Throughout the globe,diabetes mellitus(DM) is increasing in incidence with limited therapies presently available to prevent or resolve the significant complications of this disorder.DM impacts multiple organs and af...Throughout the globe,diabetes mellitus(DM) is increasing in incidence with limited therapies presently available to prevent or resolve the significant complications of this disorder.DM impacts multiple organs and affects all components of the central and peripheral nervous systems that can range from dementia to diabetic neuropathy.The mechanistic target of rapamycin(m TOR) is a promising agent for the development of novel regenerative strategies for the treatment of DM.m TOR and its related signaling pathways impact multiple metabolic parameters that include cellular metabolic homeostasis,insulin resistance,insulin secretion,stem cell proliferation and differentiation,pancreatic β-cell function,and programmed cell death with apoptosis and autophagy.m TOR is central element for the protein complexes m TOR Complex 1(m TORC1) and m TOR Complex 2(m TORC2) and is a critical component for a number of signaling pathways that involve phosphoinositide 3-kinase(PI 3-K),protein kinase B(Akt),AMP activated protein kinase(AMPK),silent mating type information regulation 2 homolog 1(Saccharomyces cerevisiae)(SIRT1),Wnt1 inducible signaling pathway protein 1(WISP1),and growth factors.As a result,m TOR represents an exciting target to offer new clinical avenues for the treatment of DM and the complications of this disease.Future studies directed to elucidate the delicate balance m TOR holds over cellular metabolism and the impact of its broad signaling pathways should foster the translation of these targets into effective clinical regimens for DM.展开更多
The mechanistic target of rapamycin(m TOR) is a serine/threonine kinase that plays a pivotal role in cellular growth, proliferation, survival, and metabolism. In the central nervous system(CNS), the mTOR pathway regul...The mechanistic target of rapamycin(m TOR) is a serine/threonine kinase that plays a pivotal role in cellular growth, proliferation, survival, and metabolism. In the central nervous system(CNS), the mTOR pathway regulates diverse aspects of neural development and function. Genetic mutations within the m TOR pathway lead to severe neurodevelopmental disorders, collectively known as “mTORopathies”(Crino, 2020). Dysfunctions of m TOR, including both its hyperactivation and hypoactivation, have also been implicated in a wide spectrum of other neurodevelopmental and neurodegenerative conditions, highlighting its importance in CNS health.展开更多
Downregulation of the inwardly rectifying potassium channel Kir4.1 is a key step for inducing retinal Müller cell activation and interaction with other glial cells,which is involved in retinal ganglion cell apopt...Downregulation of the inwardly rectifying potassium channel Kir4.1 is a key step for inducing retinal Müller cell activation and interaction with other glial cells,which is involved in retinal ganglion cell apoptosis in glaucoma.Modulation of Kir4.1 expression in Müller cells may therefore be a potential strategy for attenuating retinal ganglion cell damage in glaucoma.In this study,we identified seven predicted phosphorylation sites in Kir4.1 and constructed lentiviral expression systems expressing Kir4.1 mutated at each site to prevent phosphorylation.Following this,we treated Müller glial cells in vitro and in vivo with the m Glu R I agonist DHPG to induce Kir4.1 or Kir4.1 Tyr^(9)Asp overexpression.We found that both Kir4.1 and Kir4.1 Tyr^(9)Asp overexpression inhibited activation of Müller glial cells.Subsequently,we established a rat model of chronic ocular hypertension by injecting microbeads into the anterior chamber and overexpressed Kir4.1 or Kir4.1 Tyr^(9)Asp in the eye,and observed similar results in Müller cells in vivo as those seen in vitro.Both Kir4.1 and Kir4.1 Tyr^(9)Asp overexpression inhibited Müller cell activation,regulated the balance of Bax/Bcl-2,and reduced the m RNA and protein levels of pro-inflammatory factors,including interleukin-1βand tumor necrosis factor-α.Furthermore,we investigated the regulatory effects of Kir4.1 and Kir4.1 Tyr^(9)Asp overexpression on the release of pro-inflammatory factors in a co-culture system of Müller glial cells and microglia.In this co-culture system,we observed elevated adenosine triphosphate concentrations in activated Müller cells,increased levels of translocator protein(a marker of microglial activation),and elevated interleukin-1βm RNA and protein levels in microglia induced by activated Müller cells.These changes could be reversed by Kir4.1 and Kir4.1 Tyr^(9)Asp overexpression in Müller cells.Kir4.1 overexpression,but not Kir4.1 Tyr^(9)Asp overexpression,reduced the number of proliferative and migratory microglia induced by activated Müller cells.Collectively,these results suggest that the tyrosine residue at position nine in Kir4.1 may serve as a functional modulation site in the retina in an experimental model of glaucoma.Kir4.1 and Kir4.1 Tyr^(9)Asp overexpression attenuated Müller cell activation,reduced ATP/P2X receptor–mediated interactions between glial cells,inhibited microglial activation,and decreased the synthesis and release of pro-inflammatory factors,consequently ameliorating retinal ganglion cell apoptosis in glaucoma.展开更多
