The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can caus...The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.展开更多
Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising techn...Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising technology to achieve high efficiency,because it has high machining flexibility and no machining tool wear.However,reports on the macro electrochemical jet machining of large size titanium alloy parts are very scarce,because it is difficult to achieve effective constraint of the flow field in macro electrochemical jet machining.In addition,titanium alloy is very sensitive to fluctuation of the flow field,and a turbulent flow field would lead to serious stray corrosion.This paper reports a series of investigations of the electrochemical jet machining of titanium alloy parts.Based on the flow analysis and experiments,the machining flow field was effectively constrained.TB6 titanium alloy part with a perimeter of one meter was machined.The machined surface was smooth with no obvious machining defects.The machining process was particularly stable with no obvious spark discharge.The research provides a reference for the application of electrochemical jet machining technology to achieve large allowance material removal in the machining of large titanium alloy parts.展开更多
The counter-rotating electrochemical machining(CRECM) shows unique potential in the machining of thin-walled rotating parts with complex convex structures. CREM realizes the shaping of complex convex structures throug...The counter-rotating electrochemical machining(CRECM) shows unique potential in the machining of thin-walled rotating parts with complex convex structures. CREM realizes the shaping of complex convex structures through the relative rotation of the cathode and anode.The complex motion pattern and electric field distribution make it difficult to apply the existing cathode design methods to CRECM. To solve this problem, the matrix equations of cathode motion based on the kinematics and the electric field simulation model are established. The motion trajectories and edge contours at different angles are analyzed. The rotational overlap theory of motion trajectories under the windows at different angles is proved. Besides, the relationship between electric field distribution and the convex structure forming under different angle windows is studied, and the fundamental reason for deviations occurs when the convex profile is rotated to coincide is revealed. Therefore, a prediction model of the sidewall dissolution is established to correct this deviation, thereby deriving a high-precision design formula for the cathode windows of the high convex structures. By designing a cathode with oval-like windows to curry out CRECM experiments, the array-arranged(30 × 5) circular high convex structure with a maximum roundness error of 0.065 mm is successfully fabricated.展开更多
Glass,with its valuable properties,finds extensive use in aerospace,optics,and biomedical fields.Owing to its low fracture toughness,glass typically fractures in a brittle manner during machining,resulting in poor sur...Glass,with its valuable properties,finds extensive use in aerospace,optics,and biomedical fields.Owing to its low fracture toughness,glass typically fractures in a brittle manner during machining,resulting in poor surface quality.This paper presents an experimental investigation of vibration-assisted machining(VAM)techniques to enhance the machining of glass materials.A novel high-frequency two-dimensional VAM system specifically designed for glass is introduced,and slot milling experiments are conducted using ultrasonic high-frequency vibrations.A low-frequency nonresonant VAM system is also employed for comparison purposes.A comprehensive examination is made of the effects of various machining parameters,such as feed rate,cutting speeds,and vibration parameters,including vibration modes and amplitudes,on the machining performance of glass.Surface roughness,edge chipping generation,and tool wear are thoroughly characterized using scanning electron microscopy.The findings demonstrate that under specific machining and vibration parameters,the proposed ultrasonic vibration-assisted micro-milling(UVAMM)system can achieve a nanometric surface roughness Ra for glass.The UVAMM system offers enhanced surface quality,improved edge quality,and reduced tool wear compared with conventional machining techniques.This study provides valuable insights and directions for the application of 2D VAM systems in achieving superior machining results for glass components at small scales with nanometric surface finishes.展开更多
To ensure the dimensional accuracy of the final blade profile,it is necessary for precision Electrochemical Machining(ECM)of blade profile to come into an equilibrium state.However,after Electrochemical Trepanning(ECT...To ensure the dimensional accuracy of the final blade profile,it is necessary for precision Electrochemical Machining(ECM)of blade profile to come into an equilibrium state.However,after Electrochemical Trepanning(ECTr),the cascade channel of the blisk is narrow,and the blank allowance distribution is uneven,making it difficult for the precision ECM to become balanced.In blisk production,the two-step method cannot make precision ECM enter equilibrium for some blisk types.A three-step processing method is proposed to overcome this problem.The threestep method adds Electrochemical Homogenizing Machining(ECHM)between the ECTr and precision ECM steps so that the blank allowance can be homogenized quickly without unduly affecting the minimum allowance.Comparative machining experiments of the two-and three-step methods were performed to verify the improvement to blade machining accuracy.The processing results show that the contour parameters of the blade after the three-step method implementation are much better.The allowance difference of the concave(convex)side decreased by 70.5%(65%).In addition,the current in the three-step method is stable at 110 A at the end of precision ECM,verifying successfully entering the equilibrium state.展开更多
Fiber reinforced ceramic matrix composites(FRCMCs)are the preferred materials for safety critical components in the fields of aerospace,nuclear engineering,and transportation,with broad market and application prospect...Fiber reinforced ceramic matrix composites(FRCMCs)are the preferred materials for safety critical components in the fields of aerospace,nuclear engineering,and transportation,with broad market and application prospects.However,due to the characteristics of multiphase,heterogeneity,and anisotropy,key issues such as poor adhesion,high porosity,and crack propagation urgently need to be addressed in the fabrication and machining of FRCMCs.With the increasing demand for FRCMCs parts,high-quality and reliable design and fabrication,performance evaluation,and precision manufacturing have become a series of hot issues.There is a lack of systematic review in capturing the current research status and development direction of FRCMCs fabrication and machining.This research aims to comprehensively review and critically evaluate the existing understanding of the fabrication and machining of FRCMCs.This study can provide scientists with a deeper understanding of the shape control mechanism of FRCMCs fabrication and machining,the theoretical basis of material synchronous removal,machining performance,and development direction.Firstly,the basic characteristics and application background of FRCMCs are introduced.Secondly,by comparing and analyzing the typical fabrication process of FRCMCs,the advantages,disadvantages,and performance evaluation of different processes are comprehensively evaluated.Thirdly,the material removal mechanisms and machining performance evaluation standards of traditional mechanical machining technologies(drilling,milling,grinding)and non-traditional mechanical machining technologies(ultrasonic,laser,water jet,discharge,wire saw,and multi-field hybrid machining)are discussed and analyzed.Finally,the challenges,development trends,and prospects faced by FRCMCs in the fields of fabrication,machining,and application are analyzed.This study not only elucidates the basic processes and key difficulties in the fabrication of FRCMCs,but also provides valuable insights for low-damage machining.展开更多
