In order to analyze the distribution and evolution of the aquatic vegetation and ecological status of the Semois-Chiers basin (Semois sub-basin and Chiers sub-basin), macrophyte surveys were conducted at 48 sites in 2...In order to analyze the distribution and evolution of the aquatic vegetation and ecological status of the Semois-Chiers basin (Semois sub-basin and Chiers sub-basin), macrophyte surveys were conducted at 48 sites in 2007 and 2013. Environmental parameters were also measured in order to characterize the waterbodies in terms of physico-chemical properties and anthropogenic pressure. The two-way clustering and indicator value (INDVAL) methods were used to assess groups of sites according to their macrophytic composition and species communities. The results showed a clear difference between streams in the Lorraine area (calcareous watercourses) and in the Ardennes (siliceous). Within each natural region, those with natural vegetation of high ecological status were separated from those dominated by resistant species. The Macrophytical Biological Index for Rivers (IBMR) was calculated for the sites visited in 2010 and 2013 and the results show a trend towards an increase of IBMR values of polluted sites. For the latter, the Wilcoxon test was performed to assess the significance of the difference in quality between 2010 and 2013. This showed a statistically significant difference (p-value = 0.035). Our results showed similarities with previous data, as well as some differences. The differences observed might indicate a gradual change in the composition of the vegetation in the study area, which was caused by changes in environmental conditions. They could also reflect a lack of information about the ecology of certain groups of plants, mainly bryophytes and macroalgae that were not considered in previous studies. Despite the measures implemented under the EU’s Water Framework Directive (WFD), the current vegetation of the Semois river differs little from that observed in 1996. The headwaters of a Semois river, described in previous studies as polytrophic and devoid of vegetation, show a slight improvement, with the appearance of macrophytic species. In some parts of the Chiers sub-basin, however, resistant species observed in 1999 persist.展开更多
Decades of species composition changes can lead to the eutrophication-driven loss of submerged macrophytes in shallow lakes.Investigating the mechanisms of these nature-and human driven changes is crucial for the rest...Decades of species composition changes can lead to the eutrophication-driven loss of submerged macrophytes in shallow lakes.Investigating the mechanisms of these nature-and human driven changes is crucial for the restoration and management of such lakes.To investigate the changes in aquatic macrophyte communities over the past two centuries,we analyzed macrofossils in sediments from a^(210)Pb-dated core obtained in Dongping Lake in the lower Huanghe(Yellow)River Basin,eastern China.Multiple factor analysis(MFA)revealed an association between macrophyte shifts and changes in various environmental stressors(invertebrates,grain size,geochemistry,and documented records),indicating that macrophyte community changes before 1960 were predominately driven by flood disturbances.Ever since,anthropogenic pollution and the construction of water conservancy projects have caused variations in hydrology and nutrients,leading to significant changes in the composition of macrophyte communities.Macrofossil data reveal a decline in diversity and pollution-intolerant species during the late 1980 s and the early 2000 s,which is indicative of eutrophication.We also found that the current environment of Dongping Lake exhibits a clear degeneration in emergent plants and a proliferation of macrophyte species associated with eutrophic conditions,which could be attributed to water level fluctuation and nutrient input due to the water supply from the eastern route of the South-to-North Water Diversion Project as well as climate warming.Our results provide valuable insights for assessing ecosystem health and the restoration and management of Dongping Lake and similar lakes in the Huanghe River region and elsewhere.展开更多
Shallow lakes of the middle-lower reaches of Changjiang(Yangtze)River are a globally unique ecosystem essential for the regional sustainable economic development.These lakes have recently been under pressure from both...Shallow lakes of the middle-lower reaches of Changjiang(Yangtze)River are a globally unique ecosystem essential for the regional sustainable economic development.These lakes have recently been under pressure from both human activities and climate change,underscoring the need for research on their ecological health and drivers.However,most previous studies focused on large lakes(i.e.,over 500 km^(2))and limited ecological elements,such as nutrient levels.Caizi Lake,a relatively small(approximately 226 km^(2)),a Changjiang River-isolated shallow lake,was chosen as a case of study.We assessed its ecological health and analyzed the driving forces using an integrated dataset from in situ observations,remote sensing,and historical data.Our findings indicate that in 2023,the mean ecological health score,reflecting from all selected elements—algal bloom area,zooplankton,macroinvertebrates,macrophytes coverage,comprehensive trophic level index,and biodiversity—was 50.4 out of the maximum of 100.Notably,the ecological health scores for macrophytes coverage(1.9),macroinvertebrates(17.2),and biodiversity(44.0)were particularly low.In 1960–2007,the ecological health was deteriorated as the macrophytes coverage was dropped from 80%to 50%.The degradation of macroinvertebrate communities and a decrease in biodiversity might be primarily due to the eutrophication-induced abnormal algal proliferation.In 2007–2023,elevated water levels might degrade the macrophytes coverage and other aspects of ecological health.Therefore,we proposed an ecological health restoration plan for Caizi Lake focusing on nutrient reduction and water level regulation on the thresholds of total nitrogen and phosphorus concentrations,an and provided a reference for the protection of Caizi Lake and other cases having similar hydromorphic background.展开更多
To assess the population development of submerged plant species in disturbed lake ecosystems,we need to better understand the genetic diversity and spatial genetic structure at a fine scale,as well as the impact of di...To assess the population development of submerged plant species in disturbed lake ecosystems,we need to better understand the genetic diversity and spatial genetic structure at a fine scale,as well as the impact of disturbances on the populations.Caohai Lake,in southwest China,is a suitable natural sampling lake because of its abundance of submerged plants and the intense human disturbance.Three widely distributed species,Potamogeton lucens,Ceratophyllum demersum,and Myriophyllum spicatum,were sampled;the spatial position of each individual was recorded in two-dimensional coordinates;and the species were analyzed genetically using microsatellite markers.Among the species studied,M.spicatum exhibited the highest genetic and clonal diversities.All P.lucens subpopulations but one showed a significant fine-scale spatial genetic structure(FSGS),which may result from the limited gene dispersal.However,M.spicatum and C.demersum,with a relatively large distance of gene dispersal,had no significant FSGS.The FSGS pattern of P.lucens at the dock site with intense boat disturbance was significantly different from that at other sites.Our results imply that the FSGS of submerged plants is affected by many factors including seed dispersal,vegetative reproduction and disturbance from birds and boats.Most subpopulations of the three species hadσ_(sex)^(2)/σ_(veg)^(2)values greater than one,implying that the sexual dispersal contributes more than vegetative dispersal to total gene dispersal.Therefore,it is worth paying attention to the importance of seed dispersal for population development of submerged plants in lake ecosystems.展开更多
In order to investigate the effects of microorganisms and their urease activities in macrophytic root zones on pollutant removal, four small-scale plots (SSPs) of vertical/reverse-vertical flow wetlands were set up to...In order to investigate the effects of microorganisms and their urease activities in macrophytic root zones on pollutant removal, four small-scale plots (SSPs) of vertical/reverse-vertical flow wetlands were set up to determine: a) the relationship between the abundance of microorganisms in the root zones and water purification efficiency; and b) the relationship between urease activities in the root zones and pollutant removal in a constructed wetland system. Total numbers of the microbial population (bacteria, fungi, and actinomyces) along with urease activities in the macrophytic root zones were determined. In addition, the relationships between microbial populations and urease activities as well as the wastewater purification efficiencies of total phosphorus (TP), total Kjeldahl nitrogen (TKN), biochemical oxygen demand in 5 days (BOD5), and chemical oxygen demand (COD) were also analyzed. The results showed that there was a highly significant positive correlation (r = 0.9772, P < 0.01) between the number of bacteria in the root zones and BOD5 removal efficiency and a significant negative correlation (r = -0.9092, P < 0.05) between the number of fungi and the removal efficiency of TKN. Meanwhile, there was a significant positive correlation (r -- 0.8830, P < 0.05) between urease activities in the root zones and the removal efficiency of TKN. Thus, during wastewater treatment in a constructed wetland system,microorganism and urease activities in the root zones were very important factors.展开更多