Diabetic retinopathy(DR),a common complication of diabetes,is characterized by retinal angiogenesis and inflammation.The role of hepatoma-derived growth factor(HDGF)in mediating inflammation during DR remains unclear....Diabetic retinopathy(DR),a common complication of diabetes,is characterized by retinal angiogenesis and inflammation.The role of hepatoma-derived growth factor(HDGF)in mediating inflammation during DR remains unclear.We measured HDGF levels in the aqueous humor and found that HDGF was increased in DR but decreased after anti-angiogenesis treatment.Using public single-cell RNA sequencing datasets,we found that elevated HDGF in DR was mainly produced by Müller cells and targeted microglia.Additionally,integrin beta 2(Itgb2),a target gene of HDGF that induces microglial activation,was significantly upregulated in DR.To verify these results,we performed enzyme-linked immunosorbent assays,quantitative reverse transcription-PCR,Western blotting,and fluorescence immunostaining in cultured Müller and microglial cells treated with HDGF or anti-HDGF,as well as in DR mice receiving intravitreal injections of HDGF or its antibody.Exogenous HDGF further promoted microglial activation,migration,and secretion of pro-inflammatory cytokines,while neutralization of HDGF suppressed these effects caused by high glucose.Furthermore,the HDGF receptor nucleolin was overexpressed in microglia under high glucose stimulation.Therefore,blocking HDGF from Müller cells in DR reduced the excessive inflammatory response in microglia,highlighting HDGF as a potential therapeutic target.展开更多
Müller glia,as prominent glial cells within the retina,plays a significant role in maintaining retinal homeostasis in both healthy and diseased states.In lower vertebrates like zebrafish,these cells assume respon...Müller glia,as prominent glial cells within the retina,plays a significant role in maintaining retinal homeostasis in both healthy and diseased states.In lower vertebrates like zebrafish,these cells assume responsibility for spontaneous retinal regeneration,wherein endogenous Müller glia undergo proliferation,transform into Müller glia-derived progenitor cells,and subsequently regenerate the entire retina with restored functionality.Conversely,Müller glia in the mouse and human retina exhibit limited neural reprogramming.Müller glia reprogramming is thus a promising strategy for treating neurodegenerative ocular disorders.Müller glia reprogramming in mice has been accomplished with remarkable success,through various technologies.Advancements in molecular,genetic,epigenetic,morphological,and physiological evaluations have made it easier to document and investigate the Müller glia programming process in mice.Nevertheless,there remain issues that hinder improving reprogramming efficiency and maturity.Thus,understanding the reprogramming mechanism is crucial toward exploring factors that will improve Müller glia reprogramming efficiency,and for developing novel Müller glia reprogramming strategies.This review describes recent progress in relatively successful Müller glia reprogramming strategies.It also provides a basis for developing new Müller glia reprogramming strategies in mice,including epigenetic remodeling,metabolic modulation,immune regulation,chemical small-molecules regulation,extracellular matrix remodeling,and cell-cell fusion,to achieve Müller glia reprogramming in mice.展开更多
AIM:To investigate the pathway(s)mediating rat antral circular smooth muscle contractile responses to the cholinomimetic agent,bethanechol and the subtypes of muscarinic receptors mediating the cholinergic contraction...AIM:To investigate the pathway(s)mediating rat antral circular smooth muscle contractile responses to the cholinomimetic agent,bethanechol and the subtypes of muscarinic receptors mediating the cholinergic contraction. METHODS:Circular smooth muscle strips from the antrum of Sprague-Dawley rats were mounted in muscle baths in Krebs buffer.Isometric tension was recorded.Cumulative concentration-response curves were obtained for(+)-cis- dioxolane(cD),a nonspecific muscarinic agonist,at 10^(-8)- 10^(-4)mol/L,in the presence of tetrodotoxin(TTX,10^(-7)mol/L). Results were normalized to cross sectional area.A repeat concentration-response curve was obtained after incubation of the muscle for 90 min with antagonists for M1(pirenzepine), M2(methoctramine)and