In electrochemical machining(ECM),the electrolyte flow field has a significant effect on machining stability,efficiency,and surface quality.In multitool ECM of blisk channels,the traditional open outflow mode(OOM)is p...In electrochemical machining(ECM),the electrolyte flow field has a significant effect on machining stability,efficiency,and surface quality.In multitool ECM of blisk channels,the traditional open outflow mode(OOM)is prone to flow randomness,the flow direction is not easy to control,and electrolytes interfere with each other,which causes problems with the normal conduct of machining.To improve the flow field distribution of multitool ECM,this paper proposes a constrained composite outflow mode(COM).The machining area is divided into separate isolated partitions by specific fixtures,which also provide back-pressure to the machining area.The electrolyte is injected into the machining gap and then flows out through the top and side outlets of the fixture.The flow field distribution during the process is simulated and analyzed using computational fluid dynamics.The simulation results show that the optimized flow mode improves the accessibility of the electrolyte and the uniformity of the flow distribution.ECM experiments are carried out using a specific fixture.With COM,the maximum feed rate of the cathode reaches 1.0 mm/min,and a channel with surface roughness Ra=1.54μm is machined.The suitability and effectiveness of the flow field simulation optimization are thus verified.On this basis,synchronous ECM of 15 channels is successfully realized,and the machining efficiency is found to be improved exponentially.展开更多
Polymer microfluidic chips are a common tool in biomedical research,and the production of mold inserts with microscale structures represents a crucial step in the precise molding of these chips.Electrical discharge ma...Polymer microfluidic chips are a common tool in biomedical research,and the production of mold inserts with microscale structures represents a crucial step in the precise molding of these chips.Electrical discharge machining(EDM)can achieve high-quality machining of microstructures on high-hardness mold steel inserts.This can reduce the manufacturing cost of microfluidic chip molds and extend the service life of molds.However,the EDM process is susceptible to the formation of poor-quality surfaces due to the occurrence of abnormal discharges.To address this issue,this paper presents in-depth research on a novel ultrasonic cavitation-assisted electrical discharge machining method.An ultrasonic transducer is placed in an electrical discharge working fluid to promote the removal of electrical corrosion products through the cavitation effect of the liquid.This can also reduce the occurrence of poor discharge,thereby improving the machining surface quality.The aluminum foil corrosion method is employed to investigate the distribution of ultrasonic action in the electric discharge working fluid.The attenuation law of ultrasonic action in the electric discharge working fluid is also investigated.The range of ultrasonic action is determined,providing a reference for subsequent ultrasonic vibration electric discharge working fluid processing experiments.The results of the aluminum foil tests are used to inform the selection of NAK80 mold steel as the experimental object.The effects of cavitation at three ultrasonic frequencies on the surface microstructure are investigated.The experimental results indicate that ultrasonic cavitation can facilitate the movement of corrosion products in electrical machining,reduce the occurrence of abnormal discharges caused by carbon deposition or the secondary re-melting of metals,and thereby enhance the machining surface quality.展开更多
To address problems in surface integrity and machining allowance distribution during combined electric arc-mechanical milling,this paper takes TC4 as the research object,examines the influence of electric arc milling(...To address problems in surface integrity and machining allowance distribution during combined electric arc-mechanical milling,this paper takes TC4 as the research object,examines the influence of electric arc milling(EAM)depth on recast layer thickness and surface roughness,alongside an analysis of the recast layer’s organization characteristics and sur-face morphology.A comparative evaluation of cutting forces,surface roughness,and surface hardening is conducted between combined milling and conventional mechanical milling.Key findings reveal that electric arc machining produces a recast layer with a hardness of 313.21 HV.As the EAM depth increases,the localized recast layer thickness and peak-to-valley(PV)differ-ences also rise.To ensure effective surface defect removal,the machining allowance for subsequent mechanical milling must exceed the combined thickness of the recast layer and the PV difference.Under identical parameters,combined milling yields higher surface roughness(0.584μm)and greater surface hardening(10.4%)compared to mechanical milling alone,alongside an 18.716 N increase in cutting force.Response surface methodology(RSM)analysis identifies feed per tooth as the most significant factor affecting surface roughness,followed by spindle speed,with milling depth having the least influence.展开更多
The blisk is a core component of an aero-engine,and electrochemical machining(ECM)is the primary method for its manufacture.Among several ECM methods for blisks,multi-tool synchronous machining is the most efficient a...The blisk is a core component of an aero-engine,and electrochemical machining(ECM)is the primary method for its manufacture.Among several ECM methods for blisks,multi-tool synchronous machining is the most efficient and advantageous for machining channels.The allowance distribution of the blank after blisk channel machining directly influences the blade profile accuracy.This paper proposes a trajectory control strategy to homogenize the allowance distribution of the blisk channel in multi-tool ECM.The strategy includes the design of the three-dimensional space motion of the tool and blisk,as well as the regulated feed speed.The structural characteristics of the blisk channel and the principle of ECM allow for designing and optimizing the multidimensional trajectory.The electric field simulations elucidate the influence law of the three-axis feed speed on the side gap.An algorithm is adopted to iteratively optimize the speeds for different positions to realize multi-dimensional motion control and allowance homogenization.The proposed trajectory control strategy is applied to ECM experiments for the blisk channel.Compared with the constant feed speed mode,the regulated speed strategy reduces the maximum allowance difference between the convex(CV)profiles by 36.18%and that between the concave(CC)profiles by 37.73%.Subsequently,the one-time ECM of eight blisk channels was successfully realized.The average time for a single channel was 12.5 min,significantly improving the machining efficiency.In conclusion,the proposed method is effective and can be extended for synchronously machining various blisk types with twisted channels.展开更多