From April 1996 to October 1997, regular samplings were carried out monthly at 8 stations in a macrophytic basin of Baoan Lake. From the water samples, 47 genera, 96 species of ciliata were identified. Stations covere...From April 1996 to October 1997, regular samplings were carried out monthly at 8 stations in a macrophytic basin of Baoan Lake. From the water samples, 47 genera, 96 species of ciliata were identified. Stations covered with macrophytes had greater number of ciliate species and higher percentage of sessile species. The mixotroph Strombidium viride bearing algal endosymbionts dominated numerically the whole ciliate communities; most of the other dominants were bactivores. Total ciliate density in Lake Baoan was 6170-34310 ind./L. The seasonal density fluctuations of the dominant species populations were also investigated. Maximum abundances were observed in spring and winter during the decay of macrophytes and minimum densities were observed during the summer months of luxuriant macrophytes growth.展开更多
A sequential extraction method for the fractionation of phosphorus (P) in lake sediments was used to analyze phos- phorus fractions of sediments taken from three large, shallow. eutrophic freshwater lakes of China-T...A sequential extraction method for the fractionation of phosphorus (P) in lake sediments was used to analyze phos- phorus fractions of sediments taken from three large, shallow. eutrophic freshwater lakes of China-Talhu Lake. Chaohu Lake, and Long.an Lake. All three lakes are located in the lower reaches of the Changjiang River (Yangtze River). In Taihu Lake and Chaohu Lake, algae blooms occurred every year, while Longgan Lake was a macrophyte-dominated lake. Results showed that exchangeable phosphorus fractions were much higher in the eutrophic lake sediments than in the macrophyte-flourishing lake sediment. Also, the ratio of Fe:P in the sediments of the algae-predomlnant lakes was generally much lower than that in the macrophyte-predominant lakes. Thus, the geochemical fractions of phosphorus in sediments had a closer relationship with the type of aquatic vegetation.展开更多
Numerous studies on eutrophication remediation have mainly focused on purifying water first, then restoring submerged macrophytes. A restoration-promoting integrated floating bed (RPIFB) was designed to combine the ...Numerous studies on eutrophication remediation have mainly focused on purifying water first, then restoring submerged macrophytes. A restoration-promoting integrated floating bed (RPIFB) was designed to combine the processes of water purification and macrophyte restoration simultaneously. Two outdoor experiments were conducted to evaluate the ecological functions of the RP1FB. Trial 1 was conducted to compare the eutrophication purification among floating bed, gradual-submerging bed (GSB) and RPIFB technologies. The results illustrated that RPIFB has the best purification capacity. Removal efficiencies of RPIFB for TN, TP,NH4+-N, NO3-N, CODcr, Chlorophyll-a and turbidity were 74.45%, 98.31%, 74.71%, 88.81%, 71.42%, 90.17% and 85%, respectively. In trial 2, influences of depth of GSB and photic area in RPIFB on biota were investigated. When the depth of GSB decreased and the photic area of RPIFB grew, the height of Potamogeton crispus Linn. increased, but the biomass of Canna indica Linn. was reduced. The mortalities of Misgurnus anguillicaudatus and Bellamya aeruginosa in each group were all less than 7%. All results indicated that when the RPIFB was embedded into the eutrophic water, the regime shift from phytoplankton-dominated to macrophyte-dominated state could be promoted. Thus, the RPIFB is a promising remediation technology for eutrophication and submerged macrophyte restoration.展开更多
Constructed wetlands(CWs)have been introduced to and developed in China for environmental engineering over the most prosperous three decades(1990–2020).To study the origin,development process,and future trend of CWs,...Constructed wetlands(CWs)have been introduced to and developed in China for environmental engineering over the most prosperous three decades(1990–2020).To study the origin,development process,and future trend of CWs,this review summarized a wide range of literatures between 1990 and 2020 by Chinese authors.Firstly,the publication number over years,research highlights,and the author contributions with the most published papers in this field were conducted through bibliometric analysis.Secondly,the most principal components of CWs,substrates and macrophytes were summarized and analyzed.Thirdly,the typical application cases from traditional CWs,pond systems to combined pond-wetland systems were presented.In China,CWs were predominately distributed in the east of the so-called'Hu Huanyong Line'.Therefore CWs were limited by the socio-economic level and climatic conditions.It is unquestionable that the overall level of China's CWs has improved significantly,and one of the most prominent features has started towards the plural pattern development.There has been a trend of large-scale or low-cost CW application in the recent years.However,lifecycle research and management are required for better strategies in the future.展开更多
Light climate is of key importance for the growth, community composition of submerged macrophytes in lakes and, they, in turn, are affected by lake depth and the degree of eutrophication. To test the relationships bet...Light climate is of key importance for the growth, community composition of submerged macrophytes in lakes and, they, in turn, are affected by lake depth and the degree of eutrophication. To test the relationships between submerged macrophyte presence and the ratio of Secchi disk depth(SDD) to water depth, i.e. SDD/depth, nutrients and wind, we conducted an extensive sampling campaign in a macrophyte-dominated area of the eastern region( n = 36) in 2016 in Lake Taihu, China, and combined the data gathered with results from extensive physico-chemical monitoring data from the entire lake. We confirmed that SDD/Depth is the primary factor controlling the community composition of macrophytes and showed that plant abundance increased with increasing SDD/Depth ratio( p < 0.01), but that only SDD/Depth > 0.4 ensured growth of submerged macrophytes. Total phosphorus and total nitrogen also influenced the growth and community composition of macrophytes( p < 0.01), while Chl a was an indirectly affecting factor by reducing underwater light penetration. Wave height significantly influenced plant abundance( p < 0.01), whereas it had little effect on the biomass( p > 0.05). The key to restore the macrophyte beds in the lake is to reduce the nutrient loading. A decrease of the water level may contribute as well in the shallow bays but will not bring plants back in the main part of the lake. As the tolerance of shade and nutrients varied among the species studied, this should be taken into account in the restoration of lakes by addition of plants.展开更多
Leaves of terrestrial and aquatic plants are home to a wide diversity of bacterial species. However, the diversity and variability of epiphytic bacteria on their submerged plant hosts remains poorly understood. We inv...Leaves of terrestrial and aquatic plants are home to a wide diversity of bacterial species. However, the diversity and variability of epiphytic bacteria on their submerged plant hosts remains poorly understood. We investigated the diversity and composition of epiphytic bacteria from two common submerged macrophytes: Vallisneria natans and Hydrilla verticillata in Taihu Lake, Jiangsu, China, using methods of terminal restriction fragment length polymorphisms (T-RFLP) and clone library analyses targeted at bacterial 16S rRNA genes. The results show that: (1) the libraries of the two waterweeds contain wide phylogenetic distribution of bacteria, and that the sequences of the two libraries can be separated into 93 OTUs (at 97% similar value); (2) Betaproteobacteria, including Burkholderiales, was the most abundant bacterial group on both plants. Cyanobacteria and Gammaproteobacteria were the second largest groups on V. natans and H. verticillata, respectively. Both clone libraries included some sequences related to those of methanotrophs and nitrogen-fixing bacteria; (3) Cluster analysis of the T-RFLP profiles showed two distinct clusters corresponding to the two plant populations. Both ANOSIM of the T-RFLP data and Libshuff analysis of the two clone libraries indicated a significant difference in epiphytic bacterial communities between the two plants. Therefore, the epiphytic bacterial communities on submerged macrophytes appear to be diverse and host-specific, which may aid in understanding the ecological functions of submerged macrophytes in general.展开更多
