期刊文献+
共找到137篇文章
< 1 2 7 >
每页显示 20 50 100
Accuracy allocation method for five-axis machine tools based on geometric error cost sensitivity prioritizing tool direction deviation 被引量:1
1
作者 Xiaojian LIU Ao JIAO +7 位作者 Yang WANG Guodong YI Xiangyu GAO Xiaochen ZHANG Yiming ZHANG Yangjian JI Shuyou ZHANG Jianrong TAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第7期635-651,共17页
Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address th... Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address this issue,we propose a geometric error cost sensitivity-based accuracy allocation method for five-axis machine tools.A geometric error model consisting of 4l error components is constructed based on homogeneous transformation matrices.Volumetric points with positional and tool direction deviations are randomly sampled to evaluate the accuracy of the machine tool.The sensitivity of each error component at these sampling points is analyzed using the Sobol method.To balance the needs of geometric precision and manufacturing cost,a geometric error cost sensitivity function is developed to estimate the required cost.By allocating error components affecting tool direction deviation first and the remaining components second,this allocation scheme ensures that both deviations meet the requirements.We also perform numerical simulation of a BC-type(B-axis and C-axis type)five-axis machine tool to validate the method.The results show that the new allocation scheme reduces the total geometric error cost by 27.8%compared to a uniform allocation scheme,and yields the same positional and tool direction machining accuracies. 展开更多
关键词 Five-axis machine tool Accuracy allocation Geometric error modeling Error cost sensitivity tool direction deviation priority
原文传递
Thermal Error Modeling and Compensation Method for Spindle of Five-Axis CNC Machine Tools
2
作者 Dongjun He 《控制工程期刊(中英文版)》 2025年第2期1-6,共6页
Thermal errors in CNC machine tools,particularly those involving the spindle,significantly affect machining accuracy and performance.These errors,caused by temperature fluctuations in the spindle and surrounding compo... Thermal errors in CNC machine tools,particularly those involving the spindle,significantly affect machining accuracy and performance.These errors,caused by temperature fluctuations in the spindle and surrounding components,result in dimensional deviations that can lead to poor part quality and reduced precision in high-speed manufacturing processes.This paper explores thermal error modeling and compensation methods for the spindle of five-axis CNC machine tools.A detailed analysis of the heat generation,transfer mechanisms,and finite element analysis(FEA)is presented to develop accurate thermal error models.Compensation techniques,such as model-based methods,sensor-based methods,real-time compensation algorithms,and hybrid approaches,are critically reviewed.This study also discusses the challenges in real-time compensation and the integration of thermal error compensation with machine tool control systems.The objective is to provide a comprehensive understanding of thermal error phenomena and their compensation strategies,ultimately contributing to the enhancement of machining accuracy in advanced manufacturing applications. 展开更多
关键词 CNC machine tools Thermal Errors SPINDLE Finite Element Analysis Thermal Error Modeling Compensation Techniques Real-Time Compensation
在线阅读 下载PDF
A Causal-Transformer Based Meta-Learning Method for Few-Shot Fault Diagnosis in CNC Machine Tool Bearings
3
作者 Youlong Lyu Ying Chu +2 位作者 Qingpeng Qiu Jie Zhang Jutao Guo 《Computers, Materials & Continua》 2025年第11期3393-3418,共26页
In intelligentmanufacturing processes such as aerospace production,computer numerical control(CNC)machine tools require real-time optimization of process parameters to meet precision machining demands.These dynamic op... In intelligentmanufacturing processes such as aerospace production,computer numerical control(CNC)machine tools require real-time optimization of process parameters to meet precision machining demands.These dynamic operating conditions increase the risk of fatigue damage in CNC machine tool bearings,highlighting the urgent demand for rapid and accurate fault diagnosis methods that can maintain production efficiency and extend equipment uptime.However,varying conditions induce feature distribution shifts,and scarce fault samples limitmodel generalization.Therefore,this paper proposes a causal-Transformer-based meta-learning(CTML)method for bearing fault diagnosis in CNC machine tools,comprising three core modules:(1)the original bearing signal is transformed into a multi-scale time-frequency feature space using continuous wavelet transform;(2)a causal-Transformer architecture is designed to achieve feature extraction and fault classification based on the physical causal law of fault propagation;(3)the above mechanisms are integrated into a model-agnostic meta-learning(MAML)framework to achieve rapid cross-condition adaptation through an adaptive gradient pruning strategy.Experimental results using the multiple bearing dataset show that under few-shot cross-condition scenarios(3-way 1-shot and 3-way 5-shot),the proposed CTML outperforms benchmark models(e.g.,Transformer,domain adversarial neural networks(DANN),and MAML)in terms of classification accuracy and sensitivity to operating conditions,while maintaining a moderate level of model complexity. 展开更多