To investigate the residual stress distribution and its influence on machining deformation in 6061-T651 aluminum alloy plates,this paper uses the crack compliance method to study the residual stress characteristics of...To investigate the residual stress distribution and its influence on machining deformation in 6061-T651 aluminum alloy plates,this paper uses the crack compliance method to study the residual stress characteristics of 6061-T651 aluminum alloy plates with a thickness of 75 mm produced by two domestic manufacturers in China.The results indicate that both types of plates exhibit highly consistent and symmetrical M-shaped residual stress profile along the thickness direction,manifested as surface layer compression and core tension.The strain energy density across all specimens ranges from 1.27 kJ/m^(3)to 1.43 kJ/m^(3).Machining deformation simulations of an aerospace component incorporating these measured stresses showed minimal final deformation difference between the material sources,with a maximum deviation of only 0.009 mm across specimens.These findings provide critical data for material selection and deformation control in aerospace manufacturing.展开更多
The use of Minimum Quantity Lubrication(MQL)with bio-lubricants has been extensively studied in aerospace sustainable manufacturing.Enhanced MQL technologies have been proposed to reduce tool wear and improve workpiec...The use of Minimum Quantity Lubrication(MQL)with bio-lubricants has been extensively studied in aerospace sustainable manufacturing.Enhanced MQL technologies have been proposed to reduce tool wear and improve workpiece surface integrity by increasing lubricant activity.However,the relationship between enhancement behavior,physicochemical properties of biolubricants,and processability remains unclear,presenting challenges for MQL technologies,particularly with difficult-to-machine materials.To address this gap,this paper provides an in-depth mechanism analysis and a comprehensive quantitative evaluation of the machinability of enhanced MQL technologies,considering chemistry,molecular dynamics,fluid dynamics,tribology,and heat transfer.Firstly,the cooling and lubrication enhancement mechanisms of nano-lubricants were systematically summarized.focusing on molecular structure.physical properties,and preparation processes.Secondly,the atomization enhancement mechanism of Electrostatic Minimum Quantity Lubrication(EMQL)was analyzed.revealing a 49%reduction in PM2.5 concentration during the atomization process compared to conventional MQL.Thirdly,the transport and infiltration enhancement mechanisms of bio-lubricants in cutting and grinding zones were summarized,incorporating electromagnetic fields and ultrasound-assisted processes.Finally,for cutting and grinding applications involving difficult-to-machine materials in aerospace,the optimized machinability of enhanced MQL technologies was concluded,showing a 50.1%increase in lubricant heat transfer coefficient and a 31.6%decrease in grinding temperature compared to standard MQL.This paper aims to help scientists understand the effective mechanisms,formulate process specifications,and identify future development trends in this technology.展开更多
With the widespread adoption of ultra-precision machining(UPM)in manufacturing,accurately monitoring the temperature within micro-scale cutting zones has become crucial for ensuring machining quality and tool longevit...With the widespread adoption of ultra-precision machining(UPM)in manufacturing,accurately monitoring the temperature within micro-scale cutting zones has become crucial for ensuring machining quality and tool longevity.This review comprehensively evaluates modern in-process cutting temperature measurement methods,comparing conventional approaches and emerging technologies.Thermal conduction-based and radiation-based measurement paradigms are analyzed in terms of their merits,limitations,and domain-specific applicability,particularly with regard to the unique challenges involving micro-scale cutting zones in UPM.Special emphasis is placed on micro-scale sensor-integrated tools and self-sensing tools that enable real-time thermal monitoring at cutting edges.Furthermore,we explore thermal monitoring and management techniques for atomic and close-to-atomic scale manufacturing(ACSM),as well as the transformative potential of emerging technologies like artificial intelligence(AI),internet of things(IoT),and data fusion for machining temperature measurement.This review may serve as a reference for UPM cutting temperature measurement research,helping foster the development of optimized process control technologies.展开更多
Accurate kinematic calibration is the very foundation for robots'application in industry demanding high precision such as machining.Considering the complex error characteristic and severe ill-posed identification ...Accurate kinematic calibration is the very foundation for robots'application in industry demanding high precision such as machining.Considering the complex error characteristic and severe ill-posed identification issues of a 5-DoF parallel machining robot,this paper proposes an adaptive and weighted identification method to achieve high-precision kinematic calibration while maintaining reliable stability.First,a kinematic error propagation mechanism model considering the non-ideal constraints and the screw self-rotation is formulated by incorporating the intricate structure of multiple chains and a unique driven screw arrangement of the robot.To address the challenge of accurately identifying such a sophisticated error model,a novel adaptive and weighted identification method based on generalized cross validation(GCV)is proposed.Specifically,this approach innovatively introduces Gauss-Markov estimation into the GCV algorithm and utilizes prior physical information to construct both a weighted identification model and a weighted cross-validation function,thus eliminating the inaccuracy caused by significant differences in dimensional magnitudes of pose errors and achieving accurate identification with flexible numerical stability.Finally,the kinematic calibration experiment is conducted.The comparative experimental results demonstrate that the presented approach is effective and has enhanced accuracy performance over typical least squares methods,with maximum position and orientation errors reduced from 2.279 mm to 0.028 mm and from 0.206°to 0.017°,respectively.展开更多
