The thermal-induced error is a very important sour ce of machining errors of machine tools. To compensate the thermal-induced machin ing errors, a relationship model between the thermal field and deformations was need...The thermal-induced error is a very important sour ce of machining errors of machine tools. To compensate the thermal-induced machin ing errors, a relationship model between the thermal field and deformations was needed. The relationship can be deduced by virtual of FEM (Finite Element Method ), ANN (Artificial Neural Network) or MRA (Multiple Regression Analysis). MR A is on the basis of a total understanding of the temperature distribution of th e machine tool. Although the more the temperatures measured are, the more accura te the MRA is, too more temperatures will hinder the analysis calculation. So it is necessary to identify the key temperatures of the machine tool. The selectio n of key temperatures decides the efficiency and precision of MRA. Because of th e complexities and multi-input and multi-output structure of the relationships , the exact quantitative portions as well as the unclear portions must be taken into consideration together to improve the identification of key temperatures. I n this paper, a fuzzy cluster analysis was used to select the key temperatures. The substance of identifying the key temperatures is to group all temperatures b y their relativity, and then to select a temperature from each group as the repr esentation. A fuzzy cluster analysis can uncover the relationships between t he thermal field and deformations more truly and thoroughly. A fuzzy cluster ana lysis is the cluster analysis based on fuzzy sets. Given U={u i|i=0,...,N}, in which u i is the temperature measured, a fuzzy matrix R can be obta ined. The transfer close package t(R) can be deduced from R. A fuzzy clu ster of U then conducts on the basis of t(R). Based on the fuzzy cluster analysis discussed above, this paper identified the k ey temperatures of a horizontal machining center. The number of the temperatures measured was reduced to 4 from 32, and then the multiple regression relationshi p models between the 4 temperatures and the thermal deformations of the spindle were drawn. The remnant errors between the regression models and measured deform ations reached a satisfying low level. At the same time, the decreasing of tempe rature variable number improved the efficiency of measure and analysis greatly.展开更多
The probability of default(PD) is the key element in the New Basel Capital Accord and the most essential factor to financial institutions' risk management.To obtain good PD estimation,practitioners and academics h...The probability of default(PD) is the key element in the New Basel Capital Accord and the most essential factor to financial institutions' risk management.To obtain good PD estimation,practitioners and academics have put forward numerous default prediction models.However,how to use multiple models to enhance overall performance on default prediction remains untouched.In this paper,a parametric and non-parametric combination model is proposed.Firstly,binary logistic regression model(BLRM),support vector machine(SVM),and decision tree(DT) are used respectively to establish models with relatively stable and high performance.Secondly,in order to make further improvement to the overall performance,a combination model using the method of multiple discriminant analysis(MDA) is constructed.In this way,the coverage rate of the combination model is greatly improved,and the risk of miscarriage is effectively reduced.Lastly,the results of the combination model are analyzed by using the K-means clustering,and the clustering distribution is consistent with a normal distribution.The results show that the combination model based on parametric and non-parametric can effectively enhance the overall performance on default prediction.展开更多
文摘The thermal-induced error is a very important sour ce of machining errors of machine tools. To compensate the thermal-induced machin ing errors, a relationship model between the thermal field and deformations was needed. The relationship can be deduced by virtual of FEM (Finite Element Method ), ANN (Artificial Neural Network) or MRA (Multiple Regression Analysis). MR A is on the basis of a total understanding of the temperature distribution of th e machine tool. Although the more the temperatures measured are, the more accura te the MRA is, too more temperatures will hinder the analysis calculation. So it is necessary to identify the key temperatures of the machine tool. The selectio n of key temperatures decides the efficiency and precision of MRA. Because of th e complexities and multi-input and multi-output structure of the relationships , the exact quantitative portions as well as the unclear portions must be taken into consideration together to improve the identification of key temperatures. I n this paper, a fuzzy cluster analysis was used to select the key temperatures. The substance of identifying the key temperatures is to group all temperatures b y their relativity, and then to select a temperature from each group as the repr esentation. A fuzzy cluster analysis can uncover the relationships between t he thermal field and deformations more truly and thoroughly. A fuzzy cluster ana lysis is the cluster analysis based on fuzzy sets. Given U={u i|i=0,...,N}, in which u i is the temperature measured, a fuzzy matrix R can be obta ined. The transfer close package t(R) can be deduced from R. A fuzzy clu ster of U then conducts on the basis of t(R). Based on the fuzzy cluster analysis discussed above, this paper identified the k ey temperatures of a horizontal machining center. The number of the temperatures measured was reduced to 4 from 32, and then the multiple regression relationshi p models between the 4 temperatures and the thermal deformations of the spindle were drawn. The remnant errors between the regression models and measured deform ations reached a satisfying low level. At the same time, the decreasing of tempe rature variable number improved the efficiency of measure and analysis greatly.
基金supported by the National Natural Science Foundation of China Key Project under Grant No.70933003the National Natural Science Foundation of China under Grant Nos.70871109 and 71203247
文摘The probability of default(PD) is the key element in the New Basel Capital Accord and the most essential factor to financial institutions' risk management.To obtain good PD estimation,practitioners and academics have put forward numerous default prediction models.However,how to use multiple models to enhance overall performance on default prediction remains untouched.In this paper,a parametric and non-parametric combination model is proposed.Firstly,binary logistic regression model(BLRM),support vector machine(SVM),and decision tree(DT) are used respectively to establish models with relatively stable and high performance.Secondly,in order to make further improvement to the overall performance,a combination model using the method of multiple discriminant analysis(MDA) is constructed.In this way,the coverage rate of the combination model is greatly improved,and the risk of miscarriage is effectively reduced.Lastly,the results of the combination model are analyzed by using the K-means clustering,and the clustering distribution is consistent with a normal distribution.The results show that the combination model based on parametric and non-parametric can effectively enhance the overall performance on default prediction.