The aim of this paper is to study an extended modified Korteweg-de Vries-Calogero-Bogoyavlenskii-Schiff(mKdV-CBS)equation and present its Lax pair with a spectral parameter.Meanwhile,a Miura transformation is explored...The aim of this paper is to study an extended modified Korteweg-de Vries-Calogero-Bogoyavlenskii-Schiff(mKdV-CBS)equation and present its Lax pair with a spectral parameter.Meanwhile,a Miura transformation is explored,which reveals the relationship between solutions of the extended mKdV-CBS equation and the extended(2+1)-dimensional Korteweg-de Vries(KdV)equation.On the basis of the obtained Lax pair and the existing research results,the Darboux transformation is derived,which plays a crucial role in presenting soliton solutions.In addition,soliton molecules are given by the velocity resonance mechanism.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12271488)。
文摘The aim of this paper is to study an extended modified Korteweg-de Vries-Calogero-Bogoyavlenskii-Schiff(mKdV-CBS)equation and present its Lax pair with a spectral parameter.Meanwhile,a Miura transformation is explored,which reveals the relationship between solutions of the extended mKdV-CBS equation and the extended(2+1)-dimensional Korteweg-de Vries(KdV)equation.On the basis of the obtained Lax pair and the existing research results,the Darboux transformation is derived,which plays a crucial role in presenting soliton solutions.In addition,soliton molecules are given by the velocity resonance mechanism.