Late Paleozoic mafic-intermediate intrusions are widespread in the central Tianshan belt, but their tectonic settings remain controversial. Petrogenesis of these intrusions can provide insights into the tectonic evolu...Late Paleozoic mafic-intermediate intrusions are widespread in the central Tianshan belt, but their tectonic settings remain controversial. Petrogenesis of these intrusions can provide insights into the tectonic evolution of the belt and its adjacent areas. This study presents new whole-rock geochemical and zircon U-Pb geochronology and Hf isotopic data for the Yaxi diorite and Qianzishan gabbro on the northern margin of the central Tianshan(NW China). Zircon U-Pb dating yielded the magma crystallization ages of 313±4 and 295±4 Ma for the Yaxi diorite and Qianzishan gabbro, respectively. They have lower Mg# values, Ni and Cr contents than typical mantle-derived primary melt, with negative correlations between MgO, TFeO and SiO2 contents, indicating clinopyroxene and olivine fractionation during magma evolution. They are characterized by enrichment of large ion lithophile elements(e.g., Rb, Ba and Sr) and depletion of high field strength elements(e.g., Nb, Ta and Ti) with high Ba/Th and Rb/Y, suggesting that their mantle sources had been metasomatized by slab-derived fluids. In addition, the Qianzishan gabbro has high Al2 O3 contents(19.54 wt.%–20.88 wt.%) and positive Eu anomalies(Eu/Eu*=1.09–1.42), which can be attributed to accumulation of plagioclase. Geochemical and zircon Hf isotopic compositions reveal that both the Yaxi diorite and Qianzishan gabbro were derived from depleted lithospheric mantle in the spinel stability field with insignificant crustal contamination. In association with previous investigations, we suggest that the Yaxi and Qianzishan intrusions were emplaced in a subduction-related environment, which means that the subduction of the Junggar Ocean lasted at least to the earliest Permian.展开更多
Late Silurian-early Devonian mafic--intermediate dykes occur in the Xiemisitai mountain of the northern West Junggar. However, their ages, petrogenesis and geodynamic process remain to be unraveled. We report firstly ...Late Silurian-early Devonian mafic--intermediate dykes occur in the Xiemisitai mountain of the northern West Junggar. However, their ages, petrogenesis and geodynamic process remain to be unraveled. We report firstly in situ zircon U–Pb and hornblende 40Ar-39Ar ages, geochemical and in situ zircon Hf isotopic data for the Xiemisitai dykes. The Xiemisitai dykes give zircon U–Pb ages of 416.7±2.1 Ma and 405.1±2.5 Ma and hornblende 40Ar-39Ar age of 405.9±4.9 Ma, respectively. They are characterized by high εHf(t)values(+11.9 to +15.5), suggesting a depleted mantle features. The Xiemisitai dykes show low Mg#(46–59) and low Cr(11.3–197 ppm) and Ni(19.9–102 ppm) abundances indicating that they have experienced significant fractional crystallization. These dykes contain hornblende and biotite and display negative Nb-Ta-Ti anomalies, enrichment of LREEs, LILEs and depletion of HREEs and HFSEs with high Ba/La ratios, similar with an origin from a depleted lithospheric mantle metasomatized by subducted slabderived fluids. In addition, the Xiemisitai dykes are plotted within melting trends with little to no garnet(Cpx:Grt=6:1) in their source. The La/Yb vs. Tb/Yb plot also indicates the presence of less than 1% residual garnet in the source region for the Xiemisitai dykes. Therefore, it can be inferred that the Xiemisitai dykes were generated at a correspondingly shallow depth, mostly within the spinel stability field. Finally, the Xiemisitai dykes were most probably generated by partial melting of metasomatized lithospheric mantle in relatively shallow level(<80 km). They could be possibly triggered by the asthenospheric upwelling as a result of the rollback of the subducted Irtysh-Zaysan oceanic lithosphere.展开更多
The widely distributed Early Cretaceous magmatism in the Tethys Himalaya(TH)of southern Tibet is related to the Kerguelen mantle plume.Associated magmatic activity products are distributed in the eastern TH,where the ...The widely distributed Early Cretaceous magmatism in the Tethys Himalaya(TH)of southern Tibet is related to the Kerguelen mantle plume.Associated magmatic activity products are distributed in the eastern TH,where the active age is earlier than the peak ages of the Kerguelen mantle plume.This study investigated magmatic activity of the Dingri area in the central TH which was coeval with the Kerguelen mantle plume.The intrusion in the Dingri area contains diabases and monzonites.The zircon age of diabase is 123±1 Ma,and that of monzonite is 117±1 Ma.Geochemistry and Sr-Nd isotopic analyses show that the mafic-intermediate dikes were formed in an intraplate extensional environment.The diabase is derived from the enriched lithospheric mantle and monzonite is derived from partial melting of the lower crust,with both magmatic evolutions being contaminated by crustal materials.These characteristics are similar to those of the Rajmahal-Sylhet basalt,a typical Kerguelen mantle plume product.The discovery of the Dingri mafic-intermediate dikes of the central TH suggests that the TH and Rajmahal-Sylhet Traps formed a continuous mantle plume overflow magmatic belt which was a product of the continuous eruption of the Kerguelen mantle plume.展开更多