关键词 Fault diagnosis META-LEARNING CNC machine tools AEROSPACE
在线阅读 下载PDF
Geometric Accuracy Design of High Performance CNC Machine Tools:Modeling,Analysis,and Optimization
4
作者 Liping Wang Jihui Han +3 位作者 Zihan Tang Yun Zhang Dong Wang Xuekun Li 《Chinese Journal of Mechanical Engineering》 2025年第3期29-60,共32页
The CNC machine tool is the fundamental equipment of the manufacturing industry,particularly in sectors where achieving high levels of accuracy is crucial.Geometric accuracy design is an important step in machine tool... The CNC machine tool is the fundamental equipment of the manufacturing industry,particularly in sectors where achieving high levels of accuracy is crucial.Geometric accuracy design is an important step in machine tool design and plays an essential role in determining the machining accuracy of the workpiece.Researchers have extensively studied methods to model,extract,optimize,and measure the geometric errors that affect the geometric accuracy of machine tools.This paper provides a comprehensive review of the state-of-the-art approaches and an overview of the latest research progress associated with geometric accuracy design in CNC machine tools.This paper explores the interrelated aspects of CNC machine tool accuracy design:modeling,analysis and optimization.Accuracy analysis,which includes geometric error modeling and sensitivity analysis,determines a machine tool’s output accuracy through its volumetric error model,given the known accuracy of its individual components.Conversely,accuracy allocation designs the accuracy of the machine tool components according to given output accuracy requirements to achieve optimization between the objectives of manufacturing cost,quality,reliability,and environmental impact.In addition to discussing design factors and evaluation methods,this paper outlines methods for verifying the accuracy of design results,aiming to provide a practical basis for ensuring that the designed accuracy is achieved.Finally,the challenges and future research directions in geometric accuracy design are highlighted. 展开更多
关键词 Accuracy design Geometric error Geometric accuracy machine tool
在线阅读 下载PDF
Simulation Study of the Workspace of the Parallel Machine Tool 被引量:1
5
作者 张建民 郝娟 王增平 《Journal of Beijing Institute of Technology》 EI CAS 2001年第2期191-196,共6页
A new three dimensional simulation method is introduced to study the workspace of a 6 PSS (P denotes a prismatic kinematic pair, S denotes a spherical kinematic pair) parallel machine tool. This algorithm adopts the... A new three dimensional simulation method is introduced to study the workspace of a 6 PSS (P denotes a prismatic kinematic pair, S denotes a spherical kinematic pair) parallel machine tool. This algorithm adopts the method of numerical analysis to investigate the boundary points in a series of sections which form the surface of the workspace. That is, to study such points that have the largest polar radius on a certain section in a system of polar coordinates according to conditions of constraint. The constraint conditions considered in the article include the maximum and minimum displacements of each dieblock, the maximum and minimum angles of oscillation in each hinge. By converting the constraint inequalities into constraint equations, the largest polar radius corresponding to every constraint condition can be evaluated and the minimum one is used to decide the boundary point. This algorithm greatly simplifies the computational process and can be used to analyze any section of the workspace. It provides a theoretical basis for the structural design of such a machine tool. 展开更多
关键词 PSS parallel machine tool WORKSPACE numerical analysis three-dimensions simulation
在线阅读 下载PDF
METHOD FOR SUPPRESSING CUTTING CHATTER IN NUMERICAL CONTROL MACHINE TOOLS
6
作者 孙宝寿 黄筱调 +3 位作者 顾伯勤 方成刚 丁文政 魏韬 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第2期108-114,共7页
A new method for suppressing cutting chatter is studied by adjusting servo parameters of the numerical control (NC) machine tool and controlling the limited cutting width. A model of the cutting system of the NC mac... A new method for suppressing cutting chatter is studied by adjusting servo parameters of the numerical control (NC) machine tool and controlling the limited cutting width. A model of the cutting system of the NC machine tool is established. It includes the mechanical system, the servo system and the cutting chatter system. Interactions between every two systems are shown in the model. The cutting system stability is simulated and relation curves between the limited cutting width and servo system parameters are described in the experiment. Simulation and experimental results show that there is a mapping relation between the limited cutting width and servo parameters of the NC machine tool, and the method is applicable and credible to suppress chatter. 展开更多
