The relationship among Mercer kernel, reproducing kernel and positive definite kernel in support vector machine (SVM) is proved and their roles in SVM are discussed. The quadratic form of the kernel matrix is used t...The relationship among Mercer kernel, reproducing kernel and positive definite kernel in support vector machine (SVM) is proved and their roles in SVM are discussed. The quadratic form of the kernel matrix is used to confirm the positive definiteness and their construction. Based on the Bochner theorem, some translation invariant kernels are checked in their Fourier domain. Some rotation invariant radial kernels are inspected according to the Schoenberg theorem. Finally, the construction of discrete scaling and wavelet kernels, the kernel selection and the kernel parameter learning are discussed.展开更多
Support vector machine (SVM), as a novel approach in pattern recognition, has demonstrated a success in face detection and face recognition. In this paper, a face recognition approach based on the SVM classifier with ...Support vector machine (SVM), as a novel approach in pattern recognition, has demonstrated a success in face detection and face recognition. In this paper, a face recognition approach based on the SVM classifier with the nearest neighbor classifier (NNC) is proposed. The principal component analysis (PCA) is used to reduce the dimension and extract features. Then one-against-all stratedy is used to train the SVM classifiers. At the testing stage, we propose an al-展开更多
Face recognition systems have enhanced human-computer interactions in the last ten years.However,the literature reveals that current techniques used for identifying or verifying faces are not immune to limitations.Pri...Face recognition systems have enhanced human-computer interactions in the last ten years.However,the literature reveals that current techniques used for identifying or verifying faces are not immune to limitations.Principal Component Analysis-Support Vector Machine(PCA-SVM)and Principal Component Analysis-Artificial Neural Network(PCA-ANN)are among the relatively recent and powerful face analysis techniques.Compared to PCA-ANN,PCA-SVM has demonstrated generalization capabilities in many tasks,including the ability to recognize objects with small or large data samples.Apart from requiring a minimal number of parameters in face detection,PCA-SVM minimizes generalization errors and avoids overfitting problems better than PCA-ANN.PCA-SVM,however,is ineffective and inefficient in detecting human faces in cases in which there is poor lighting,long hair,or items covering the subject’s face.This study proposes a novel PCASVM-based model to overcome the recognition problem of PCA-ANN and enhance face detection.The experimental results indicate that the proposed model provides a better face recognition outcome than PCA-SVM.展开更多
In this work, a total of 322 tests were taken on young volunteers by performing 10 different falls, 6 different Activities of Daily Living (ADL) and 7 Dynamic Gait Index (DGI) tests using a custom-designed Wireless Ga...In this work, a total of 322 tests were taken on young volunteers by performing 10 different falls, 6 different Activities of Daily Living (ADL) and 7 Dynamic Gait Index (DGI) tests using a custom-designed Wireless Gait Analysis Sensor (WGAS). In order to perform automatic fall detection, we used Back Propagation Artificial Neural Network (BP-ANN) and Support Vector Machine (SVM) based on the 6 features extracted from the raw data. The WGAS, which includes a tri-axial accelerometer, 2 gyroscopes, and a MSP430 microcontroller, is worn by the subjects at either T4 (at back) or as a belt-clip in front of the waist during the various tests. The raw data is wirelessly transmitted from the WGAS to a near-by PC for real-time fall classification. The BP ANN is optimized by varying the training, testing and validation data sets and training the network with different learning schemes. SVM is optimized by using three different kernels and selecting the kernel for best classification rate. The overall accuracy of BP ANN is obtained as 98.20% with LM and RPROP training from the T4 data, while from the data taken at the belt, we achieved 98.70% with LM and SCG learning. The overall accuracy using SVM was 98.80% and 98.71% with RBF kernel from the T4 and belt position data, respectively.展开更多
Leukemia is blood cancer, including bone marrow and lymphatictissues, typically involving white blood cells. Leukemia produces an abnormalamount of white blood cells compared to normal blood. Deoxyribonucleicacid (DNA...Leukemia is blood cancer, including bone marrow and lymphatictissues, typically involving white blood cells. Leukemia produces an abnormalamount of white blood cells compared to normal blood. Deoxyribonucleicacid (DNA) microarrays provide reliable medical diagnostic services to helpmore patients find the proposed treatment for infections. DNA microarraysare also known as biochips that consist of microscopic DNA spots attachedto a solid glass surface. Currently, it is difficult to classify cancers usingmicroarray data. Nearly many data mining techniques have failed becauseof the small sample size, which has become more critical for organizations.However, they are not highly effective in improving results and are