Autotrophic ammonia-oxidizing bacteria (AOB) have been widely studied in constructed wetlands systems, while mixotrophic AOB have been less thoroughly examined. Heterotrophic bacteria were isolated from wastewater a...Autotrophic ammonia-oxidizing bacteria (AOB) have been widely studied in constructed wetlands systems, while mixotrophic AOB have been less thoroughly examined. Heterotrophic bacteria were isolated from wastewater and rhizospheres of macrophytes of constructed wetlands, and then cultivated in a mixotrophic medium containing ammonium and acetic acid. A molecular characterization was accomplished using ITS-PCR amplification, and phylogenetic analysis based on 16S rRNA gene Sequences. Results showed the presence of 35 bacteria, among 400 initially heterotrophic isolates, that were able to remove ammonia. These 35 isolates were classified into 10 genetically different groups based on ITS pattern. Then, a collection of 10 isolates were selected because of their relatively high ammonia removal efficiencies (ARE≥ 80%) and their phylogenetic diversity. In conditions of mixotrophy, these strains were shown to be able to grow (increase of optical density OD660 during incubation with assimilation of nitrogen into cellular biomass) and to oxidize ammonia (important ammonia oxidation efficiencies, AOE between 79% and 87%). Among these facultative mixotrophic AOB, four isolates were genetically related to Firmicutes (Bacillus and Exiguobacterium), three isolates were affiliated to Actinobacteria (Arthrobacter) and three other isolates were associated with Proteobacteria (Pseudomonas, Ochrobactrum and Bordetella).展开更多
In this paper, sinking and growth of apexes and mid-stems of Myriophyllum spicatum L., Hydrilla verticillata (L.f.) Royle and Ceratophyllum demersum L. in concrete ponds containing eutrophic water and sediment were ...In this paper, sinking and growth of apexes and mid-stems of Myriophyllum spicatum L., Hydrilla verticillata (L.f.) Royle and Ceratophyllum demersum L. in concrete ponds containing eutrophic water and sediment were investigated. Sinking rates of apexes and mid-stems reached 34.8% and 4.4% at the 6 th day and 91.1% and 66.7% at the 22 nd day for M. spicatum, 57.8% and 55.6% at the 6 th day and 100% and 97.8% at the 22 nd day for H. vertieillata, 18.9% and 86.7% at the 6 th day and 95.6% and 100% at the 22 nd day for C. demersum, respectively. Most sunken fragments established themselves successfully with significant growth. Total shoot length ofplantlets developed from apexes and mid-stems increased by 399% and 61% for M. spicatum, 593% and 256% for H. vertieillata and 114% and 104% for C. demersum, respectively. The results showed that it was feasible to establish submersed macrophytes via sinking and colonization of shoot fragments clipped off manually.展开更多
The physiological effects of 4 herbicides (butachlor, quinclorac, bensulfuron-methyl and atrazine) on 3 submerged macrophytes (Ceratophyllum demersum, Vallisneria natans and Elodea nuttallii) were tested in labora...The physiological effects of 4 herbicides (butachlor, quinclorac, bensulfuron-methyl and atrazine) on 3 submerged macrophytes (Ceratophyllum demersum, Vallisneria natans and Elodea nuttallii) were tested in laboratory. The variables of the relative growth rate and the photosynthetic pigment content showed that all of the tested herbicides affected the growth of the plants obviously, even at the lowest concentration (0.0001 mg/L). Except for the C. demersum treated with quinclorac at 0.005 and 0.01 mg/L, the relative growth rates of the plants were inhibited significantly (p 〈 0.01). Statistical analysis of chlorophyll a (Chl-a) contents was carded out with both the t-test and one-way ANOVA to determine the difference between the treatment and control. The results showed that Chl-a contents of the plants in all treatment groups were affected by herbicides significantly, except for the C. demersum treated with bensulfuron-methyl at 0.0005 mg/L. The decrease in Chl-a content was positively correlated to the dosage of the herbicides in most treatment groups. It was suggested that herbicides in water bodies might potentially affect the growth of aquatic macrophytes. Since the Chl-a content of submerged macrophytes responded to the stress of herbicides sensitively and directly, it could be used as a biomaker in environmental monitoring or in the ecological risk assessment of herbicide contamination.展开更多
Submersed macrophytes decay is an important natural process and has important role in mass and energy flow in aquatic ecosystems.However,little is known about the dynamical changes in nutrients release and bacterial c...Submersed macrophytes decay is an important natural process and has important role in mass and energy flow in aquatic ecosystems.However,little is known about the dynamical changes in nutrients release and bacterial community during submersed macrophyte decay in natural environment.In this study,a field observation was conducted in a wetland dominated with Hydrilla verticillata for 36 days.Increase of H2O2 and malondialdehyde(MDA)content and decrease of soluble proteins concentration were detected in leaves during H.verticillata decay.Meanwhile,ammonium-N,soluble microbial products(SMP)and TOC concentration increased in overlying water.According to bacterial 16 S r RNA Illumina sequencing analysis,the Shannon values were lower in epiphytic biofilms than deciduous layer sediments.The relative abundances of Proteobacteria,Cyanobacteria and Actinobacteria were higher in epiphytic biofilms than in deciduous layer sediments(P<0.05).Co-occurrence network analyses showed that a total of 578 and 845 pairs of correlations(|r|>0.6)were identified from 122 and 112 genera in epiphytic biofilms and deciduous layer sediments,respectively.According to co-occurrence patterns,eight hubs were mainly from phyla Proteobacteria,Acidobacteria and Parcubacteria in epiphytic biofilms;while 37 hubs from the 14 phyla(Proteobacteria,Bacteroidetes,Acidobacteria,Chloroflexi,et al.)were detected in deciduous layer sediments.Our results indicate that bacterial community in deciduous layer sediments was more susceptible than in epiphytic biofilms during decay process.These data highlight the role of microbial community in deciduous layer sediments on nutrients removal during H.verticillata decay and will provide useful information for wetland management.展开更多
Freshwater shallow lakes typically exhibit two alternative stable states under certain nutrient loadings:macrophyte-dominated and phytoplankton-dominated water regimes.An ecosystem regime shift from macrophytes to phy...Freshwater shallow lakes typically exhibit two alternative stable states under certain nutrient loadings:macrophyte-dominated and phytoplankton-dominated water regimes.An ecosystem regime shift from macrophytes to phytoplankton blooming typically reduces the number of species of invertebrates and fishes and results in the homogenization of communities in freshwater lakes.We investigated how microbial biodiversity has responded to a shift of the ecosystem regime in Dianchi Lake,which was previously fully covered with submerged macrophytes but currently harbors both ecological states.We observed marked divergence in the diversity and community composition of bacterioplankton between the two regimes.Although species richness,estimated as the number of operational taxonomic units and phylogenetic diversity(PD),was higher in the phytoplankton dominated ecosystem after this shift,the dissimilarity of bacterioplankton community across space decreased.This decrease in beta diversity was accompanied by loss of planktonic bacteria unique to the macrophyte-dominated ecosystem.Mantel tests between bacterioplankton community distances and Euclidian distance of environmental parameters indicated that this reduced bacterial community differentiation primarily reflected the loss of environmental niches,particularly in the macrophyte regime.The loss of this small-scale heterogeneity in bacterial communities should be considered when assessing long-term biodiversity changes in response to ecosystem regime conversions in freshwater lakes.展开更多