关键词 numerical control machine tool chatter servo parameter limited cutting width
在线阅读 下载PDF
STUDY ON THE COMPENSATION TECHNIQUE OF POSITIONING ERRORS FOR NC MACHINE TOOLS
7
作者 章青 张海根 +1 位作者 张志飞 刘又午 《Transactions of Tianjin University》 EI CAS 1998年第2期76-79,共4页
Through analysis of the basic transformation of a typical body,the error transformations of the position vector and the displacement vector are employed,a general model for positioning errors of NC machine tools by us... Through analysis of the basic transformation of a typical body,the error transformations of the position vector and the displacement vector are employed,a general model for positioning errors of NC machine tools by using kinematics of the multi body system is discussed.By means of 8031 single chip system,intelligent error compensation controller has been developed.The results of experiments on XH714 machining center show that the positioning accuracy is enhanced effectively by more than 50%. 展开更多
关键词 NC machine tools multi body system ERROR transformation matrix
在线阅读 下载PDF
STIFFNESS ANALYSIS OF THE MAIN MODULE FOR PARALLEL MACHINE TOOLS BY FINITE ELEMENT ANALYSIS 被引量:2
8
作者 周立华 王玉茹 +1 位作者 黄田 Modler K H 《Transactions of Tianjin University》 EI CAS 2001年第1期30-35,共6页
With the aid of commercial finite element analysis software package ANSYS,investigations are made on the contributions of main components to stiffness of the main module for parallel machine tools,and it is found that... With the aid of commercial finite element analysis software package ANSYS,investigations are made on the contributions of main components to stiffness of the main module for parallel machine tools,and it is found that the frame is the main contributor.Then,influences of constraints,strut length and working ways of the main module have also been investigated.It can be concluded that when one of the main planes of the frame without linear drive unit is constrained,the largest whole stiffness can be acquired.And,the stiffness is much better when the main module is used in a vertical machine tool instead of a horizontal one.Finally,the principle of stiffness variation is summarized when the mobile platform reaches various positions within its working space and when various loads are applied.These achievements have provided critical instructions for the design of the main module for parallel machine tools. 展开更多
关键词 parallel machine tool main module STIFFNESS finite element analysis
全文增补中
Studies of layout of world machine tools industry based on patent analysis
9
作者 张涛 Zhang Xu +2 位作者 Li Zhirong Zhao Yunhua Zhou Lijuan 《High Technology Letters》 EI CAS 2013年第3期246-253,共8页
As the foundation of an industrialized country nowadays,machine tools industry is regarded as the engine of industrial development of a country.The developed countries,such as USA,Germany and Japan,have widely deploye... As the foundation of an industrialized country nowadays,machine tools industry is regarded as the engine of industrial development of a country.The developed countries,such as USA,Germany and Japan,have widely deployed the technology of using the patent in order to keep their strength in various fields.This research examins the CNC machine tools industry in the world by using the patent analysis method.It first gives an overview about the world patent application in CNC machine tools industry from 1963 to 2010 and divides the development of the industry into five stages.It also lists the patent application of the world top 20 countries,where the top 5 countries are compared.The patents of the world top 10 companies of machine tools manufacturers are mapped according to the international patent classification(IPC),and the future trends of world machine tools industry are discussed.Finally conclusions and suggestions are presented. 展开更多
关键词 machine tools industry computerized numerical control (CNC) machine tools patent analysis international patent classification (IPC) development trends
在线阅读 下载PDF
Algorithm for Detecting Volumetric Geometric Accuracy of NC Machine Tool by Laser Tracker 被引量:14
10
作者 WANG Jindong GUO Junjie 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第1期166-175,共10页
Quick and accurate detecting the error of NC machine tool and performing the error compensation are important to improve the machining accuracy of NC machine tool. Currently, there are many methods for detecting the g... Quick and accurate detecting the error of NC machine tool and performing the error compensation are important to improve the machining accuracy of NC machine tool. Currently, there are many methods for detecting the geometric accuracy of NC machine tool. However, these methods have deficiencies in detection efficiency and accuracy as well as in versatility. In the paper, a method with laser tracker based on the multi-station and time-sharing measurement principle is proposed, and this method can rapidly and accurately detect the geometric accuracy