frequently employed by doctors for cancer diagnosis. This study proposes a novelmethod using machine learning algorithms based on microarrays of leukemiaGSE9476 cells. The main aim was to predict the initial leukemia disease.Machine learning algorithms such as decision tree (DT), naive bayes (NB),random forest (RF), gradient boosting machine (GBM), linear regression(LinR), support vector machine (SVM), and novel approach based on thecombination of Logistic Regression (LR), DT and SVM named as ensembleLDSVM model. The k-fold cross-validation and grid search optimizationmethods were used with the LDSVM model to classify leukemia in patientsand comparatively analyze their impacts. The proposed approach evaluatedbetter accuracy, precision, recall, and f1 scores than the other algorithms.Furthermore, the results were relatively assessed, which showed LDSVMperformance. This study aims to successfully predict leukemia in patientsand enhance prediction accuracy in minimum time. Moreover, a Syntheticminority oversampling technique (SMOTE) and Principal compenent analysis(PCA) approaches were implemented. This makes the records generalized andevaluates the outcomes well. PCA reduces the feature count without losing anyinformation and deals with class imbalanced datasets, as well as faster modelexecution along with less computation cost. In this study, a novel processwas used to reduce the column results to develop a faster and more rapidexperiment execution.展开更多
This study was conducted to establish a Support Vector Machines(SVM)-Markov Chain prediction model for prediction of mining water inflow. According to the raw data sequence, the Support Vector Machines(SVM) model was ...This study was conducted to establish a Support Vector Machines(SVM)-Markov Chain prediction model for prediction of mining water inflow. According to the raw data sequence, the Support Vector Machines(SVM) model was built, and then revised by means of a Markov state change probability matrix. Through dividing the state and analyzing absolute errors and relative errors and other indexes of the measured value and the fitted value of SVM, the prediction results were improved. Finally,the model was used to calculate relative errors. Through predicting and analyzing mining water inflow, the prediction results of the model were satisfactory. The results of this study enlarge the application scope of the Support Vector Machines(SVM) prediction model and provide a new method for scientific forecasting water inflow in coal mining.展开更多
DEAR EDITOR,Somatic mutations are a large category of genetic variations,which play an essential role in tumorigenesis. Detection of somatic single nucleotide variants(SNVs) could facilitate downstream analysis of tum...DEAR EDITOR,Somatic mutations are a large category of genetic variations,which play an essential role in tumorigenesis. Detection of somatic single nucleotide variants(SNVs) could facilitate downstream analysis of tumorigenesis. Many computational methods have been developed to detect SNVs, but most require normal matched samples to differentiate somatic SNVs from the normal state, which can be difficult to obtain.展开更多
This letter adopts a GA (Genetic Algorithm) approach to assist in learning scaling of features that are most favorable to SVM (Support Vector Machines) classifier, which is named as GA-SVM. The relevant coefficients o...This letter adopts a GA (Genetic Algorithm) approach to assist in learning scaling of features that are most favorable to SVM (Support Vector Machines) classifier, which is named as GA-SVM. The relevant coefficients of various features to the classification task, measured by real-valued scaling, are estimated efficiently by using GA. And GA exploits heavy-bias operator to promote sparsity in the scaling of features. There are many potential benefits of this method:Feature selection is performed by eliminating irrelevant features whose scaling is zero, an SVM classifier that has enhanced generalization ability can be learned simultaneously. Experimental comparisons using original SVM and GA-SVM demonstrate both economical feature selection and excellent classification accuracy on junk e-mail recognition problem and Internet ad recognition problem. The experimental results show that comparing with original SVM classifier, the number of support vector decreases significantly and better classification results are achieved based on GA-SVM. It also demonstrates that GA can provide a simple, general, and powerful framework for tuning parameters in optimal problem, which directly improves the recognition performance and recognition rate of SVM.展开更多
基金Supported by the National Natural Science Foundation of China(60473035)~~
文摘The relationship among Mercer kernel, reproducing kernel and positive definite kernel in support vector machine (SVM) is proved and their roles in SVM are discussed. The quadratic form of the kernel matrix is used to confirm the positive definiteness and their construction. Based on the Bochner theorem, some translation invariant kernels are checked in their Fourier domain. Some rotation invariant radial kernels are inspected according to the Schoenberg theorem. Finally, the construction of discrete scaling and wavelet kernels, the kernel selection and the kernel parameter learning are discussed.