Three species of aquatic plants (Scirpus validus, Phragmites australis and Acorus calamus) were used as experimental materials to study their capacity to purify contaminated water and their effects on water pH and dis...Three species of aquatic plants (Scirpus validus, Phragmites australis and Acorus calamus) were used as experimental materials to study their capacity to purify contaminated water and their effects on water pH and dissolved oxygen (DO). The water was contaminated with different concentrations of nitrate (5 mg/L, 15 mg/L and 25 mg/L). The results indicated that the concentration of nitrate, species of aquatic plant and their interaction significantly impacted denitrification (P = 0.00). Under the same concentrations, the three species of aquatic plants provided varying degrees of purification. Acorus calamus provided effective purification under all three concentrations of nitrate wastewater, with removal percentages of 87.73%, 83.80% and 86.72% for nitrate concentrations of 5 mg/L, 15 mg/L and 25 mg/L, respectively. In terms of the purification ability by unit fresh weight, Acorus calamus exhibited the worst purification capacity, whereas the capacities of Scirpus validus and Phragmites australis were higher. The purification capacity of Scirpus validus for the three concentrations was as follows: 0.08 mg/(L·g FW), 0.29 mg/(L·g FW), and 0.51 mg/(L·g FW). The capacity of Phragmites australis was 0.07 mg/(L·g FW), 0.25 mg/(L·g FW), and 0.53 mg/(L·g FW). The capacity of Acorus calamus was 0.04 mg/(L·g FW), 0.12 mg/(L·g FW), and 0.21 mg/(L·g FW). Under increased concentrations of nitrate, the three species of aquatic plants exhibited various degrees of increased purification capacity. Under the different concentrations of nitrate, the three species exhibited the same trends with respect to water pH and DO, increasing first and then falling. The pH remained at approximately 7.5, and the DO fell to 4.0 mg/L. A comprehensive analysis reveals that Acorus calamus provides excellent nitrate purification, although by unit fresh weight, both Scirpus validus and Phragmites australis provide superior purification capacity.展开更多
Distribution characteristics of fish assemblages and environmental variation in emerged plant, floating-leaved plant and blank habitats were studied. Emergent plant habitat supported the greatest fish biomass, density...Distribution characteristics of fish assemblages and environmental variation in emerged plant, floating-leaved plant and blank habitats were studied. Emergent plant habitat supported the greatest fish biomass, density and body size, followed by floating-leaved plant habitat, and those of blank habitat was the lowest. Transparency of emergent plant habitat decreased during the period, but of blank habitat increased. Species number of dominant fish of emergent plant habitat compared to the others decreased from four species, i.e., Hemicculter leuciclus, Pseudobrama simoni, Carassius auratus and Ophicephalus argus in May to the single one, C. auratus in September. Those of blank habitat increased from two species, H. leuciclus and Pseudorasbora parva to four species, H. leuciclus, C. auratus, P. parva and O. argus. This result suggested that emergent plant with excessively high density could worsen habitat physical and chemical conditions, resulted in the fish’s emigration to unvegetated area. Those of floating-leaved plant habitat from two species, Cultrichthys erythropterus and P. simoni, changed into four species, C. erythropterus, P. simoni, H. leuciclus and P. parva. The increasing structure complexity and biomass of floating-leaved macrophyte promoted the increase of dominant fish species number with seasonal change. C. auratus, C. erythropterus and H. leuciclus displayed special preferences on emergent plant, floating-leaved plant and blank habitats respectively. Fish’s special habitat preference was determined by plant physical morphology, habitat characteristics and fish breeding habits.展开更多
In a 10-day aquarium experiment, this investigation examines macrophyte restoration in eutrophic Lake Taihu, the physiological effects of different plant biomass levels and of increasing natural cyanobacterial concent...In a 10-day aquarium experiment, this investigation examines macrophyte restoration in eutrophic Lake Taihu, the physiological effects of different plant biomass levels and of increasing natural cyanobacterial concentrations on a submerged macrophyte, Vallisneria asiatica. Cyanobacterial stress suppressed the superoxide dismutase (SOD) activity of the plant's leaves and induced the catalase (CAT) and peroxidase (POD) activities of its roots. The soluble protein content in V. asiatica decreased with an increase in natural cyanobacterial concentrations, whereas the malonaldehyde (MDA) increased significantly at chlorophyll a (Chl a) concentrations of 222 and 262 μg/L in water. V. asiatica adapted to the stress caused by cyanobacterial concentrations by adjusting its antioxidant defense system to remove the excessive reactive oxygen species when the algal Chl a concentration was 〉109 μg/L. Additionally, high biomass of V. asiatica (2 222 g FW/m^2) can inhibit the reproduction of cyanobacteria more significantly than low biomass (1 111 g FW/m^2). High biomass of V. asiatica increased the oxidative stress in an individual plant when the initial Chl a concentration in the water reached 222 and 262 μg/L, as expressed by the increased MDA in leaves, compared with low biomass of K asiatica. This provides a basis for controlling cyanobacterial concentrations and V. asiatica biomass for the recovery of V. asiatica in eutrophic Lake Taihu.展开更多
Denitrifying bacteria in epiphytic biofilms play a crucial role in nitrogen cycle in aquatic habitats.However,little is known about the connection between algae and denitrifying bacteria and their assembly processes i...Denitrifying bacteria in epiphytic biofilms play a crucial role in nitrogen cycle in aquatic habitats.However,little is known about the connection between algae and denitrifying bacteria and their assembly processes in epiphytic biofilms.Epiphytic biofilms were collected from submerged macrophytes(Patamogeton lucens and Najas marina L.)in the Caohai Lake,Guizhou,SW China,from July to November 2020 to:(1)investigate the impact of abiotic and biotic variables on denitrifying bacterial communities;(2)investigate the temporal variation of the algae-denitrifying bacteria co-occurrence networks;and(3)determine the contribution of deterministic and stochastic processes to the formation of denitrifying bacterial communities.Abiotic and biotic factors influenced the variation in the denitrifying bacterial community,as shown in the Mantel test.The co-occurrence network analysis unveiled intricate interactions among algae to denitrifying bacteria.Denitrifying bacterial community co-occurrence network complexity(larger average degrees representing stronger network complexity)increased continuously from July to September and decreased in October before increasing in November.The co-occurrence network complexity of the algae and nirS-encoding denitrifying bacteria tended to increase from July to November.The co-occurrence network complexity of the algal and denitrifying bacterial communities was modified by ammonia nitrogen(NH_(4)^(+)-N)and total phosphorus(TP),pH,and water temperature(WT),according to the ordinary least-squares(OLS)model.The modified stochasticity ratio(MST)results reveal that deterministic selection dominated the assembly of denitrifying bacterial communities.The influence of environmental variables to denitrifying bacterial communities,as well as characteristics of algal-bacterial co-occurrence networks and the assembly process of denitrifying bacterial communities,were discovered in epiphytic biofilms in this study.The findings could aid in the appropriate understanding and use of epiphytic biofilms denitrification function,as well as the enhancement of water quality.展开更多
文摘In order to analyze the distribution and evolution of the aquatic vegetation and ecological status of the Semois-Chiers basin (Semois sub-basin and Chiers sub-basin), macrophyte surveys were conducted at 48 sites in 2007 and 2013. Environmental parameters were also measured in order to characterize the waterbodies in terms of physico-chemical properties and anthropogenic pressure. The two-way clustering and indicator value (INDVAL) methods were used to assess groups of sites according to their macrophytic composition and species communities. The results showed a clear difference between streams in the Lorraine area (calcareous watercourses) and in the Ardennes (siliceous). Within each natural region, those with natural vegetation of high ecological status were separated from those dominated by resistant species. The Macrophytical Biological Index for Rivers (IBMR) was calculated for the sites visited in 2010 and 2013 and the results show a trend towards an increase of IBMR values of polluted sites. For the latter, the Wilcoxon test was performed to assess the significance of the difference in quality between 2010 and 2013. This showed a statistically significant difference (p-value = 0.035). Our results showed similarities with previous data, as well as some differences. The differences observed might indicate a gradual change in the composition of the vegetation in the study area, which was caused by changes in environmental conditions. They could also reflect a lack of information about the ecology of certain groups of plants, mainly bryophytes and macroalgae that were not considered in previous studies. Despite the measures implemented under the EU’s Water Framework Directive (WFD), the current vegetation of the Semois river differs little from that observed in 1996. The headwaters of a Semois river, described in previous studies as polytrophic and devoid of vegetation, show a slight improvement, with the appearance of macrophytic species. In some parts of the Chiers sub-basin, however, resistant species observed in 1999 persist.
