-ray diffraction tests show that the two SMMs have very similar eight-coordinated molecule structures,although the introducing of-MeO substituent on salicyiaidehyde ligand induces the changes on the molecule packing mode and the space group.Both the two SMMs have a Dy-O_(aryloxidebond) that is significantly shorter than other Dy-O/N bonds,which defines the orientation of main anisotropy axis of the ground Kramers doublets and engenders the slow relaxation of the magnetization behavior,as evidenced by the magnetic susceptibility and the ab initio calculation.Though with an electron-donating substituent on the axial Sal ligand in 2,the collective magnetic anisotropy is not enhanced and the corresponding magneto-structural relationship is discussed based on the experimental and theoretical calculation results.In addition,as neutral molecules,1 and 2 are soluble in several common organic solvents,like CH_(2)Cl_(2),CHCl_(3),THF and so on.
基金the National Natural Science Foundation of China(Nos.52275038 and 61803347)the Shanxi Province Science Foundation for Excellent Youth(No.202203021224007)+1 种基金the Key Research and Development Plan of Shanxi Province(No.201903D321164)the Opening Foundation of Shanxi Key Laboratory of Advanced Manufacturing Technology(No.XJZZ202101)。
文摘Magnetic tracking technologies have a promising application in detecting the real-time position andattitude of a capsule endoscope.However,most of them need to measure the magnetic moment of a permanentmagnet(PM)embedded in the capsule accurately in advance,which can cause inconvenience to practical application.To solve this problem,this paper proposes a magnetic tracking system with the capability of measuring themagnetic moment of the PM automatically.The system is constructed based on a 4×4 magnetic sensor array,whose sensing data is analyzed to determine the magnetic moment by referring to a magnetic dipole model.Withthe determined magnetic moment,a method of fusing the linear calculation and Levenberg-Marquardt algorithmsis proposed to determine the 3D position and 2D attitude of the PM.The experiments verified that the proposedsystem can achieve localization errors of 0.48 mm,0.42 mm,and 0.83 mm and orientation errors of 0.66◦,0.64◦,and 0.87◦for a PM(∅10 mm×10 mm)at vertical heights of 5 cm,10 cm,and 15 cm from the magnetic sensorarray,respectively.
基金the financial support from the National Key R&D Program of China(No.2022YFC2905800)the National Natural Science Foundation of China(Nos.52174242,52130406)。
文摘To explore the spontaneous magnetization of iron-bearing rare earth ores during suspension roasting,binary minerals containing hematite and bastnaesite were used to investigate the effects of the roasting temperature,roasting time,and bastnaesite-to-hematite mass ratio on in-situ reduction of hematite in a N_(2)atmosphere.Relevant analytical tests were used to explore the mineral phase evolution during roasting,the magnetism and microstructure of the roasted products,the phase composition,and the surface element valence of concentrate.It was found that magnetic separation of the iron concentrate afforded an iron grade of 68.87%and a recovery of 93.18%under the optimum roasting conditions.During roasting,bastnaesite decomposed to generate CO_(2)and CO,and the compact structure of hematite was gradually destroyed,resulting in microcracks.Subsequently,the CO entered the surface of the hematite through the microcracks and reacted to form a magnetite shell,and the magnetite-encapsulated hematite particles were recovered via low-intensity magnetic separation.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFE0134600)the Interdisciplinary Research Program of Huazhong University of Science and Technology(Grant No.2023JCYJ007)+3 种基金the China Postdoctoral Science Foundation(Grant No.2022M711234)the National Natural Science Foundation of China(Grant Nos.52272152,61674063,and 62074061)the Natural Science Foundation of Hubei Province,China(Grant No.2022CFA031)the Foundation of Shenzhen Science and Technology Innovation Committee(Grant Nos.JCYJ20180504170444967,JCYJ20210324142010030,and JCYJ20230807143614031)。
文摘The manipulation of magnetization and spin polarization using electrical currents represents a fundamental breakthrough in spintronics.It has formed the foundation for data storage and next-generation computing systems.Spin-transfer torque(STT)and spin-orbit torque(SOT)have emerged as prominent mechanisms in current-driven magnetization switching.However,these approaches typically require critical current densities in the range of 10^(6) to 10^(9) A·cm^(-2),resulting in significant heat generation during data writing processes.Herein,we report the discovery of an ultralow-vertical-current magnetization switching effect in a van der Waals ferromagnetic/ferroelectric heterostructure based on the modulation of the critical magnetic field(H_(C))using small vertical currents,with a critical current density as low as 1.81A·cm^(-2) and an average effective field(H_(eff)/J_(C))as high as 150.3mT·A^(-1)·cm^(2).This unique magnetization switching effect with ultralow-critical-vertical-current densities typically six to nine orders of magnitude lower than those of the STT and SOT provides a new transformative and viable pathway for developing next-generation spintronic and quantum technologies.