基金This project was supported by Shanghai Shu Guang Project.
文摘Support vector machine (SVM), as a novel approach in pattern recognition, has demonstrated a success in face detection and face recognition. In this paper, a face recognition approach based on the SVM classifier with the nearest neighbor classifier (NNC) is proposed. The principal component analysis (PCA) is used to reduce the dimension and extract features. Then one-against-all stratedy is used to train the SVM classifiers. At the testing stage, we propose an al-
文摘Face recognition systems have enhanced human-computer interactions in the last ten years.However,the literature reveals that current techniques used for identifying or verifying faces are not immune to limitations.Principal Component Analysis-Support Vector Machine(PCA-SVM)and Principal Component Analysis-Artificial Neural Network(PCA-ANN)are among the relatively recent and powerful face analysis techniques.Compared to PCA-ANN,PCA-SVM has demonstrated generalization capabilities in many tasks,including the ability to recognize objects with small or large data samples.Apart from requiring a minimal number of parameters in face detection,PCA-SVM minimizes generalization errors and avoids overfitting problems better than PCA-ANN.PCA-SVM,however,is ineffective and inefficient in detecting human faces in cases in which there is poor lighting,long hair,or items covering the subject’s face.This study proposes a novel PCASVM-based model to overcome the recognition problem of PCA-ANN and enhance face detection.The experimental results indicate that the proposed model provides a better face recognition outcome than PCA-SVM.
文摘In this work, a total of 322 tests were taken on young volunteers by performing 10 different falls, 6 different Activities of Daily Living (ADL) and 7 Dynamic Gait Index (DGI) tests using a custom-designed Wireless Gait Analysis Sensor (WGAS). In order to perform automatic fall detection, we used Back Propagation Artificial Neural Network (BP-ANN) and Support Vector Machine (SVM) based on the 6 features extracted from the raw data. The WGAS, which includes a tri-axial accelerometer, 2 gyroscopes, and a MSP430 microcontroller, is worn by the subjects at either T4 (at back) or as a belt-clip in front of the waist during the various tests. The raw data is wirelessly transmitted from the WGAS to a near-by PC for real-time fall classification. The BP ANN is optimized by varying the training, testing and validation data sets and training the network with different learning schemes. SVM is optimized by using three different kernels and selecting the kernel for best classification rate. The overall accuracy of BP ANN is obtained as 98.20% with LM and RPROP training from the T4 data, while from the data taken at the belt, we achieved 98.70% with LM and SCG learning. The overall accuracy using SVM was 98.80% and 98.71% with RBF kernel from the T4 and belt position data, respectively.