基金Supported by the National Natural Science Foundation of China(Nos.42007397,41871073)the Natural Science Foundation of Shandong Province(No.ZR2020QD002)。
文摘Decades of species composition changes can lead to the eutrophication-driven loss of submerged macrophytes in shallow lakes.Investigating the mechanisms of these nature-and human driven changes is crucial for the restoration and management of such lakes.To investigate the changes in aquatic macrophyte communities over the past two centuries,we analyzed macrofossils in sediments from a^(210)Pb-dated core obtained in Dongping Lake in the lower Huanghe(Yellow)River Basin,eastern China.Multiple factor analysis(MFA)revealed an association between macrophyte shifts and changes in various environmental stressors(invertebrates,grain size,geochemistry,and documented records),indicating that macrophyte community changes before 1960 were predominately driven by flood disturbances.Ever since,anthropogenic pollution and the construction of water conservancy projects have caused variations in hydrology and nutrients,leading to significant changes in the composition of macrophyte communities.Macrofossil data reveal a decline in diversity and pollution-intolerant species during the late 1980 s and the early 2000 s,which is indicative of eutrophication.We also found that the current environment of Dongping Lake exhibits a clear degeneration in emergent plants and a proliferation of macrophyte species associated with eutrophic conditions,which could be attributed to water level fluctuation and nutrient input due to the water supply from the eastern route of the South-to-North Water Diversion Project as well as climate warming.Our results provide valuable insights for assessing ecosystem health and the restoration and management of Dongping Lake and similar lakes in the Huanghe River region and elsewhere.
基金Supported by the National Key Research and Development Program of China(No.2022YFC3204100)the National Natural Science Foundation of China(Nos.42107078,42271120)the Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences(No.NIGLAS2022GS03)。
文摘Shallow lakes of the middle-lower reaches of Changjiang(Yangtze)River are a globally unique ecosystem essential for the regional sustainable economic development.These lakes have recently been under pressure from both human activities and climate change,underscoring the need for research on their ecological health and drivers.However,most previous studies focused on large lakes(i.e.,over 500 km^(2))and limited ecological elements,such as nutrient levels.Caizi Lake,a relatively small(approximately 226 km^(2)),a Changjiang River-isolated shallow lake,was chosen as a case of study.We assessed its ecological health and analyzed the driving forces using an integrated dataset from in situ observations,remote sensing,and historical data.Our findings indicate that in 2023,the mean ecological health score,reflecting from all selected elements—algal bloom area,zooplankton,macroinvertebrates,macrophytes coverage,comprehensive trophic level index,and biodiversity—was 50.4 out of the maximum of 100.Notably,the ecological health scores for macrophytes coverage(1.9),macroinvertebrates(17.2),and biodiversity(44.0)were particularly low.In 1960–2007,the ecological health was deteriorated as the macrophytes coverage was dropped from 80%to 50%.The degradation of macroinvertebrate communities and a decrease in biodiversity might be primarily due to the eutrophication-induced abnormal algal proliferation.In 2007–2023,elevated water levels might degrade the macrophytes coverage and other aspects of ecological health.Therefore,we proposed an ecological health restoration plan for Caizi Lake focusing on nutrient reduction and water level regulation on the thresholds of total nitrogen and phosphorus concentrations,an and provided a reference for the protection of Caizi Lake and other cases having similar hydromorphic background.
基金Supported by the National Natural Science Foundation of China(No.31600325)the Self-determined Research Funds of the Central China Normal University(CCNU)from the Colleges’Basic Research and Operation of MOE(No.CCNU20TS022)。
文摘To assess the population development of submerged plant species in disturbed lake ecosystems,we need to better understand the genetic diversity and spatial genetic structure at a fine scale,as well as the impact of disturbances on the populations.Caohai Lake,in southwest China,is a suitable natural sampling lake because of its abundance of submerged plants and the intense human disturbance.Three widely distributed species,Potamogeton lucens,Ceratophyllum demersum,and Myriophyllum spicatum,were sampled;the spatial position of each individual was recorded in two-dimensional coordinates;and the species were analyzed genetically using microsatellite markers.Among the species studied,M.spicatum exhibited the highest genetic and clonal diversities.All P.lucens subpopulations but one showed a significant fine-scale spatial genetic structure(FSGS),which may result from the limited gene dispersal.However,M.spicatum and C.demersum,with a relatively large distance of gene dispersal,had no significant FSGS.The FSGS pattern of P.lucens at the dock site with intense boat disturbance was significantly different from that at other sites.Our results imply that the FSGS of submerged plants is affected by many factors including seed dispersal,vegetative reproduction and disturbance from birds and boats.Most subpopulations of the three species hadσ_(sex)^(2)/σ_(veg)^(2)values greater than one,implying that the sexual dispersal contributes more than vegetative dispersal to total gene dispersal.Therefore,it is worth paying attention to the importance of seed dispersal for population development of submerged plants in lake ecosystems.
基金Project supported by the National Science Fund for Distinguished Young Scholars of China (No. 39925007)the Biotechnology section of INCO-DC under the 4th Framework Program of the European Commission(No. ERBIC18CT960059).