Intelligent manufacturing technology, as the core driving force of the fourth industrial revolution, is profoundly changing the production mode and industrial pattern in the field of mechanical processing. This paper ...Intelligent manufacturing technology, as the core driving force of the fourth industrial revolution, is profoundly changing the production mode and industrial pattern in the field of mechanical processing. This paper starts from the application background of intelligent manufacturing technology in the field of machining, combined with the limitations of traditional machinery manufacturing technology, systematically analyzes the application status of intelligent manufacturing technology in CNC production, equipment fault diagnosis, sensing technology and industrial robots, and provides theoretical support and practical guidance for the transformation and upgrading of machining industry. The exploration of the application path of intelligent manufacturing technology in the field of machining not only helps to enhance the core competitiveness of the industry but also provides important support for the realization of high-quality development and sustainable development goals of the manufacturing industry.展开更多
Current research on robot calibration can be roughly classified into two categories,and both of them have certain inherent limitations.Model-based methods are difficult to model and compensate the pose errors arising ...Current research on robot calibration can be roughly classified into two categories,and both of them have certain inherent limitations.Model-based methods are difficult to model and compensate the pose errors arising from configuration-dependent geometric and non-geometric source errors,whereas the accuracy of data-driven methods depends on a large amount of measurement data.Using a 5-DOF(degrees of freedom)hybrid machining robot as an exemplar,this study presents a model data-driven approach for the calibration of robotic manipulators.An f-DOF realistic robot containing various source errors is visualized as a 6-DOF fictitious robot having error-free parameters,but erroneous actuated/virtual joint motions.The calibration process essentially involves four steps:(1)formulating the linear map relating the pose error twist to the joint motion errors,(2)parameterizing the joint motion errors using second-order polynomials in terms of nominal actuated joint variables,(3)identifying the polynomial coefficients using the weighted least squares plus principal component analysis,and(4)compensating the compensable pose errors by updating the nominal actuated joint variables.The merit of this approach is that it enables compensation of the pose errors caused by configuration-dependent geometric and non-geometric source errors using finite measurement configurations.Experimental studies on a prototype machine illustrate the effectiveness of the proposed approach.展开更多
The problem of finished surface being not first-order continuous commonly exists in machining sculptured surfaces with a torus cutter and some other types of cutters. To solve this problem, a dual drive curve tool pat...The problem of finished surface being not first-order continuous commonly exists in machining sculptured surfaces with a torus cutter and some other types of cutters. To solve this problem, a dual drive curve tool path planning method is proposed in this article. First, the maximum machining strip width of a whole tool path can be obtained through optimizing each tool position with multi-point machining (MPM) method. Second, two drive curves are then determined according to the obtained maximum machining strip width. Finally, the tool is positioned once more along the dual drive curve under the condition of tool path smoothness. A computer simulation and cutting experiments are carried out to testify the performance of the new method. The machined surface is measured with a coordinate measuring machine (CMM) to examine the machining quality. The results obtained show that this method can effectively eliminate sharp scallops between adjacent tool paths, keep tool paths smooth, and improve the surface machining quality as well as machining efficiency.展开更多
Thanks to recent advances in manufacturing technology, aerospace system designers have many more options to fabricate high-quality, low-weight, high-capacity, cost-effective filters. Aside from traditional methods suc...Thanks to recent advances in manufacturing technology, aerospace system designers have many more options to fabricate high-quality, low-weight, high-capacity, cost-effective filters. Aside from traditional methods such as stamping, drilling and milling, many new approaches have been widely used in filter-manufacturing practices on account of their increased processing abilities. How- ever, the restrictions on costs, the need for studying under stricter conditions such as in aggressive fluids, the complicity in design, the workability of materials, and others have made it difficult to choose a satisfactory method from the newly developed processes, such as, photochemical machining (PCM), photo electroforming (PEF) and laser beam machining (LBM) to produce small, inexpensive, lightweight aerospace filters. This article appraises the technical and economical viability of PCM, PEF, and LBM to help engineers choose the fittest approach to turn out aerospace filters.展开更多
Two types of aluminium-based composites reinforced respectively with 20 vol short fibre alumina and with a hybrid of 15 vol SiC particle and 5 vol short alumina fibre are machined with different tool materials:cemente...Two types of aluminium-based composites reinforced respectively with 20 vol short fibre alumina and with a hybrid of 15 vol SiC particle and 5 vol short alumina fibre are machined with different tool materials:cemented carbide,ceramic,cubic boron nitride(CBN)and polycrystalline diamond(PCD).The analysis on tool wear shows that the various tool materials exhibite different tool wear behaviours,and the tool wear mechanisma are discussed.Apparently,PCD tools do not necessarily guarantee dimensional stability but they can provide the most economic means for machining all sorts of composites.Consequently,a suitable tool material is suggested for machining each metal matrix composite(MMC) from the standpoints of tool wear and machined surface finish.展开更多
The theory and its method of machining parameter optimization for high-speed machining are studied. The machining data collected from workshops, labs and references are analyzed. An optimization method based on the ge...The theory and its method of machining parameter optimization for high-speed machining are studied. The machining data collected from workshops, labs and references are analyzed. An optimization method based on the genetic algorithm (GA) is investigated. Its calculation speed is faster than that of traditional optimization methods, and it is suitable for the machining parameter optimization in the automatic manufacturing system. Based on the theoretical studies, a system of machining parameter management and optimization is developed. The system can improve productivity of the high-speed machining centers.展开更多
基金Projects(U22B2084,52275483,52075142)supported by the National Natural Science Foundation of ChinaProject(2023ZY01050)supported by the Ministry of Industry and Information Technology High Quality Development,China。
文摘The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.