文摘Leukemia is blood cancer, including bone marrow and lymphatictissues, typically involving white blood cells. Leukemia produces an abnormalamount of white blood cells compared to normal blood. Deoxyribonucleicacid (DNA) microarrays provide reliable medical diagnostic services to helpmore patients find the proposed treatment for infections. DNA microarraysare also known as biochips that consist of microscopic DNA spots attachedto a solid glass surface. Currently, it is difficult to classify cancers usingmicroarray data. Nearly many data mining techniques have failed becauseof the small sample size, which has become more critical for organizations.However, they are not highly effective in improving results and are frequently employed by doctors for cancer diagnosis. This study proposes a novelmethod using machine learning algorithms based on microarrays of leukemiaGSE9476 cells. The main aim was to predict the initial leukemia disease.Machine learning algorithms such as decision tree (DT), naive bayes (NB),random forest (RF), gradient boosting machine (GBM), linear regression(LinR), support vector machine (SVM), and novel approach based on thecombination of Logistic Regression (LR), DT and SVM named as ensembleLDSVM model. The k-fold cross-validation and grid search optimizationmethods were used with the LDSVM model to classify leukemia in patientsand comparatively analyze their impacts. The proposed approach evaluatedbetter accuracy, precision, recall, and f1 scores than the other algorithms.Furthermore, the results were relatively assessed, which showed LDSVMperformance. This study aims to successfully predict leukemia in patientsand enhance prediction accuracy in minimum time. Moreover, a Syntheticminority oversampling technique (SMOTE) and Principal compenent analysis(PCA) approaches were implemented. This makes the records generalized andevaluates the outcomes well. PCA reduces the feature count without losing anyinformation and deals with class imbalanced datasets, as well as faster modelexecution along with less computation cost. In this study, a novel processwas used to reduce the column results to develop a faster and more rapidexperiment execution.
文摘This study was conducted to establish a Support Vector Machines(SVM)-Markov Chain prediction model for prediction of mining water inflow. According to the raw data sequence, the Support Vector Machines(SVM) model was built, and then revised by means of a Markov state change probability matrix. Through dividing the state and analyzing absolute errors and relative errors and other indexes of the measured value and the fitted value of SVM, the prediction results were improved. Finally,the model was used to calculate relative errors. Through predicting and analyzing mining water inflow, the prediction results of the model were satisfactory. The results of this study enlarge the application scope of the Support Vector Machines(SVM) prediction model and provide a new method for scientific forecasting water inflow in coal mining.
基金supported by the CAS Pioneer Hundred Talents Program and National Natural Science Foundation of China (32070683) to Y.P.C。
文摘DEAR EDITOR,Somatic mutations are a large category of genetic variations,which play an essential role in tumorigenesis. Detection of somatic single nucleotide variants(SNVs) could facilitate downstream analysis of tumorigenesis. Many computational methods have been developed to detect SNVs, but most require normal matched samples to differentiate somatic SNVs from the normal state, which can be difficult to obtain.
基金Supported by the National Natural Science Foundation of China (No.60175020) the National High Tech Development '863' Program of China (No.2002AA117010-09).
文摘This letter adopts a GA (Genetic Algorithm) approach to assist in learning scaling of features that are most favorable to SVM (Support Vector Machines) classifier, which is named as GA-SVM. The relevant coefficients of various features to the classification task, measured by real-valued scaling, are estimated efficiently by using GA. And GA exploits heavy-bias operator to promote sparsity in the scaling of features. There are many potential benefits of this method:Feature selection is performed by eliminating irrelevant features whose scaling is zero, an SVM classifier that has enhanced generalization ability can be learned simultaneously. Experimental comparisons using original SVM and GA-SVM demonstrate both economical feature selection and excellent classification accuracy on junk e-mail recognition problem and Internet ad recognition problem. The experimental results show that comparing with original SVM classifier, the number of support vector decreases significantly and better classification results are achieved based on GA-SVM. It also demonstrates that GA can provide a simple, general, and powerful framework for tuning parameters in optimal problem, which directly improves the recognition performance and recognition rate of SVM.