of NC machine tool. The machine tool is controlled to move in the preset path in a 3D space or 2D plane, and a laser tracker is used to measure the same motion trajectory of the machine tool successively at different base stations. The original algorithm for multi-station and time-sharing measurement is improved. The space coordinates of the measuring point obtained by the laser tracker are taken as parameter values, and the initial position of each base point can be determined. The redundant equation concerning the base point calibration can be established by the distance information of the laser tracker, and the position of each base point is further determined by solving the equation with least squares method, then the space coordinates of each measuring point can be calibrated. The singular matrix does not occur in calculation with the improved algorithm, which overcomes the limitations of the original algorithm, that the motion trajectory of machine tool is in a 3D space and there exits height difference between the base stations. Adopting the improved algorithm can expand the application of multi-station and time-sharing measurement, and can meet the quick and accurate detecting requirements for different types of NC machine tool. 展开更多
关键词 laser tracker NC machine tool geometric accuracy redundant equation singular matrix least square method
在线阅读 下载PDF
Bayesian Reliability Modeling and Assessment Solution for NC Machine Tools under Small-sample Data 被引量:17
11
作者 YANG Zhaojun KAN Yingnan +3 位作者 CHEN Fei XU Binbin CHEN Chuanhai YANG Chuangui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第6期1229-1239,共11页
Although Markov chain Monte Carlo(MCMC) algorithms are accurate, many factors may cause instability when they are utilized in reliability analysis; such instability makes these algorithms unsuitable for widespread e... Although Markov chain Monte Carlo(MCMC) algorithms are accurate, many factors may cause instability when they are utilized in reliability analysis; such instability makes these algorithms unsuitable for widespread engineering applications. Thus, a reliability modeling and assessment solution aimed at small-sample data of numerical control(NC) machine tools is proposed on the basis of Bayes theories. An expert-judgment process of fusing multi-source prior information is developed to obtain the Weibull parameters' prior distributions and reduce the subjective bias of usual expert-judgment methods. The grid approximation method is applied to two-parameter Weibull distribution to derive the formulas for the parameters' posterior distributions and solve the calculation difficulty of high-dimensional integration. The method is then applied to the real data of a type of NC machine tool to implement a reliability assessment and obtain the mean time between failures(MTBF). The relative error of the proposed method is 5.8020×10-4 compared with the MTBF obtained by the MCMC algorithm. This result indicates that the proposed method is as accurate as MCMC. The newly developed solution for reliability modeling and assessment of NC machine tools under small-sample data is easy, practical, and highly suitable for widespread application in the engineering field; in addition, the solution does not reduce accuracy. 展开更多
关键词 NC machine tools reliability BAYES mean time between failures(MTBF) grid approximation Markov chain Monte Carlo(MCMC)
在线阅读 下载PDF
High Accurate Interpolation of NURBS Tool Path for CNC Machine Tools 被引量:12
12
作者 LIU Qiang LIU Huan YUAN Songmei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第5期911-920,共10页
Feedrate fluctuation caused by approximation errors of interpolation methods has great effects on machining quality in NURBS interpolation, but few methods can efficiently eliminate or reduce it to a satisfying level ... Feedrate fluctuation caused by approximation errors of interpolation methods has great effects on machining quality in NURBS interpolation, but few methods can efficiently eliminate or reduce it to a satisfying level without sacrificing the computing efficiency at present. In order to solve this problem, a high accurate interpolation method for NURBS tool path is proposed. The proposed method can efficiently reduce the feedrate fluctuation by forming a quartic equation with respect to the curve parameter increment, which can be efficiently solved by analytic methods in real-time. Theoretically, the proposed method can totally eliminate the feedrate fluctuation for any 2nd degree NURBS curves and can interpolate 3rd degree NURBS curves with minimal feedrate fluctuation. Moreover, a smooth feedrate planning algorithm is also proposed to generate smooth tool motion with considering multiple constraints and scheduling errors by an efficient planning strategy. Experiments are conducted to verify the feasibility and applicability of the proposed method. This research presents a novel NURBS interpolation method with not only high accuracy but also satisfying computing efficiency. 展开更多
关键词 NURBS INTERPOLATION feedrate machine tool CNC
在线阅读 下载PDF