基金the National Natural Science Foundation of China(No.52205468)China Postdoctoral Science Foundation(No.2022M710061 and No.2023T160277)Natural Science Foundation of Jiangsu Province(No.BK20210755)。
文摘Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising technology to achieve high efficiency,because it has high machining flexibility and no machining tool wear.However,reports on the macro electrochemical jet machining of large size titanium alloy parts are very scarce,because it is difficult to achieve effective constraint of the flow field in macro electrochemical jet machining.In addition,titanium alloy is very sensitive to fluctuation of the flow field,and a turbulent flow field would lead to serious stray corrosion.This paper reports a series of investigations of the electrochemical jet machining of titanium alloy parts.Based on the flow analysis and experiments,the machining flow field was effectively constrained.TB6 titanium alloy part with a perimeter of one meter was machined.The machined surface was smooth with no obvious machining defects.The machining process was particularly stable with no obvious spark discharge.The research provides a reference for the application of electrochemical jet machining technology to achieve large allowance material removal in the machining of large titanium alloy parts.
基金supported by the National Natural Science Foundation of China (no.52175414)National Natural Science Foundation of China for Creative Research Groups (51921003)+1 种基金Natural Science Foundation of Jiangsu Province of China (No. BK20220134)Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX22_0344)。
文摘The counter-rotating electrochemical machining(CRECM) shows unique potential in the machining of thin-walled rotating parts with complex convex structures. CREM realizes the shaping of complex convex structures through the relative rotation of the cathode and anode.The complex motion pattern and electric field distribution make it difficult to apply the existing cathode design methods to CRECM. To solve this problem, the matrix equations of cathode motion based on the kinematics and the electric field simulation model are established. The motion trajectories and edge contours at different angles are analyzed. The rotational overlap theory of motion trajectories under the windows at different angles is proved. Besides, the relationship between electric field distribution and the convex structure forming under different angle windows is studied, and the fundamental reason for deviations occurs when the convex profile is rotated to coincide is revealed. Therefore, a prediction model of the sidewall dissolution is established to correct this deviation, thereby deriving a high-precision design formula for the cathode windows of the high convex structures. By designing a cathode with oval-like windows to curry out CRECM experiments, the array-arranged(30 × 5) circular high convex structure with a maximum roundness error of 0.065 mm is successfully fabricated.
文摘Glass,with its valuable properties,finds extensive use in aerospace,optics,and biomedical fields.Owing to its low fracture toughness,glass typically fractures in a brittle manner during machining,resulting in poor surface quality.This paper presents an experimental investigation of vibration-assisted machining(VAM)techniques to enhance the machining of glass materials.A novel high-frequency two-dimensional VAM system specifically designed for glass is introduced,and slot milling experiments are conducted using ultrasonic high-frequency vibrations.A low-frequency nonresonant VAM system is also employed for comparison purposes.A comprehensive examination is made of the effects of various machining parameters,such as feed rate,cutting speeds,and vibration parameters,including vibration modes and amplitudes,on the machining performance of glass.Surface roughness,edge chipping generation,and tool wear are thoroughly characterized using scanning electron microscopy.The findings demonstrate that under specific machining and vibration parameters,the proposed ultrasonic vibration-assisted micro-milling(UVAMM)system can achieve a nanometric surface roughness Ra for glass.The UVAMM system offers enhanced surface quality,improved edge quality,and reduced tool wear compared with conventional machining techniques.This study provides valuable insights and directions for the application of 2D VAM systems in achieving superior machining results for glass components at small scales with nanometric surface finishes.
基金supported by the National Natural Science Foundation of China(No.52075253)the Innovation Research Team of the National Natural Science Foundation of China(No.51921003)。
文摘To ensure the dimensional accuracy of the final blade profile,it is necessary for precision Electrochemical Machining(ECM)of blade profile to come into an equilibrium state.However,after Electrochemical Trepanning(ECTr),the cascade channel of the blisk is narrow,and the blank allowance distribution is uneven,making it difficult for the precision ECM to become balanced.In blisk production,the two-step method cannot make precision ECM enter equilibrium for some blisk types.A three-step processing method is proposed to overcome this problem.The threestep method adds Electrochemical Homogenizing Machining(ECHM)between the ECTr and precision ECM steps so that the blank allowance can be homogenized quickly without unduly affecting the minimum allowance.Comparative machining experiments of the two-and three-step methods were performed to verify the improvement to blade machining accuracy.The processing results show that the contour parameters of the blade after the three-step method implementation are much better.The allowance difference of the concave(convex)side decreased by 70.5%(65%).In addition,the current in the three-step method is stable at 110 A at the end of precision ECM,verifying successfully entering the equilibrium state.