基金Project supported by the Key Research Project of Colleges and Universities of Henan Province(Grant No.23A140017)the Research Project of Department of Science and Technology of Henan Province(Grant No.242102231072)+1 种基金the National Natural Sciences Foundation of China(Grant No.52402336)the special fund of the Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences“New magnetic materials and structural devices for 5G communication”(Grant No.E41602QB01).
文摘CaBaCo_(4)O_(7)has been widely studied because of its distinctive structure and magnetic properties.This study examined the influence of different cooling atmospheres on the structure,magnetic properties,and dielectric behavior of CaBaCo_(4)O_(7).Samples were cooled under different atmospheric conditions to assess these influences.Our findings indicate that reduced oxygen content leads to increased lattice distortion.Since oxygen atoms play a crucial role in mediating magnetic exchange,oxygen deficiency disrupts long-range magnetic order and promotes short-range antiferromagnetic interactions.Additionally,the cooling atmosphere significantly impacts grain size,thereby affecting the dielectric constant and dielectric loss.In the argon-cooled CaBaCo_(4)O_(7)(Ar)sample,oxygen deficiency reduced dielectric permittivity and increased dielectric loss.
文摘The two-dimensional kagome lattice serves as a prototypical platform for exploring quantum spin liquids owing to its pronounced geometric frustration.Substantial advancements have been achieved in herbertsmithite and its structural analogs.These quantum spin liquid candidates exhibit large superexchange interactions yet resist magnetic ordering down to the lowest measurable temperatures,which are typically three or four orders of magnitude below the energy scale of the primary exchange energies.Nevertheless,the existence of unavoidable intrinsic interlayer magnetic impurities leads to persistent debates on their ground states.A breakthrough emerged with the discovery of YCu_(3)(OH)_(6+x)X_(3-x)(X=Cl,Br),a novel material family rigorously verifed to eliminate magnetic impurity interference.This short review highlights critical advances in these materials,emphasizing experimental signatures consistent with a Dirac quantum spin liquid and the observation of a oneninth magnetization plateau and possible quantum oscillations.Local structural characteristics play a crucial role in clarifying the complex emergent quantum phenomena of these materials.Collectively,these fndings establish this material class as a promising platform for investigating quantum spin liquid behavior in two-dimensional kagome lattices.
基金supported by the National Key Projects for Research and Development of China(Grant Nos.2021YFA1400400 and 2024YFA1408104)the National Natural Science Foundation of China(Grant Nos.12434005,12374137,and 92165205).
文摘We investigate the origin of the 1/3 magnetization plateau in the S=1/2 kagome antiferromagnetic Heisenberg model using the variational Monte Carlo and exact diagonalization methods,to account for the recent experimental observations in YCu_(3)(OH)_(6+x)Br_(3-x)and YCu_(3)(OD)_(6+x)Br_(3-x).We identify three degenerate valencebond-solid(VBS)states forming a√3×√3 unit cell.These states exhibit David-star patterns in the spin moment distribution with only two fractional values-1/3 and 2/3,and are related through translational transformations.While the spin correlations in these VBS states are found to be short-range,resembling a quantum spin liquid,we show that they have a vanishing topological entanglement entropy and thus are topologically trivial many-body states.Our theoretical results provide strong evidence that the 1/3 magnetization plateau observed in recent experiments arises from these√3×√3 VBS states with fractional spin moments.
基金supported by the National Science Foundation of China(Grant No.52293423 and Grant No.52277031).
文摘After the fabrication of magnetic resonance superconducting magnets,the magnetic field inhomogeneity needs to be accurately measured for subsequent shimming.However,conventional measurement methods are susceptible to magnetic fields,have poor compatibility,and are difficult to adapt to various types of magnets.This paper proposes a new field measuring system based on a three-axis movable platform.The system utilizes non-magnetic materials and an innovative hand-wheel lifting design that can be adapted to various aperture magnets,thus obviating the necessity for electrically driven equipment and addressing safety concerns in strong magnetic fields.In addition,the measurement system offers high accuracy up to 1 mm and a wide measurable range.The fields of 3 T and 7 T magnets were mapped using the designed system with diameter of spherical volume(DSV)of 160 mm and 130 mm,respectively.Experimental results demonstrate that the magnetic field measurement system has strong compatibility and can accurately map the magnetic field at arbitrary positions,which is critical for shimming studies.