Geometric error measuring,modeling,and compensation for CNC machine tools:A review 被引量:15
13
作者 Zhao ZHANG Feng JIANG +3 位作者 Ming LUO Baohai WU Dinghua ZHANG Kai TANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第2期163-198,共36页
Geometric error,mainly due to imperfect geometry and dimensions of machine components,is one of the major error sources of machine tools.Considering that geometric error has significant effects on the machining qualit... Geometric error,mainly due to imperfect geometry and dimensions of machine components,is one of the major error sources of machine tools.Considering that geometric error has significant effects on the machining quality of manufactured parts,it has been a popular topic for academic and industrial research for many years.A great deal of research work has been carried out since the 1970s for solving the problem and improving the machining accuracy.Researchers have studied how to measure,detect,model,identify,reduce,and compensate the geometric errors.This paper presents a thorough review of the latest research activities and gives an overview of the state of the art in understanding changes in machine tool performance due to geometric errors.Recent advances in measuring the geometrical errors of machine tools are summarized,and different kinds of error identification methods of translational axes and rotation axes are illustrated respectively.Besides,volumetric geometric error modeling,tracing,and compensation techniques for five-axis machine tools are emphatically introduced.Finally,research challenges in order to improve the volumetric accuracy of machine tools are also highlighted. 展开更多
关键词 Error compensation Error identification Error measurement Error modeling Geometric error machine tools
原文传递
Applying CBR to Machine Tool Product Configuration Design Oriented to Customer Requirements 被引量:12
14
作者 WANG Pengjia GONG Yadong +2 位作者 XIE Hualong LIU Yongxian NEE Andrew Yehching 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第1期60-76,共17页
Product customization is a trend in the current market-oriented manufacturing environment. However, deduction from customer requirements to design results and evaluation of design alternatives are still heavily relian... Product customization is a trend in the current market-oriented manufacturing environment. However, deduction from customer requirements to design results and evaluation of design alternatives are still heavily reliant on the designer's experience and knowledge. To solve the problem of fuzziness and uncertainty of customer requirements in product configuration, an analysis method based on the grey rough model is presented. The customer requirements can be converted into technical characteristics effectively. In addition, an optimization decision model for product planning is established to help the enterprises select the key technical characteristics under the constraints of cost and time to serve the customer to maximal satisfaction. A new case retrieval approach that combines the self-organizing map and fuzzy similarity priority ratio method is proposed in case-based design. The self-organizing map can reduce the retrieval range and increase the retrieval efficiency, and the fuzzy similarity priority ratio method can evaluate the similarity of cases comprehensively. To ensure that the final case has the based on grey correlation analysis is proposed to evaluate similar cases best overall performance, an evaluation method of similar cases to select the most suitable case. Furthermore, a computer-aided system is developed using MATLAB GUI to assist the product configuration design. The actual example and result on an ETC series machine tool product show that the proposed method is effective, rapid and accurate in the process of product configuration. The proposed methodology provides a detailed instruction for the product configuration design oriented to customer requirements. 展开更多
关键词 customer requirements case-based reasoning machine tool case retrieval case evaluation computer-aided system
在线阅读 下载PDF
CPS Modeling of CNC Machine Tool Work Processes Using an Instruction-Domain Based Approach 被引量:19
15
作者 Jihong Chen Jianzhong Yang +5 位作者 Huicheng Zhou Hua Xiang Zhihong Zhu Yesong Li Chen-Han Lee Guangda Xu 《Engineering》 SCIE EI 2015年第2期247-260,共14页
Building cyber-physical system(CPS) models of machine tools is a key technology for intelligent manufacturing. The massive electronic data from a computer numerical control(CNC) system during the work processes of a C... Building cyber-physical system(CPS) models of machine tools is a key technology for intelligent manufacturing. The massive electronic data from a computer numerical control(CNC) system during the work processes of a CNC machine tool is the main source of the big data on which a CPS model is established. In this work-process model, a method based on instruction domain is applied to analyze the electronic big data, and a quantitative description of the numerical control(NC) processes is built according to the G code of the processes. Utilizing the instruction domain, a work-process CPS model is established on the basis of the accurate, real-time mapping of the manufacturing tasks, resources, and status of the CNC machine tool. Using such models, case studies are conducted on intelligent-machining applications, such as the optimization of NC processing parameters and the health assurance of CNC machine tools. 展开更多
