Family 373 and 406 of CdS magic-sized nanocrystals (MSNCs) were synthesized by a one-pot non-injection approach and white-light emission was generated from the coexistence of them. This light had excellent color cha...Family 373 and 406 of CdS magic-sized nanocrystals (MSNCs) were synthesized by a one-pot non-injection approach and white-light emission was generated from the coexistence of them. This light had excellent color characteristics, as defined by their pure white CIE (Commission International de l'Eclairage) color coordinates (0.328, 0.343), and it correlated with a color temperature of 5696 K. A probable thermodynamic equilibrium was proposed to explain the white-light emission behavior in this letter.展开更多
Sodium azide has rarely been studied in gas phase or in the form of cluster ions and as a model of solid ener-getic substances and inorganic azide salt was ionized by electrospray ionization (ESI) and studied by high ...Sodium azide has rarely been studied in gas phase or in the form of cluster ions and as a model of solid ener-getic substances and inorganic azide salt was ionized by electrospray ionization (ESI) and studied by high resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) systematically. This paper highlights the effects of experimental conditions on the formation of salt cluster and the collision activation dissociation path-ways of cluster ions to develop a microscopic understanding of inorganic azide salt clusters.展开更多
文摘Family 373 and 406 of CdS magic-sized nanocrystals (MSNCs) were synthesized by a one-pot non-injection approach and white-light emission was generated from the coexistence of them. This light had excellent color characteristics, as defined by their pure white CIE (Commission International de l'Eclairage) color coordinates (0.328, 0.343), and it correlated with a color temperature of 5696 K. A probable thermodynamic equilibrium was proposed to explain the white-light emission behavior in this letter.
基金Project supported by the National Natural Science Foundation of China (No. 20175034).
文摘Sodium azide has rarely been studied in gas phase or in the form of cluster ions and as a model of solid ener-getic substances and inorganic azide salt was ionized by electrospray ionization (ESI) and studied by high resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) systematically. This paper highlights the effects of experimental conditions on the formation of salt cluster and the collision activation dissociation path-ways of cluster ions to develop a microscopic understanding of inorganic azide salt clusters.