基金supported by Key Laboratory of Higheffciency and Clean Mechanical Manufacture at Shandong University,Ministry of Education,the National Natural Science Foundation of China(Nos.52305484,52305475,and U23A20632)the China Postdoctoral Science Foundation(No.2024M761876)+7 种基金the Youth Innovation Team Program of Universities in Shandong Province(No.2024KJH166)the National Key Research and Development Program of China(No.2023YFC2413301)the Taishan Scholars Program(No.tsqn202408242)the Shandong Provincial Natural Science Foundation(Nos.ZR2022QE053 and ZR2022QE159)the Guangdong Basic and Applied Basic Research Foundation(No.2022A1515111124)the Major Scientific and Technological Innovation Project of Shandong Province(No.2023CXGC010207)the Major Basic Research of Shandong Provincial Natural Science Foundation(No.ZR2023ZD34)the talent research project for the pilot project of integrating science,education,and industries of Qilu University of Technology(Shandong Academy of Sciences)(No.2024RCKY009)。
文摘Fiber reinforced ceramic matrix composites(FRCMCs)are the preferred materials for safety critical components in the fields of aerospace,nuclear engineering,and transportation,with broad market and application prospects.However,due to the characteristics of multiphase,heterogeneity,and anisotropy,key issues such as poor adhesion,high porosity,and crack propagation urgently need to be addressed in the fabrication and machining of FRCMCs.With the increasing demand for FRCMCs parts,high-quality and reliable design and fabrication,performance evaluation,and precision manufacturing have become a series of hot issues.There is a lack of systematic review in capturing the current research status and development direction of FRCMCs fabrication and machining.This research aims to comprehensively review and critically evaluate the existing understanding of the fabrication and machining of FRCMCs.This study can provide scientists with a deeper understanding of the shape control mechanism of FRCMCs fabrication and machining,the theoretical basis of material synchronous removal,machining performance,and development direction.Firstly,the basic characteristics and application background of FRCMCs are introduced.Secondly,by comparing and analyzing the typical fabrication process of FRCMCs,the advantages,disadvantages,and performance evaluation of different processes are comprehensively evaluated.Thirdly,the material removal mechanisms and machining performance evaluation standards of traditional mechanical machining technologies(drilling,milling,grinding)and non-traditional mechanical machining technologies(ultrasonic,laser,water jet,discharge,wire saw,and multi-field hybrid machining)are discussed and analyzed.Finally,the challenges,development trends,and prospects faced by FRCMCs in the fields of fabrication,machining,and application are analyzed.This study not only elucidates the basic processes and key difficulties in the fabrication of FRCMCs,but also provides valuable insights for low-damage machining.
基金Supported by National Natural Science Foundation of China(Grant Nos.52075253,51921003)the Industrial Technology Development Program(Grant No.JCKY2021605B026)。
文摘In electrochemical machining(ECM),the electrolyte flow field has a significant effect on machining stability,efficiency,and surface quality.In multitool ECM of blisk channels,the traditional open outflow mode(OOM)is prone to flow randomness,the flow direction is not easy to control,and electrolytes interfere with each other,which causes problems with the normal conduct of machining.To improve the flow field distribution of multitool ECM,this paper proposes a constrained composite outflow mode(COM).The machining area is divided into separate isolated partitions by specific fixtures,which also provide back-pressure to the machining area.The electrolyte is injected into the machining gap and then flows out through the top and side outlets of the fixture.The flow field distribution during the process is simulated and analyzed using computational fluid dynamics.The simulation results show that the optimized flow mode improves the accessibility of the electrolyte and the uniformity of the flow distribution.ECM experiments are carried out using a specific fixture.With COM,the maximum feed rate of the cathode reaches 1.0 mm/min,and a channel with surface roughness Ra=1.54μm is machined.The suitability and effectiveness of the flow field simulation optimization are thus verified.On this basis,synchronous ECM of 15 channels is successfully realized,and the machining efficiency is found to be improved exponentially.
基金supported by the Higher Education Science and Technology Innovation Project of Shanxi Province(No.2022L706)Natural Science Foundation of Jiangsu Province(No.BK20210755).
文摘Polymer microfluidic chips are a common tool in biomedical research,and the production of mold inserts with microscale structures represents a crucial step in the precise molding of these chips.Electrical discharge machining(EDM)can achieve high-quality machining of microstructures on high-hardness mold steel inserts.This can reduce the manufacturing cost of microfluidic chip molds and extend the service life of molds.However,the EDM process is susceptible to the formation of poor-quality surfaces due to the occurrence of abnormal discharges.To address this issue,this paper presents in-depth research on a novel ultrasonic cavitation-assisted electrical discharge machining method.An ultrasonic transducer is placed in an electrical discharge working fluid to promote the removal of electrical corrosion products through the cavitation effect of the liquid.This can also reduce the occurrence of poor discharge,thereby improving the machining surface quality.The aluminum foil corrosion method is employed to investigate the distribution of ultrasonic action in the electric discharge working fluid.The attenuation law of ultrasonic action in the electric discharge working fluid is also investigated.The range of ultrasonic action is determined,providing a reference for subsequent ultrasonic vibration electric discharge working fluid processing experiments.The results of the aluminum foil tests are used to inform the selection of NAK80 mold steel as the experimental object.The effects of cavitation at three ultrasonic frequencies on the surface microstructure are investigated.The experimental results indicate that ultrasonic cavitation can facilitate the movement of corrosion products in electrical machining,reduce the occurrence of abnormal discharges caused by carbon deposition or the secondary re-melting of metals,and thereby enhance the machining surface quality.
基金supported by the National Natural Science Foundation of China“Study on the evolution law of discharge channel and deformation suppression method for low-pressure micro-arc milling machining of aerospace thin-walled parts”(52265061)The Tianshan Innovation Team“Robotics and intelligent equipment technology science and technology innovation team”(2022D14002).
文摘To address problems in surface integrity and machining allowance distribution during combined electric arc-mechanical milling,this paper takes TC4 as the research object,examines the influence of electric arc milling(EAM)depth on recast layer thickness and surface roughness,alongside an analysis of the recast layer’s organization characteristics and sur-face morphology.A comparative evaluation of cutting forces,surface roughness,and surface hardening is conducted between combined milling and conventional mechanical milling.Key findings reveal that electric arc machining produces a recast layer with a hardness of 313.21 HV.As the EAM depth increases,the localized recast layer thickness and peak-to-valley(PV)differ-ences also rise.To ensure effective surface defect removal,the machining allowance for subsequent mechanical milling must exceed the combined thickness of the recast layer and the PV difference.Under identical parameters,combined milling yields higher surface roughness(0.584μm)and greater surface hardening(10.4%)compared to mechanical milling alone,alongside an 18.716 N increase in cutting force.Response surface methodology(RSM)analysis identifies feed per tooth as the most significant factor affecting surface roughness,followed by spindle speed,with milling depth having the least influence.
