针对宏-微机械手末端位姿、位置准确度的误差问题,受细胞学操纵子学说的启发,提出了基于操纵子模型的宏-微精密机械手运动的映射关系,研究精密机械手运动的影响因子和细胞学中的操纵子模型,分析机械手精密运动影响因子的影响方式和操纵...针对宏-微机械手末端位姿、位置准确度的误差问题,受细胞学操纵子学说的启发,提出了基于操纵子模型的宏-微精密机械手运动的映射关系,研究精密机械手运动的影响因子和细胞学中的操纵子模型,分析机械手精密运动影响因子的影响方式和操纵子模型的结构组成及其工作机理,结合操纵子模型的工作机理,分析宏-微机械手的控制系统,在此基础上,求解机械手精密运动控制系统的操纵子模型,考虑在几何因素的影响下,得出机械手末端位置在影响因子前后的误差值,通过基于粒子群算法的比例-积分-微分(Proportional-integral-differential,PID)控制器对误差结果进行优化,得出基于时间乘绝对误差积分准则(Time multiplied by the absolute error integral,ITAE)的粒子群算法(Particle swarm optimization,PSO)变化曲线和PID最优的控制参数。结论表明由映射关系推导出的控制系统能够满足一定的精度要求,并能进一步提高机械手的运动精度,为生物控制在机器人中进一步的创新研究提供了理论基础和依据。展开更多
500m口径球面射电望远镜(Five hundred meter aperture spherical radio telescope,FAST)的馈源支撑与指向跟踪机构由宏微并联机器人系统构成,大跨度柔索驱动的宏并联机器人保证系统的大工作空间,精密电动缸驱动的Stewart平台作为微并...500m口径球面射电望远镜(Five hundred meter aperture spherical radio telescope,FAST)的馈源支撑与指向跟踪机构由宏微并联机器人系统构成,大跨度柔索驱动的宏并联机器人保证系统的大工作空间,精密电动缸驱动的Stewart平台作为微并联机器人保证系统的末端精度并扩展其伺服带宽。为了降低宏并联机器人的柔性对末端定位精度的影响,提出基于并联机构学原理的三维机动目标解耦跟踪预测算法,对馈源舱的运动进行跟踪预测。引入自适应交互算法解决PID参数的实时调整,设计自适应交互PID监督控制器,根据馈源舱的预测运动和馈源平台的目标轨迹产生电动缸规划级控制量。此外,在电动缸执行级采用带前馈的数字伺服滤波器实现电动缸的高精度轨迹跟踪。FAST50m缩尺模型试验表明,结合解耦预测算法对馈源舱的运动预测,自适应交互PID监督控制器效果良好,能够确保宏微并联机器人系统在以期望的跟踪速度运行时,获得完全满足控制要求的定位精度和指向精度。展开更多
为了减小定位平台在X,Y方向的振动误差,实现高精度定位,搭建了宏微结合精密定位系统,由高性能直线电机驱动,气体静压导轨支撑和导向的宏动平台实现系统的大行程微米级定位,并由安装在宏动平台上的压电陶瓷驱动的微动平台对系统进行定位...为了减小定位平台在X,Y方向的振动误差,实现高精度定位,搭建了宏微结合精密定位系统,由高性能直线电机驱动,气体静压导轨支撑和导向的宏动平台实现系统的大行程微米级定位,并由安装在宏动平台上的压电陶瓷驱动的微动平台对系统进行定位精度补偿。建立了定位系统机电耦合振动模型,采用比例积分微分(proportion integral derivative,简称PID)控制与最小节拍响应控制相结合的策略控制宏动平台,采用前馈-PID控制驱动微动平台,通过电容式微位移传感器实时检测定位系统终端的位置输出信号作为微动台的输入信号,实现定位系统的闭环反馈控制,达到宏动平台的振动误差实时补偿的目的。实验结果显示,所设计的微动补偿平台具有良好的动态特性,定位系统具有良好的误差实时补偿效果,针对X,Y向的振动范围由补偿前的4和3.5μm,补偿后减小到1μm的范围内。结果表明,所研究的振动误差补偿方法可以有效减小定位系统的振动误差,提高系统的定位精度。展开更多