文摘In order to investigate the effects of microorganisms and their urease activities in macrophytic root zones on pollutant removal, four small-scale plots (SSPs) of vertical/reverse-vertical flow wetlands were set up to determine: a) the relationship between the abundance of microorganisms in the root zones and water purification efficiency; and b) the relationship between urease activities in the root zones and pollutant removal in a constructed wetland system. Total numbers of the microbial population (bacteria, fungi, and actinomyces) along with urease activities in the macrophytic root zones were determined. In addition, the relationships between microbial populations and urease activities as well as the wastewater purification efficiencies of total phosphorus (TP), total Kjeldahl nitrogen (TKN), biochemical oxygen demand in 5 days (BOD5), and chemical oxygen demand (COD) were also analyzed. The results showed that there was a highly significant positive correlation (r = 0.9772, P < 0.01) between the number of bacteria in the root zones and BOD5 removal efficiency and a significant negative correlation (r = -0.9092, P < 0.05) between the number of fungi and the removal efficiency of TKN. Meanwhile, there was a significant positive correlation (r -- 0.8830, P < 0.05) between urease activities in the root zones and the removal efficiency of TKN. Thus, during wastewater treatment in a constructed wetland system,microorganism and urease activities in the root zones were very important factors.
文摘From April 1996 to October 1997, regular samplings were carried out monthly at 8 stations in a macrophytic basin of Baoan Lake. From the water samples, 47 genera, 96 species of ciliata were identified. Stations covered with macrophytes had greater number of ciliate species and higher percentage of sessile species. The mixotroph Strombidium viride bearing algal endosymbionts dominated numerically the whole ciliate communities; most of the other dominants were bactivores. Total ciliate density in Lake Baoan was 6170-34310 ind./L. The seasonal density fluctuations of the dominant species populations were also investigated. Maximum abundances were observed in spring and winter during the decay of macrophytes and minimum densities were observed during the summer months of luxuriant macrophytes growth.
基金Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KZCX1-SW-12)
文摘A sequential extraction method for the fractionation of phosphorus (P) in lake sediments was used to analyze phos- phorus fractions of sediments taken from three large, shallow. eutrophic freshwater lakes of China-Talhu Lake. Chaohu Lake, and Long.an Lake. All three lakes are located in the lower reaches of the Changjiang River (Yangtze River). In Taihu Lake and Chaohu Lake, algae blooms occurred every year, while Longgan Lake was a macrophyte-dominated lake. Results showed that exchangeable phosphorus fractions were much higher in the eutrophic lake sediments than in the macrophyte-flourishing lake sediment. Also, the ratio of Fe:P in the sediments of the algae-predomlnant lakes was generally much lower than that in the macrophyte-predominant lakes. Thus, the geochemical fractions of phosphorus in sediments had a closer relationship with the type of aquatic vegetation.
基金supported by the National Natural Science Foundation of China(No.41271332the Natural Science Foundation of Hunan Province,China(No.11JJ2031)
文摘Numerous studies on eutrophication remediation have mainly focused on purifying water first, then restoring submerged macrophytes. A restoration-promoting integrated floating bed (RPIFB) was designed to combine the processes of water purification and macrophyte restoration simultaneously. Two outdoor experiments were conducted to evaluate the ecological functions of the RP1FB. Trial 1 was conducted to compare the eutrophication purification among floating bed, gradual-submerging bed (GSB) and RPIFB technologies. The results illustrated that RPIFB has the best purification capacity. Removal efficiencies of RPIFB for TN, TP,NH4+-N, NO3-N, CODcr, Chlorophyll-a and turbidity were 74.45%, 98.31%, 74.71%, 88.81%, 71.42%, 90.17% and 85%, respectively. In trial 2, influences of depth of GSB and photic area in RPIFB on biota were investigated. When the depth of GSB decreased and the photic area of RPIFB grew, the height of Potamogeton crispus Linn. increased, but the biomass of Canna indica Linn. was reduced. The mortalities of Misgurnus anguillicaudatus and Bellamya aeruginosa in each group were all less than 7%. All results indicated that when the RPIFB was embedded into the eutrophic water, the regime shift from phytoplankton-dominated to macrophyte-dominated state could be promoted. Thus, the RPIFB is a promising remediation technology for eutrophication and submerged macrophyte restoration.
基金supported by the National Natural Science Foundation of China(Nos.41877471,41877368)the Youth Innovation Promotion Association,Chinese Academy of Sciences(No.2017059)+2 种基金National Science and Technology Major Project for Water Pollution Control and Treatment(No.2017ZX07201004-002)National Key R&D Program(No.2017YFD0801301)the special fund from the State Key Joint Laboratory of Environment Simulation and Pollution Control(No.20L03ESPC)。
文摘Constructed wetlands(CWs)have been introduced to and developed in China for environmental engineering over the most prosperous three decades(1990–2020).To study the origin,development process,and future trend of CWs,this review summarized a wide range of literatures between 1990 and 2020 by Chinese authors.Firstly,the publication number over years,research highlights,and the author contributions with the most published papers in this field were conducted through bibliometric analysis.Secondly,the most principal components of CWs,substrates and macrophytes were summarized and analyzed.Thirdly,the typical application cases from traditional CWs,pond systems to combined pond-wetland systems were presented.In China,CWs were predominately distributed in the east of the so-called'Hu Huanyong Line'.Therefore CWs were limited by the socio-economic level and climatic conditions.It is unquestionable that the overall level of China's CWs has improved significantly,and one of the most prominent features has started towards the plural pattern development.There has been a trend of large-scale or low-cost CW application in the recent years.However,lifecycle research and management are required for better strategies in the future.
基金jointly funded by the National Key R&D Program of China(No.2017YFC0405205)the Major Projects on Control and Rectification of Water Body Pollution(No.2017ZX07203–004)+1 种基金the National Natural Science Foundation of China(Nos.42071118 and 41621002)supported by the TüBITAK,BIDEB program 2232.
文摘Light climate is of key importance for the growth, community composition of submerged macrophytes in lakes and, they, in turn, are affected by lake depth and the degree of eutrophication. To test the relationships between submerged macrophyte presence and the ratio of Secchi disk depth(SDD) to water depth, i.e. SDD/depth, nutrients and wind, we conducted an extensive sampling campaign in a macrophyte-dominated area of the eastern region( n = 36) in 2016 in Lake Taihu, China, and combined the data gathered with results from extensive physico-chemical monitoring data from the entire lake. We confirmed that SDD/Depth is the primary factor controlling the community composition of macrophytes and showed that plant abundance increased with increasing SDD/Depth ratio( p < 0.01), but that only SDD/Depth > 0.4 ensured growth of submerged macrophytes. Total phosphorus and total nitrogen also influenced the growth and community composition of macrophytes( p < 0.01), while Chl a was an indirectly affecting factor by reducing underwater light penetration. Wave height significantly influenced plant abundance( p < 0.01), whereas it had little effect on the biomass( p > 0.05). The key to restore the macrophyte beds in the lake is to reduce the nutrient loading. A decrease of the water level may contribute as well in the shallow bays but will not bring plants back in the main part of the lake. As the tolerance of shade and nutrients varied among the species studied, this should be taken into account in the restoration of lakes by addition of plants.