基金supported by the National Natural Science Foundation of China(Grant No.12474218)the Beijing Natural Science Foundation(Grant No.1242022)the Guangxi Key Laboratory of Precision Navigation Technology and Application,Guilin University of Electronic Technology(Grant No.DH202322)。
文摘Using the determinant quantum Monte Carlo method,we explore a rich phase diagram featuring strain-induced metal-insulator and magnetic phase transitions in an interacting two-dimensional Dirac fermion system.Asymmetric strain applied along the zigzag crystal direction drives the semimetallic regime into a band-insulating phase,or it breaks the antiferromagnetic order of the Mott insulator,inducing a nonmagnetic insulating phase under strong correlations.The critical strain required for band gap opening or for a transport phase transition is significantly reduced in the presence of Coulomb repulsion,while increasing interaction strength makes it more difficult for strain to induce a nonmagnetic phase transition.In addition,we measure in detail the band gap modulation by strain and identify a doping effect whereby doping inhibits band gap opening.Our results provide an effective way to tune the transport gap,which could help extend the applications of graphene,whose zero band gap currently limits its use.
基金acknowledge the Saudi Digital Library for accessing the databases.
文摘BACKGROUND Irritable bowel syndrome(IBS)is a prevalent functional gastrointestinal(FGITD)disorder,the diagnosis is based on Rome Criteria and other subjective tools.Because IBS overlaps with other FGITD and organic diseases,and the subjective tools do not apply to patients with cognitive decline,objective diagnostic tools are important in this category of patients.AIM To discuss the role of imaging in IBS diagnosis.METHODS We systematically searched three databases for articles published in the English language with no limitation to a specific period.The literature search was conducted in June and July 2024.The keywords used are IBS and functional bowel disorders,computed tomography,Magnetic Resonance Imaging,functional brain magnetic resonance imaging(MRI),and static brain MRI,and were linked with the terms"AND"and"OR".Out of the 679 articles,578 remained after duplication removal.However,50 full texts were used in the review.RESULTS Magnetic resonance imaging is superior due to its sensitivity,lack of radiation exposure,and lack of need for bowel preparation.Patients with IBS had smaller colonic and rectal volumes compared to healthy controls and functional constipation.Dynamic and static Magnetic Resonance Imaging of the brain showed increased activity,thinning,and increased volumes in specific areas of pain modulation.The above abnormalities are not uniform and vary significantly according to the type of IBS,the duration and intensity of symptoms,gender,and culture.CONCLUSION Magnetic resonance imaging shows smaller colonic and rectal volumes,and increased activity,thinning,and increased volumes in specific areas of pain modulation.Large trials incorporating all above limitations are needed.
文摘BACKGROUND Trichotillomania is a challenging to treat psychiatric disorder,with limited evidence for pharmacotherapy.Treatment typically involves medication,cognitive behavioral therapy,and behavioral interventions.Recently,transcranial magnetic stimulation(TMS)has emerged as a potential treatment strategy.AIM To assess the role of TMS in treating trichotillomania.METHODS A systematic search using specific terms was done in PubMed and Scopus databases for articles published until May 17,2024,related to trichotillomania and TMS.The search included randomized controlled trials,open-label studies,case series,case reports,and retrospective chart reviews,following the Preferred Items for Systematic Reviews and Meta-Analysis guideline.RESULTS We identified 32 articles(6 in PubMed and 26 in Scopus).After removing duplicates and articles that did not meet the selection criteria,we conducted a final analysis of four articles.These included one retrospective study,two case series,and one case study,with a total of 22 patients diagnosed with trichotillomania enrolled across all four studies.The brain areas targeted were the supplementary motor area(SMA),pre-SMA,and left dorsolateral prefrontal cortex.The studies reported an improvement in the severity of symptoms of trichotillomania in the majority of patients with negligible side effects.Nevertheless,it is important to note that the existing studies are mostly of low to moderate quality.CONCLUSION Early evidence suggests repetitive TMS and accelerated continuous theta burst stimulation can help treat trichotillomania adjunctively to other treatments.