为了研究微/纳米技术在光学、精密加工和精确定位等领域的应用,提出了一种线性偏摆复合型压电微动平台,以实现线性运动和偏摆运动。对平台的组成和工作原理进行阐述,建立两种运动的数学模型,并进行运动性能仿真。根据拟定的尺寸加工出样...为了研究微/纳米技术在光学、精密加工和精确定位等领域的应用,提出了一种线性偏摆复合型压电微动平台,以实现线性运动和偏摆运动。对平台的组成和工作原理进行阐述,建立两种运动的数学模型,并进行运动性能仿真。根据拟定的尺寸加工出样机,对样机的运动能力和频响特性进行测试。最后,通过比例积分微分(Proportional Integral Derivative,PID)反馈实现对平台的跟踪控制。仿真和实验结果表明:该平台具有良好的运动精度和解耦性,一阶固有频率可以达到333.8 Hz,能够实现24.924μm的线性运动和1.330 mrad的角度摆动,实现了微/纳米级别的运动,在精密光学、精确定位等领域具有广阔的应用前景。展开更多
文摘针对宏-微机械手末端位姿、位置准确度的误差问题,受细胞学操纵子学说的启发,提出了基于操纵子模型的宏-微精密机械手运动的映射关系,研究精密机械手运动的影响因子和细胞学中的操纵子模型,分析机械手精密运动影响因子的影响方式和操纵子模型的结构组成及其工作机理,结合操纵子模型的工作机理,分析宏-微机械手的控制系统,在此基础上,求解机械手精密运动控制系统的操纵子模型,考虑在几何因素的影响下,得出机械手末端位置在影响因子前后的误差值,通过基于粒子群算法的比例-积分-微分(Proportional-integral-differential,PID)控制器对误差结果进行优化,得出基于时间乘绝对误差积分准则(Time multiplied by the absolute error integral,ITAE)的粒子群算法(Particle swarm optimization,PSO)变化曲线和PID最优的控制参数。结论表明由映射关系推导出的控制系统能够满足一定的精度要求,并能进一步提高机械手的运动精度,为生物控制在机器人中进一步的创新研究提供了理论基础和依据。
文摘500m口径球面射电望远镜(Five hundred meter aperture spherical radio telescope,FAST)的馈源支撑与指向跟踪机构由宏微并联机器人系统构成,大跨度柔索驱动的宏并联机器人保证系统的大工作空间,精密电动缸驱动的Stewart平台作为微并联机器人保证系统的末端精度并扩展其伺服带宽。为了降低宏并联机器人的柔性对末端定位精度的影响,提出基于并联机构学原理的三维机动目标解耦跟踪预测算法,对馈源舱的运动进行跟踪预测。引入自适应交互算法解决PID参数的实时调整,设计自适应交互PID监督控制器,根据馈源舱的预测运动和馈源平台的目标轨迹产生电动缸规划级控制量。此外,在电动缸执行级采用带前馈的数字伺服滤波器实现电动缸的高精度轨迹跟踪。FAST50m缩尺模型试验表明,结合解耦预测算法对馈源舱的运动预测,自适应交互PID监督控制器效果良好,能够确保宏微并联机器人系统在以期望的跟踪速度运行时,获得完全满足控制要求的定位精度和指向精度。
文摘为了减小定位平台在X,Y方向的振动误差,实现高精度定位,搭建了宏微结合精密定位系统,由高性能直线电机驱动,气体静压导轨支撑和导向的宏动平台实现系统的大行程微米级定位,并由安装在宏动平台上的压电陶瓷驱动的微动平台对系统进行定位精度补偿。建立了定位系统机电耦合振动模型,采用比例积分微分(proportion integral derivative,简称PID)控制与最小节拍响应控制相结合的策略控制宏动平台,采用前馈-PID控制驱动微动平台,通过电容式微位移传感器实时检测定位系统终端的位置输出信号作为微动台的输入信号,实现定位系统的闭环反馈控制,达到宏动平台的振动误差实时补偿的目的。实验结果显示,所设计的微动补偿平台具有良好的动态特性,定位系统具有良好的误差实时补偿效果,针对X,Y向的振动范围由补偿前的4和3.5μm,补偿后减小到1μm的范围内。结果表明,所研究的振动误差补偿方法可以有效减小定位系统的振动误差,提高系统的定位精度。
文摘为了研究微/纳米技术在光学、精密加工和精确定位等领域的应用,提出了一种线性偏摆复合型压电微动平台,以实现线性运动和偏摆运动。对平台的组成和工作原理进行阐述,建立两种运动的数学模型,并进行运动性能仿真。根据拟定的尺寸加工出样机,对样机的运动能力和频响特性进行测试。最后,通过比例积分微分(Proportional Integral Derivative,PID)反馈实现对平台的跟踪控制。仿真和实验结果表明:该平台具有良好的运动精度和解耦性,一阶固有频率可以达到333.8 Hz,能够实现24.924μm的线性运动和1.330 mrad的角度摆动,实现了微/纳米级别的运动,在精密光学、精确定位等领域具有广阔的应用前景。