基金supported by the Key Laboratory of Xinjiang Uygur Autonomous Region (No. 2016D03002)the National Natural Science Foundation of China (No. 41562010)+1 种基金the China Postdoctoral Science Foundation (No. 2017M613257)Doctoral Scientific Research Foundation of Xinjiang University (No. BS100127)
文摘Late Paleozoic mafic-intermediate intrusions are widespread in the central Tianshan belt, but their tectonic settings remain controversial. Petrogenesis of these intrusions can provide insights into the tectonic evolution of the belt and its adjacent areas. This study presents new whole-rock geochemical and zircon U-Pb geochronology and Hf isotopic data for the Yaxi diorite and Qianzishan gabbro on the northern margin of the central Tianshan(NW China). Zircon U-Pb dating yielded the magma crystallization ages of 313±4 and 295±4 Ma for the Yaxi diorite and Qianzishan gabbro, respectively. They have lower Mg# values, Ni and Cr contents than typical mantle-derived primary melt, with negative correlations between MgO, TFeO and SiO2 contents, indicating clinopyroxene and olivine fractionation during magma evolution. They are characterized by enrichment of large ion lithophile elements(e.g., Rb, Ba and Sr) and depletion of high field strength elements(e.g., Nb, Ta and Ti) with high Ba/Th and Rb/Y, suggesting that their mantle sources had been metasomatized by slab-derived fluids. In addition, the Qianzishan gabbro has high Al2 O3 contents(19.54 wt.%–20.88 wt.%) and positive Eu anomalies(Eu/Eu*=1.09–1.42), which can be attributed to accumulation of plagioclase. Geochemical and zircon Hf isotopic compositions reveal that both the Yaxi diorite and Qianzishan gabbro were derived from depleted lithospheric mantle in the spinel stability field with insignificant crustal contamination. In association with previous investigations, we suggest that the Yaxi and Qianzishan intrusions were emplaced in a subduction-related environment, which means that the subduction of the Junggar Ocean lasted at least to the earliest Permian.
基金supported by the National Key R&D 445 Program of China(2017YFC0601206)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(XDB18020203)+1 种基金the Opening Foundation of State Key Laboratory of Continental Dynamics,Northwest University(17LCD04)National Science Foundation of China(Grant nos.41473053,41573045,41611530698,41873060 and 41830216)
文摘Late Silurian-early Devonian mafic--intermediate dykes occur in the Xiemisitai mountain of the northern West Junggar. However, their ages, petrogenesis and geodynamic process remain to be unraveled. We report firstly in situ zircon U–Pb and hornblende 40Ar-39Ar ages, geochemical and in situ zircon Hf isotopic data for the Xiemisitai dykes. The Xiemisitai dykes give zircon U–Pb ages of 416.7±2.1 Ma and 405.1±2.5 Ma and hornblende 40Ar-39Ar age of 405.9±4.9 Ma, respectively. They are characterized by high εHf(t)values(+11.9 to +15.5), suggesting a depleted mantle features. The Xiemisitai dykes show low Mg#(46–59) and low Cr(11.3–197 ppm) and Ni(19.9–102 ppm) abundances indicating that they have experienced significant fractional crystallization. These dykes contain hornblende and biotite and display negative Nb-Ta-Ti anomalies, enrichment of LREEs, LILEs and depletion of HREEs and HFSEs with high Ba/La ratios, similar with an origin from a depleted lithospheric mantle metasomatized by subducted slabderived fluids. In addition, the Xiemisitai dykes are plotted within melting trends with little to no garnet(Cpx:Grt=6:1) in their source. The La/Yb vs. Tb/Yb plot also indicates the presence of less than 1% residual garnet in the source region for the Xiemisitai dykes. Therefore, it can be inferred that the Xiemisitai dykes were generated at a correspondingly shallow depth, mostly within the spinel stability field. Finally, the Xiemisitai dykes were most probably generated by partial melting of metasomatized lithospheric mantle in relatively shallow level(<80 km). They could be possibly triggered by the asthenospheric upwelling as a result of the rollback of the subducted Irtysh-Zaysan oceanic lithosphere.
基金supported by the Geological Survey Project of China Geological Survey(Grant No.DD20211547)the Basic Survey Project of Command Center of Natural Resources Comprehensive Survey(Grant No.ZD20220508)。
文摘The widely distributed Early Cretaceous magmatism in the Tethys Himalaya(TH)of southern Tibet is related to the Kerguelen mantle plume.Associated magmatic activity products are distributed in the eastern TH,where the active age is earlier than the peak ages of the Kerguelen mantle plume.This study investigated magmatic activity of the Dingri area in the central TH which was coeval with the Kerguelen mantle plume.The intrusion in the Dingri area contains diabases and monzonites.The zircon age of diabase is 123±1 Ma,and that of monzonite is 117±1 Ma.Geochemistry and Sr-Nd isotopic analyses show that the mafic-intermediate dikes were formed in an intraplate extensional environment.The diabase is derived from the enriched lithospheric mantle and monzonite is derived from partial melting of the lower crust,with both magmatic evolutions being contaminated by crustal materials.These characteristics are similar to those of the Rajmahal-Sylhet basalt,a typical Kerguelen mantle plume product.The discovery of the Dingri mafic-intermediate dikes of the central TH suggests that the TH and Rajmahal-Sylhet Traps formed a continuous mantle plume overflow magmatic belt which was a product of the continuous eruption of the Kerguelen mantle plume.