基金Supported by the National Natural Science Foundation of China(No.40730528)the National Basic Research Program of China(973Program)(No.2008CB418104)+2 种基金the Knowledge Innovation Project of Chinese Academy of Sciences(No.KZCX2-YW-JC302)the Jiangsu Provincial Science Foundation(No.BK2009024)the Frontier Foundation of Nanjing Institute of Geography & Limnology,Chinese Academy of Sciences(No.09SL021001)
文摘Leaves of terrestrial and aquatic plants are home to a wide diversity of bacterial species. However, the diversity and variability of epiphytic bacteria on their submerged plant hosts remains poorly understood. We investigated the diversity and composition of epiphytic bacteria from two common submerged macrophytes: Vallisneria natans and Hydrilla verticillata in Taihu Lake, Jiangsu, China, using methods of terminal restriction fragment length polymorphisms (T-RFLP) and clone library analyses targeted at bacterial 16S rRNA genes. The results show that: (1) the libraries of the two waterweeds contain wide phylogenetic distribution of bacteria, and that the sequences of the two libraries can be separated into 93 OTUs (at 97% similar value); (2) Betaproteobacteria, including Burkholderiales, was the most abundant bacterial group on both plants. Cyanobacteria and Gammaproteobacteria were the second largest groups on V. natans and H. verticillata, respectively. Both clone libraries included some sequences related to those of methanotrophs and nitrogen-fixing bacteria; (3) Cluster analysis of the T-RFLP profiles showed two distinct clusters corresponding to the two plant populations. Both ANOSIM of the T-RFLP data and Libshuff analysis of the two clone libraries indicated a significant difference in epiphytic bacterial communities between the two plants. Therefore, the epiphytic bacterial communities on submerged macrophytes appear to be diverse and host-specific, which may aid in understanding the ecological functions of submerged macrophytes in general.
基金supported by a grant from the Tunisian Higher Education and Scientific Research Ministry
文摘Autotrophic ammonia-oxidizing bacteria (AOB) have been widely studied in constructed wetlands systems, while mixotrophic AOB have been less thoroughly examined. Heterotrophic bacteria were isolated from wastewater and rhizospheres of macrophytes of constructed wetlands, and then cultivated in a mixotrophic medium containing ammonium and acetic acid. A molecular characterization was accomplished using ITS-PCR amplification, and phylogenetic analysis based on 16S rRNA gene Sequences. Results showed the presence of 35 bacteria, among 400 initially heterotrophic isolates, that were able to remove ammonia. These 35 isolates were classified into 10 genetically different groups based on ITS pattern. Then, a collection of 10 isolates were selected because of their relatively high ammonia removal efficiencies (ARE≥ 80%) and their phylogenetic diversity. In conditions of mixotrophy, these strains were shown to be able to grow (increase of optical density OD660 during incubation with assimilation of nitrogen into cellular biomass) and to oxidize ammonia (important ammonia oxidation efficiencies, AOE between 79% and 87%). Among these facultative mixotrophic AOB, four isolates were genetically related to Firmicutes (Bacillus and Exiguobacterium), three isolates were affiliated to Actinobacteria (Arthrobacter) and three other isolates were associated with Proteobacteria (Pseudomonas, Ochrobactrum and Bordetella).
基金Supported by the National Natural Science Foundation of China (39925007)the High Technology Research and Development Program of China (2002AA60l021)the Knowledge Innovation Program Key Project of Chinese Academy of Sciences (KSCX2-SW-102)
文摘In this paper, sinking and growth of apexes and mid-stems of Myriophyllum spicatum L., Hydrilla verticillata (L.f.) Royle and Ceratophyllum demersum L. in concrete ponds containing eutrophic water and sediment were investigated. Sinking rates of apexes and mid-stems reached 34.8% and 4.4% at the 6 th day and 91.1% and 66.7% at the 22 nd day for M. spicatum, 57.8% and 55.6% at the 6 th day and 100% and 97.8% at the 22 nd day for H. vertieillata, 18.9% and 86.7% at the 6 th day and 95.6% and 100% at the 22 nd day for C. demersum, respectively. Most sunken fragments established themselves successfully with significant growth. Total shoot length ofplantlets developed from apexes and mid-stems increased by 399% and 61% for M. spicatum, 593% and 256% for H. vertieillata and 114% and 104% for C. demersum, respectively. The results showed that it was feasible to establish submersed macrophytes via sinking and colonization of shoot fragments clipped off manually.
基金supported by the Hi-Tech Re-search and Development Program (863) of China (No.2007AA06A405)the National Basic Research Pro-gram (973) Project of China (No. 2002CB412307)
文摘The physiological effects of 4 herbicides (butachlor, quinclorac, bensulfuron-methyl and atrazine) on 3 submerged macrophytes (Ceratophyllum demersum, Vallisneria natans and Elodea nuttallii) were tested in laboratory. The variables of the relative growth rate and the photosynthetic pigment content showed that all of the tested herbicides affected the growth of the plants obviously, even at the lowest concentration (0.0001 mg/L). Except for the C. demersum treated with quinclorac at 0.005 and 0.01 mg/L, the relative growth rates of the plants were inhibited significantly (p 〈 0.01). Statistical analysis of chlorophyll a (Chl-a) contents was carded out with both the t-test and one-way ANOVA to determine the difference between the treatment and control. The results showed that Chl-a contents of the plants in all treatment groups were affected by herbicides significantly, except for the C. demersum treated with bensulfuron-methyl at 0.0005 mg/L. The decrease in Chl-a content was positively correlated to the dosage of the herbicides in most treatment groups. It was suggested that herbicides in water bodies might potentially affect the growth of aquatic macrophytes. Since the Chl-a content of submerged macrophytes responded to the stress of herbicides sensitively and directly, it could be used as a biomaker in environmental monitoring or in the ecological risk assessment of herbicide contamination.
基金supported by the National Natural Science Foundation of China(Nos.E51879084 and E51579075)Major Science and Technology Program for Water Pollution Con-trol and Treatment of China(No.2018ZX07208-4)。
文摘Submersed macrophytes decay is an important natural process and has important role in mass and energy flow in aquatic ecosystems.However,little is known about the dynamical changes in nutrients release and bacterial community during submersed macrophyte decay in natural environment.In this study,a field observation was conducted in a wetland dominated with Hydrilla verticillata for 36 days.Increase of H2O2 and malondialdehyde(MDA)content and decrease of soluble proteins concentration were detected in leaves during H.verticillata decay.Meanwhile,ammonium-N,soluble microbial products(SMP)and TOC concentration increased in overlying water.According to bacterial 16 S r RNA Illumina sequencing analysis,the Shannon values were lower in epiphytic biofilms than deciduous layer sediments.The relative abundances of Proteobacteria,Cyanobacteria and Actinobacteria were higher in epiphytic biofilms than in deciduous layer sediments(P<0.05).Co-occurrence network analyses showed that a total of 578 and 845 pairs of correlations(|r|>0.6)were identified from 122 and 112 genera in epiphytic biofilms and deciduous layer sediments,respectively.According to co-occurrence patterns,eight hubs were mainly from phyla Proteobacteria,Acidobacteria and Parcubacteria in epiphytic biofilms;while 37 hubs from the 14 phyla(Proteobacteria,Bacteroidetes,Acidobacteria,Chloroflexi,et al.)were detected in deciduous layer sediments.Our results indicate that bacterial community in deciduous layer sediments was more susceptible than in epiphytic biofilms during decay process.These data highlight the role of microbial community in deciduous layer sediments on nutrients removal during H.verticillata decay and will provide useful information for wetland management.