基金co-supported by the National Natural Science Foundation of China(No.52075253)the National Natural Science Foundation of China for Creative Research Groups(No.51921003)the Industrial Technology Development Program(No.JCKY2021605B026)。
文摘The blisk is a core component of an aero-engine,and electrochemical machining(ECM)is the primary method for its manufacture.Among several ECM methods for blisks,multi-tool synchronous machining is the most efficient and advantageous for machining channels.The allowance distribution of the blank after blisk channel machining directly influences the blade profile accuracy.This paper proposes a trajectory control strategy to homogenize the allowance distribution of the blisk channel in multi-tool ECM.The strategy includes the design of the three-dimensional space motion of the tool and blisk,as well as the regulated feed speed.The structural characteristics of the blisk channel and the principle of ECM allow for designing and optimizing the multidimensional trajectory.The electric field simulations elucidate the influence law of the three-axis feed speed on the side gap.An algorithm is adopted to iteratively optimize the speeds for different positions to realize multi-dimensional motion control and allowance homogenization.The proposed trajectory control strategy is applied to ECM experiments for the blisk channel.Compared with the constant feed speed mode,the regulated speed strategy reduces the maximum allowance difference between the convex(CV)profiles by 36.18%and that between the concave(CC)profiles by 37.73%.Subsequently,the one-time ECM of eight blisk channels was successfully realized.The average time for a single channel was 12.5 min,significantly improving the machining efficiency.In conclusion,the proposed method is effective and can be extended for synchronously machining various blisk types with twisted channels.
基金supported in part by the National Natural Science Foundation of China(Nos.61201048,61107063)the National Science and Technology Major Project(No.2017-VI-001-0094).
文摘To investigate the residual stress distribution and its influence on machining deformation in 6061-T651 aluminum alloy plates,this paper uses the crack compliance method to study the residual stress characteristics of 6061-T651 aluminum alloy plates with a thickness of 75 mm produced by two domestic manufacturers in China.The results indicate that both types of plates exhibit highly consistent and symmetrical M-shaped residual stress profile along the thickness direction,manifested as surface layer compression and core tension.The strain energy density across all specimens ranges from 1.27 kJ/m^(3)to 1.43 kJ/m^(3).Machining deformation simulations of an aerospace component incorporating these measured stresses showed minimal final deformation difference between the material sources,with a maximum deviation of only 0.009 mm across specimens.These findings provide critical data for material selection and deformation control in aerospace manufacturing.
基金supported by the following organizations:the Special Fund of Taishan Scholars Project(No.tsqn202211179)the National Natural Science Foundation of China(No.52105457)+2 种基金Young Talent of Lifting engineering for Science and Technology in Shandong,China(No.SDAST2021qt12)the National Natural Science Foundation of China(No.52375447)China Postdoctoral Science Foundation Funded Project(No.2023M732826).
文摘The use of Minimum Quantity Lubrication(MQL)with bio-lubricants has been extensively studied in aerospace sustainable manufacturing.Enhanced MQL technologies have been proposed to reduce tool wear and improve workpiece surface integrity by increasing lubricant activity.However,the relationship between enhancement behavior,physicochemical properties of biolubricants,and processability remains unclear,presenting challenges for MQL technologies,particularly with difficult-to-machine materials.To address this gap,this paper provides an in-depth mechanism analysis and a comprehensive quantitative evaluation of the machinability of enhanced MQL technologies,considering chemistry,molecular dynamics,fluid dynamics,tribology,and heat transfer.Firstly,the cooling and lubrication enhancement mechanisms of nano-lubricants were systematically summarized.focusing on molecular structure.physical properties,and preparation processes.Secondly,the atomization enhancement mechanism of Electrostatic Minimum Quantity Lubrication(EMQL)was analyzed.revealing a 49%reduction in PM2.5 concentration during the atomization process compared to conventional MQL.Thirdly,the transport and infiltration enhancement mechanisms of bio-lubricants in cutting and grinding zones were summarized,incorporating electromagnetic fields and ultrasound-assisted processes.Finally,for cutting and grinding applications involving difficult-to-machine materials in aerospace,the optimized machinability of enhanced MQL technologies was concluded,showing a 50.1%increase in lubricant heat transfer coefficient and a 31.6%decrease in grinding temperature compared to standard MQL.This paper aims to help scientists understand the effective mechanisms,formulate process specifications,and identify future development trends in this technology.
基金supported by the National Natural Science Foundation of China(Nos.52425505 and U22A20207)the National Key R&D Program of China(No.2022YFB3403302)the Zhejiang Provincial Key R&D Program of China(No.2023C01056).
文摘With the widespread adoption of ultra-precision machining(UPM)in manufacturing,accurately monitoring the temperature within micro-scale cutting zones has become crucial for ensuring machining quality and tool longevity.This review comprehensively evaluates modern in-process cutting temperature measurement methods,comparing conventional approaches and emerging technologies.Thermal conduction-based and radiation-based measurement paradigms are analyzed in terms of their merits,limitations,and domain-specific applicability,particularly with regard to the unique challenges involving micro-scale cutting zones in UPM.Special emphasis is placed on micro-scale sensor-integrated tools and self-sensing tools that enable real-time thermal monitoring at cutting edges.Furthermore,we explore thermal monitoring and management techniques for atomic and close-to-atomic scale manufacturing(ACSM),as well as the transformative potential of emerging technologies like artificial intelligence(AI),internet of things(IoT),and data fusion for machining temperature measurement.This review may serve as a reference for UPM cutting temperature measurement research,helping foster the development of optimized process control technologies.