关键词 cyber-physical system (CPS) big data computer numerical control (CNC) machine tool electronic data of work processes instruction domain intelligent machining
在线阅读 下载PDF
Temperature Variable Optimization for Precision Machine Tool Thermal Error Compensation on Optimal Threshold 被引量:11
16
作者 ZHANG Ting YE Wenhua +2 位作者 LIANG Ruijun LOU Peihuang YANG Xiaolan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第1期158-165,共8页
Machine tool thermal error is an important reason for poor machining accuracy. Thermal error compensation is a primary technology in accuracy control. To build thermal error model, temperature variables are needed to ... Machine tool thermal error is an important reason for poor machining accuracy. Thermal error compensation is a primary technology in accuracy control. To build thermal error model, temperature variables are needed to be divided into several groups on an appropriate threshold. Currently, group threshold value is mainly determined by researchers experience. Few studies focus on group threshold in temperature variable grouping. Since the threshold is important in error compensation, this paper arms to find out an optimal threshold to realize temperature variable optimization in thermal error modeling. Firstly, correlation coefficient is used to express membership grade of temperature variables, and the theory of fuzzy transitive closure is applied to obtain relational matrix of temperature variables. Concepts as compact degree and separable degree are introduced. Then evaluation model of temperature variable clustering is built. The optimal threshold and the best temperature variable clustering can be obtained by setting the maximum value of evaluation model as the objective. Finally, correlation coefficients between temperature variables and thermal error are calculated in order to find out optimum temperature variables for thermal error modeling. An experiment is conducted on a precise horizontal machining center. In experiment, three displacement sensors are used to measure spindle thermal error and twenty-nine temperature sensors are utilized to detect the machining center temperature. Experimental result shows that the new method of temperature variable optimization on optimal threshold successfully worked out a best threshold value interval and chose seven temperature variables from twenty-nine temperature measuring points. The model residual of z direction is within 3 μm. Obviously, the proposed new variable optimization method has simple computing process and good modeling accuracy, which is quite fit for thermal error compensation. 展开更多
关键词 precision machine tool thermal error cluster analysis
在线阅读 下载PDF
Actualities and Development of Heavy-Duty CNC Machine Tool Thermal Error Monitoring Technology 被引量:7
17
作者 Zu-De Zhou Lin Gui +3 位作者 Yue-Gang Tan Ming-Yao Liu Yi Liu Rui-Ya Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第5期1262-1281,共20页
Thermal error monitoring technology is the key technological support to solve the thermal error problem of heavy-duty CNC (computer numerical control) machine tools. Currently, there are many review literatures intr... Thermal error monitoring technology is the key technological support to solve the thermal error problem of heavy-duty CNC (computer numerical control) machine tools. Currently, there are many review literatures intro- ducing the thermal error research of CNC machine tools, but those mainly focus on the thermal issues in small and medium-sized CNC machine tools and seldom introduce thermal error monitoring technologies. This paper gives an overview of the research on the thermal error of CNC machine tools and emphasizes the study of thermal error of the heavy-duty CNC machine tool in three areas. These areas are the causes of thermal error of heavy-duty CNC machine tool and the issues with the temperature moni- toring technology and thermal deformation monitoring technology. A new optical measurement technology called the "fiber Bragg grating (FBG) distributed sensing tech- nology" for heavy-duty CNC machine tools is introduced in detail. This technology forms an intelligent sensing and monitoring system for heavy-duty CNC machine tools. This paper fills in the blank of this kind of review articlesto guide the development of this industry field and opens up new areas of research on the heavy-duty CNC machine tool thermal error. 展开更多
关键词 Heavy-duty CNC machine tool Thermalerror Temperature field Deformation field Fiber Bragggrating
在线阅读 下载PDF
Parameters Optimization of a Novel 5-DOF Gasbag Polishing Machine Tool 被引量:8
18
作者 LI Yanbiao TAN Dapeng +2 位作者 WEN Donghui JI Shiming CAI Donghai 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第4期680-688,共9页