文摘Objective:Although bariatric surgeries are widely performed around the world,patients frequently experience the recurrence of pre-existing gastroesophageal reflux disease(GERD)symptoms or develop new symptoms,some of which are resistant to medical treatment.This study investigates the effect and outcome of magnetic sphincter augmentation(MSA),a minimally invasive treatment for GERD,in this population.Methods:A thorough search of the PubMed,Cochrane,Scopus,Web of Science,and Google Scholar databases from inception until June 6,2024 was performed to retrieve relevant studies that evaluated the effects of MSA on the GERD health-related quality of life(GERD-HRQL)score and the reduction in proton pump inhibitor(PPI)use in patients who underwent bariatric surgery.The“meta”package in RStudio version 2023.12.0 t 369 was used.Results:A total of eight studies were included in the systematic review and seven studies were included in the meta-analysis.MSA significantly reduced the GERD-HRQL score(MD?27.55[95%CI:30.99 to24.11],p<0.01)and PPI use(RR?0.23[95%CI:0.16 to 0.33],p<0.01).Conclusion:MSA is a viable treatment option for patients with GERD symptoms who undergo bariatric surgery.This approach showed promising results in terms of reducing the GERD-HRQL score and reducing the use of PPI.
文摘In recent years,due to the scarcity of domestic radioisotopes,the Chinese government has strongly supported the development of dedicated radioisotope production facilities.This paper presents conceptual design simulations of an 11 MeV,50μA,H^(-) compact superconducting cyclotron for radioisotope production.This paper focuses primarily on four aspects:magnet system design,central region configuration,beam dynamics analysis,and extraction system design.This paper outlines the cyclotron's primary parameters and key steps in the development process.
基金sponsored by the Fundamental Research Funds forthe Central Universities(No.2024-JYB-JBZD-047)High Level Key Discipline Construction of Traditional Chinese Medicine(zyyzdxk-2023272).
文摘Background:Building upon our previous work that developed a folate receptor-mediated,euphaorbia factor L1-loaded PLGA microsphere system integrating active and magnetic targeting for theranostics,further investigation into its in vivo pharmacokinetics and tissue distribution is warranted despite its demonstrated biocompatibility and safety.Methods:A UPLC-MS/MS method was established to determine the concentration of euphorbia sterol in rat plasma and mouse tissue homogenates,healthy male SD rats and KM mice were administered in groups,drug concentrations at different time points were determined,pharmacokinetic parameters were analyzed by DAS software,and data were processed by SAS software.Results:The proposed method met the requirements of biological sample detection.The plasma pharmacokinetics of rats showed that the drug concentration in the microsphere group was lower than that in the injection group,and the parameters such as mean residence time(MRT(0–t)),half-life(T1/2z)and apparent volume of distribution(Vz)were significantly different from those in the solution group.The distribution of mouse tissues showed that the drug concentrations in the liver and lung tissues of the microsphere preparation group were higher than those in the injection group,and the drug concentrations in the lung and liver tissues were more distributed.Conclusion:The targeted drug delivery system changed the pharmacokinetic behavior and tissue distribution of euphorbia sterol,slowed down plasma elimination,prolonged the half-life,and improved the targeting of drugs in lung and liver tissues and the magnetic targeting effect of lungs.
基金supported by the National Natural Science Foundation of China(Nos.12172248,12302022,12021002,and 12132010)the Tianjin Research Program of Application Foundation and Advanced Technology of China(No.23JCZDJC00950)。
文摘Belt conveyors are extensively utilized in mining and power industries.In a typical coal mine conveyor system,coal is transported over distances exceeding 2 km,involving more than 20000 idlers,which far exceeds a reasonable manual inspection capacity.Given that idlers typically have a lifespan of 1-2 years,there is an urgent need for a rapid,cost-effective,and intelligent safety monitoring system.However,current embedded systems face prohibitive replacement costs,while conventional monitoring technologies suffer from inefficiency at low rotational speeds and lack systematic structural optimization frameworks for diverse idler types and parameters.To address these challenges,this paper introduces an integrated,on-site detachable self-powered idler condition monitoring system(ICMS).This system combines energy harvesting based on the magnetic modulation technology with wireless condition monitoring capabilities.Specifically,it develops a data-driven model integrating convolutional neural networks(CNNs) with genetic algorithms(GAs).The conventional testing results show that the data-driven model not only significantly accelerates the parameter response time,but also achieves a prediction accuracy of 92.95%.The in-situ experiments conducted in coal mines demonstrate the system's reliability and monitoring functionality under both no-load and fullload conditions.This research provides an innovative self-powered condition monitoring solution and develops an efficient data-driven model,offering feasible online monitoring approaches for smart mine construction.