基金Supported by National Key R&D Program of China(Grant No.2022YFB3404101)National Natural Science Foundation of China(Grant Nos.52375018,92148301)。
文摘Accurate kinematic calibration is the very foundation for robots'application in industry demanding high precision such as machining.Considering the complex error characteristic and severe ill-posed identification issues of a 5-DoF parallel machining robot,this paper proposes an adaptive and weighted identification method to achieve high-precision kinematic calibration while maintaining reliable stability.First,a kinematic error propagation mechanism model considering the non-ideal constraints and the screw self-rotation is formulated by incorporating the intricate structure of multiple chains and a unique driven screw arrangement of the robot.To address the challenge of accurately identifying such a sophisticated error model,a novel adaptive and weighted identification method based on generalized cross validation(GCV)is proposed.Specifically,this approach innovatively introduces Gauss-Markov estimation into the GCV algorithm and utilizes prior physical information to construct both a weighted identification model and a weighted cross-validation function,thus eliminating the inaccuracy caused by significant differences in dimensional magnitudes of pose errors and achieving accurate identification with flexible numerical stability.Finally,the kinematic calibration experiment is conducted.The comparative experimental results demonstrate that the presented approach is effective and has enhanced accuracy performance over typical least squares methods,with maximum position and orientation errors reduced from 2.279 mm to 0.028 mm and from 0.206°to 0.017°,respectively.
文摘Intelligent manufacturing technology, as the core driving force of the fourth industrial revolution, is profoundly changing the production mode and industrial pattern in the field of mechanical processing. This paper starts from the application background of intelligent manufacturing technology in the field of machining, combined with the limitations of traditional machinery manufacturing technology, systematically analyzes the application status of intelligent manufacturing technology in CNC production, equipment fault diagnosis, sensing technology and industrial robots, and provides theoretical support and practical guidance for the transformation and upgrading of machining industry. The exploration of the application path of intelligent manufacturing technology in the field of machining not only helps to enhance the core competitiveness of the industry but also provides important support for the realization of high-quality development and sustainable development goals of the manufacturing industry.
基金Supported by National Natural Science Foundation of China(Grant Nos.52325501,U24B2047).
文摘Current research on robot calibration can be roughly classified into two categories,and both of them have certain inherent limitations.Model-based methods are difficult to model and compensate the pose errors arising from configuration-dependent geometric and non-geometric source errors,whereas the accuracy of data-driven methods depends on a large amount of measurement data.Using a 5-DOF(degrees of freedom)hybrid machining robot as an exemplar,this study presents a model data-driven approach for the calibration of robotic manipulators.An f-DOF realistic robot containing various source errors is visualized as a 6-DOF fictitious robot having error-free parameters,but erroneous actuated/virtual joint motions.The calibration process essentially involves four steps:(1)formulating the linear map relating the pose error twist to the joint motion errors,(2)parameterizing the joint motion errors using second-order polynomials in terms of nominal actuated joint variables,(3)identifying the polynomial coefficients using the weighted least squares plus principal component analysis,and(4)compensating the compensable pose errors by updating the nominal actuated joint variables.The merit of this approach is that it enables compensation of the pose errors caused by configuration-dependent geometric and non-geometric source errors using finite measurement configurations.Experimental studies on a prototype machine illustrate the effectiveness of the proposed approach.
基金National Natural Science Foundation of China (50875012)National High-tech Research and Development Program (2008AA04Z124)+1 种基金National Science and Technology Major Project (2009ZX04001-141)Joint Construction Project of Beijing Municipal Commission of Education
文摘The problem of finished surface being not first-order continuous commonly exists in machining sculptured surfaces with a torus cutter and some other types of cutters. To solve this problem, a dual drive curve tool path planning method is proposed in this article. First, the maximum machining strip width of a whole tool path can be obtained through optimizing each tool position with multi-point machining (MPM) method. Second, two drive curves are then determined according to the obtained maximum machining strip width. Finally, the tool is positioned once more along the dual drive curve under the condition of tool path smoothness. A computer simulation and cutting experiments are carried out to testify the performance of the new method. The machined surface is measured with a coordinate measuring machine (CMM) to examine the machining quality. The results obtained show that this method can effectively eliminate sharp scallops between adjacent tool paths, keep tool paths smooth, and improve the surface machining quality as well as machining efficiency.
基金Key National Natural Science Foundation of China(50635040)
文摘Thanks to recent advances in manufacturing technology, aerospace system designers have many more options to fabricate high-quality, low-weight, high-capacity, cost-effective filters. Aside from traditional methods such as stamping, drilling and milling, many new approaches have been widely used in filter-manufacturing practices on account of their increased processing abilities. How- ever, the restrictions on costs, the need for studying under stricter conditions such as in aggressive fluids, the complicity in design, the workability of materials, and others have made it difficult to choose a satisfactory method from the newly developed processes, such as, photochemical machining (PCM), photo electroforming (PEF) and laser beam machining (LBM) to produce small, inexpensive, lightweight aerospace filters. This article appraises the technical and economical viability of PCM, PEF, and LBM to help engineers choose the fittest approach to turn out aerospace filters.
文摘Two types of aluminium-based composites reinforced respectively with 20 vol short fibre alumina and with a hybrid of 15 vol SiC particle and 5 vol short alumina fibre are machined with different tool materials:cemented carbide,ceramic,cubic boron nitride(CBN)and polycrystalline diamond(PCD).The analysis on tool wear shows that the various tool materials exhibite different tool wear behaviours,and the tool wear mechanisma are discussed.Apparently,PCD tools do not necessarily guarantee dimensional stability but they can provide the most economic means for machining all sorts of composites.Consequently,a suitable tool material is suggested for machining each metal matrix composite(MMC) from the standpoints of tool wear and machined surface finish.
文摘The theory and its method of machining parameter optimization for high-speed machining are studied. The machining data collected from workshops, labs and references are analyzed. An optimization method based on the genetic algorithm (GA) is investigated. Its calculation speed is faster than that of traditional optimization methods, and it is suitable for the machining parameter optimization in the automatic manufacturing system. Based on the theoretical studies, a system of machining parameter management and optimization is developed. The system can improve productivity of the high-speed machining centers.