The research on the parameters optimization for gasbag polishing machine tools, mainly aims at a better kinematics performance and a design scheme. Serial structural arm is mostly employed in gasbag polishing machine ... The research on the parameters optimization for gasbag polishing machine tools, mainly aims at a better kinematics performance and a design scheme. Serial structural arm is mostly employed in gasbag polishing machine tools at present, but it is disadvantaged by its complexity, big inertia, and so on. In the multi-objective parameters optimization, it is very difficult to select good parameters to achieve excellent performance of the mechanism. In this paper, a statistics parameters optimization method based on index atlases is presented for a novel 5-DOF gasbag polishing machine tool. In the position analyses, the structure and workspace for a novel 5-DOF gasbag polishing machine tool is developed, where the gasbag polishing machine tool is advantaged by its simple structure, lower inertia and bigger workspace. In the kinematics analyses, several kinematics performance evaluation indices of the machine tool are proposed and discussed, and the global kinematics performance evaluation atlases are given. In the parameters optimization process, considering the assembly technique, a design scheme of the 5-DOF gasbag polishing machine tool is given to own better kinematics performance based on the proposed statistics parameters optimization method, and the global linear isotropic performance index is 0.5, the global rotational isotropic performance index is 0.5, the global linear velocity transmission performance index is 1.012 3 m/s in the case of unit input matrix, the global rotational velocity transmission performance index is 0.102 7 rad/s in the case of unit input matrix, and the workspace volume is 1. The proposed research provides the basis for applications of the novel 5-DOF gasbag polishing machine tool, which can be applied to the modern industrial fields requiring machines with lower inertia, better kinematics transmission performance and better technological efficiency. 展开更多
关键词 5-DOF gasbag polishing machine tool evaluation index kinematics analyses parameter optimization
在线阅读 下载PDF
Spindle Thermal Error Optimization Modeling of a Five-axis Machine Tool 被引量:7
19
作者 Qianjian GUO Shuo FAN +3 位作者 Rufeng XU Xiang CHENG Guoyong ZHAO Jianguo YANG 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第3期746-753,共8页
Aiming at the problem of low machining accu- racy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are resea... Aiming at the problem of low machining accu- racy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are researched. Measurement experiment of heat sources and thermal errors are carried out, and GRA(grey relational analysis) method is introduced into the selection of tem- perature variables used for thermal error modeling. In order to analyze the influence of different heat sources on spindle thermal errors, an ANN (artificial neural network) model is presented, and ABC(artificial bee colony) algorithm is introduced to train the link weights of ANN, a new ABC- NN(Artificial bee colony-based neural network) modeling method is proposed and used in the prediction of spindle thermal errors. In order to test the prediction performance of ABC-NN model, an experiment system is developed, the prediction results of LSR (least squares regression), ANN and ABC-NN are compared with the measurement results of spindle thermal errors. Experiment results show that the prediction accuracy of ABC-NN model is higher than LSR and ANN, and the residual error is smaller than 3 pm, the new modeling method is feasible. The proposed research provides instruction to compensate thermal errors and improve machining accuracy of NC machine tools. 展开更多
关键词 Five-axis machine tool Artificial bee colony Thermal error modeling Artificial neural network
在线阅读 下载PDF
Thermal Error Compensation for Telescopic Spindle of CNC Machine Tool Based on SIEMENS 840D System 被引量:8
20
作者 崔良玉 高卫国 +2 位作者 张大卫 张宏杰 韩林 《Transactions of Tianjin University》 EI CAS 2011年第5期340-343,共4页
In this paper, eddy current sensors and thermocouple sensors were employed to measure the thermal field and thermal deformation of a spindle of a telescopic CNC boring-milling machine tool, respectively. A linear regr... In this paper, eddy current sensors and thermocouple sensors were employed to measure the thermal field and thermal deformation of a spindle of a telescopic CNC boring-milling machine tool, respectively. A linear regression method was proposed to establish the thermal error model. Furthermore, two compensation methods were implemented based on the SIEMENS 840D system by using the feed shaft of z direction and telescopic spindle respectively. Experimental results showed that the thermal error could be reduced by 73.79% when using the second compensation method, and the thermal error could be eliminated by using the two compensation methods effectively. 展开更多
关键词 machine tool thermal error linear regression error compensation
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部