基金Supported by the National Natural Science Foundation of China(Nos.U1202231,31225004)the National Science Foundation for Young Scientists of China(No.31200383)
文摘Freshwater shallow lakes typically exhibit two alternative stable states under certain nutrient loadings:macrophyte-dominated and phytoplankton-dominated water regimes.An ecosystem regime shift from macrophytes to phytoplankton blooming typically reduces the number of species of invertebrates and fishes and results in the homogenization of communities in freshwater lakes.We investigated how microbial biodiversity has responded to a shift of the ecosystem regime in Dianchi Lake,which was previously fully covered with submerged macrophytes but currently harbors both ecological states.We observed marked divergence in the diversity and community composition of bacterioplankton between the two regimes.Although species richness,estimated as the number of operational taxonomic units and phylogenetic diversity(PD),was higher in the phytoplankton dominated ecosystem after this shift,the dissimilarity of bacterioplankton community across space decreased.This decrease in beta diversity was accompanied by loss of planktonic bacteria unique to the macrophyte-dominated ecosystem.Mantel tests between bacterioplankton community distances and Euclidian distance of environmental parameters indicated that this reduced bacterial community differentiation primarily reflected the loss of environmental niches,particularly in the macrophyte regime.The loss of this small-scale heterogeneity in bacterial communities should be considered when assessing long-term biodiversity changes in response to ecosystem regime conversions in freshwater lakes.
文摘Three species of aquatic plants (Scirpus validus, Phragmites australis and Acorus calamus) were used as experimental materials to study their capacity to purify contaminated water and their effects on water pH and dissolved oxygen (DO). The water was contaminated with different concentrations of nitrate (5 mg/L, 15 mg/L and 25 mg/L). The results indicated that the concentration of nitrate, species of aquatic plant and their interaction significantly impacted denitrification (P = 0.00). Under the same concentrations, the three species of aquatic plants provided varying degrees of purification. Acorus calamus provided effective purification under all three concentrations of nitrate wastewater, with removal percentages of 87.73%, 83.80% and 86.72% for nitrate concentrations of 5 mg/L, 15 mg/L and 25 mg/L, respectively. In terms of the purification ability by unit fresh weight, Acorus calamus exhibited the worst purification capacity, whereas the capacities of Scirpus validus and Phragmites australis were higher. The purification capacity of Scirpus validus for the three concentrations was as follows: 0.08 mg/(L·g FW), 0.29 mg/(L·g FW), and 0.51 mg/(L·g FW). The capacity of Phragmites australis was 0.07 mg/(L·g FW), 0.25 mg/(L·g FW), and 0.53 mg/(L·g FW). The capacity of Acorus calamus was 0.04 mg/(L·g FW), 0.12 mg/(L·g FW), and 0.21 mg/(L·g FW). Under increased concentrations of nitrate, the three species of aquatic plants exhibited various degrees of increased purification capacity. Under the different concentrations of nitrate, the three species exhibited the same trends with respect to water pH and DO, increasing first and then falling. The pH remained at approximately 7.5, and the DO fell to 4.0 mg/L. A comprehensive analysis reveals that Acorus calamus provides excellent nitrate purification, although by unit fresh weight, both Scirpus validus and Phragmites australis provide superior purification capacity.
文摘Distribution characteristics of fish assemblages and environmental variation in emerged plant, floating-leaved plant and blank habitats were studied. Emergent plant habitat supported the greatest fish biomass, density and body size, followed by floating-leaved plant habitat, and those of blank habitat was the lowest. Transparency of emergent plant habitat decreased during the period, but of blank habitat increased. Species number of dominant fish of emergent plant habitat compared to the others decreased from four species, i.e., Hemicculter leuciclus, Pseudobrama simoni, Carassius auratus and Ophicephalus argus in May to the single one, C. auratus in September. Those of blank habitat increased from two species, H. leuciclus and Pseudorasbora parva to four species, H. leuciclus, C. auratus, P. parva and O. argus. This result suggested that emergent plant with excessively high density could worsen habitat physical and chemical conditions, resulted in the fish’s emigration to unvegetated area. Those of floating-leaved plant habitat from two species, Cultrichthys erythropterus and P. simoni, changed into four species, C. erythropterus, P. simoni, H. leuciclus and P. parva. The increasing structure complexity and biomass of floating-leaved macrophyte promoted the increase of dominant fish species number with seasonal change. C. auratus, C. erythropterus and H. leuciclus displayed special preferences on emergent plant, floating-leaved plant and blank habitats respectively. Fish’s special habitat preference was determined by plant physical morphology, habitat characteristics and fish breeding habits.
基金Supported by the Research Institute for East Asia Environments of Kyushu University and Mitsubishi Corporation in Japan
文摘In a 10-day aquarium experiment, this investigation examines macrophyte restoration in eutrophic Lake Taihu, the physiological effects of different plant biomass levels and of increasing natural cyanobacterial concentrations on a submerged macrophyte, Vallisneria asiatica. Cyanobacterial stress suppressed the superoxide dismutase (SOD) activity of the plant's leaves and induced the catalase (CAT) and peroxidase (POD) activities of its roots. The soluble protein content in V. asiatica decreased with an increase in natural cyanobacterial concentrations, whereas the malonaldehyde (MDA) increased significantly at chlorophyll a (Chl a) concentrations of 222 and 262 μg/L in water. V. asiatica adapted to the stress caused by cyanobacterial concentrations by adjusting its antioxidant defense system to remove the excessive reactive oxygen species when the algal Chl a concentration was 〉109 μg/L. Additionally, high biomass of V. asiatica (2 222 g FW/m^2) can inhibit the reproduction of cyanobacteria more significantly than low biomass (1 111 g FW/m^2). High biomass of V. asiatica increased the oxidative stress in an individual plant when the initial Chl a concentration in the water reached 222 and 262 μg/L, as expressed by the increased MDA in leaves, compared with low biomass of K asiatica. This provides a basis for controlling cyanobacterial concentrations and V. asiatica biomass for the recovery of V. asiatica in eutrophic Lake Taihu.
基金Supported by the National Natural Science Foundation of China(No.41867056)the Guizhou Provincial Key Technology R&D Program(Nos.2021470,2023216)。
文摘Denitrifying bacteria in epiphytic biofilms play a crucial role in nitrogen cycle in aquatic habitats.However,little is known about the connection between algae and denitrifying bacteria and their assembly processes in epiphytic biofilms.Epiphytic biofilms were collected from submerged macrophytes(Patamogeton lucens and Najas marina L.)in the Caohai Lake,Guizhou,SW China,from July to November 2020 to:(1)investigate the impact of abiotic and biotic variables on denitrifying bacterial communities;(2)investigate the temporal variation of the algae-denitrifying bacteria co-occurrence networks;and(3)determine the contribution of deterministic and stochastic processes to the formation of denitrifying bacterial communities.Abiotic and biotic factors influenced the variation in the denitrifying bacterial community,as shown in the Mantel test.The co-occurrence network analysis unveiled intricate interactions among algae to denitrifying bacteria.Denitrifying bacterial community co-occurrence network complexity(larger average degrees representing stronger network complexity)increased continuously from July to September and decreased in October before increasing in November.The co-occurrence network complexity of the algae and nirS-encoding denitrifying bacteria tended to increase from July to November.The co-occurrence network complexity of the algal and denitrifying bacterial communities was modified by ammonia nitrogen(NH_(4)^(+)-N)and total phosphorus(TP),pH,and water temperature(WT),according to the ordinary least-squares(OLS)model.The modified stochasticity ratio(MST)results reveal that deterministic selection dominated the assembly of denitrifying bacterial communities.The influence of environmental variables to denitrifying bacterial communities,as well as characteristics of algal-bacterial co-occurrence networks and the assembly process of denitrifying bacterial communities,were discovered in epiphytic biofilms in this study.The findings could aid in the appropriate understanding and use of epiphytic biofilms denitrification function,as well as the enhancement of water quality.