M3(darifenadn)muscarinic receptor subtypes.The sensitivity to PTX was tested by the ip injection of 100 mg/kg of PTX 5 d before the experiment.The antral circular smooth muscles were removed from PTX-treated and non-treated rats as strips and dispersed smooth muscle cells to identify whether PTX-linked pathway mediated the contractility to bethanechol. RESULTS:A dose-dependent contractile response observed with bethanechol,was not affected by TTx.The pretreatment of rats with pertussis toxin decreased the contraction induced by bethanechol.Lack of calcium as well as the presence of the L-type calcium channel blocker,nifedipine,also inhibited the cholinergic contraction,with a reduction in response from 2.5±0.4 g/mm^2 to 1.2±0.4 g/mm^2(P<0.05).The dose- response curves were shifted to the right by muscarinic antagonists in the following order of affinity:darifenacin (M_3)>methocramine(M_2)>pirenzepine(M_1). CONCLUSION:The muscarinic receptors-dependent contraction of rat antral circular smooth muscles was linked to the signal transduction pathway(s)involving pertussis-toxin sensitive GTP-binding proteins and to extracellular calcium via L-type voltage gated calcium channels.The presence of the residual contractile response after the treatment with nifedipine,suggests that an additional pathway could mediate the cholinergic contraction.The involvement of more than one muscarinic receptor(functionally predominant type 3 over type 2)also suggests more than one pathway mediating the cholinergic contraction in rat antrum.展开更多
Tomato is one of the most essential vegetable crops worldwide,with the highest annual production rate of all agricultural staples(Kimura and Sinha,2008).Long-term domestication of tomatoes has led to the selection of ...Tomato is one of the most essential vegetable crops worldwide,with the highest annual production rate of all agricultural staples(Kimura and Sinha,2008).Long-term domestication of tomatoes has led to the selection of favorable agronomic traits that often come at the expense of stress resistance.To identify potential genetic targets for improved stress tolerance,whole-genome sequencing(WGS)has been applied to wild and cultivated accessions.展开更多
BACKGROUND Macrophages play a crucial role in the tumor microenvironment,displaying remarkable plasticity that allows them to either suppress or promote tumor progression.Their polarization into M1 or M2 phenotypes co...BACKGROUND Macrophages play a crucial role in the tumor microenvironment,displaying remarkable plasticity that allows them to either suppress or promote tumor progression.Their polarization into M1 or M2 phenotypes could have significant prognostic implications,and manipulating this polarization may offer a novel approach to controlling colorectal neoplasms.AIM To evaluate the infiltration rates of M1 and M2 macrophages in colorectal neoplasia,specifically comparing cases with and without metalloproteinase mutations.Additionally,it sought to explore potential prognostic factors as-sociated with the disease.展开更多
Immunotherapy with interleukin-2(IL-2)in treating cancers is subject to several limitations such as systemic side effects and reduced efficacy against tumors with low immune cell infiltration despite its promise.To ad...Immunotherapy with interleukin-2(IL-2)in treating cancers is subject to several limitations such as systemic side effects and reduced efficacy against tumors with low immune cell infiltration despite its promise.To address these challenges,IL-2-So-Lipo,a novel liposomal formulation combining IL-2 with sorafenib derivative,was developed as an anti-angiogenic drug that inhibits the growth of new blood vessels which play crucial roles in tumor growth.Sorafenib derivatives could target at melanoma-specific receptors,further enhancing liposomal specificity at the tumor site.Our results demonstrated that the prepared IL-2-So-Lipo significantly enhanced anti-tumor activity compared to IL-2 or sorafenib monotherapies,as well as their combination.In a B16F10 melanoma model,IL-2-So-Lipo was found to significantly inhibit tumor progression(tumor volume of 108.01±62.99 mm^(3))compared to the control group(tumor volume of 1,397.13±75.55 mm^(3)),improving the therapeutic efficacy.This enhanced efficacy is attributed to the targeted delivery of IL-2 which promoted the infiltration and activation of cytotoxic T lymphocytes.Additionally,liposomal encapsulation of sorafenib derivatives enhanced its delivery efficiency,promoting tumor cell apoptosis and suppressing angiogenesis.Mechanistically,IL-2-So-Lipo could kill tumors by inducing a shift towards an anti-tumor immune response via facilitating the polarization of macrophages towards the M1 phenotype.Furthermore,IL-2-So-Lipo downregulated several key proteins in the MAPK signaling pathway,exerting a significant role in mediating tumor resistance to sorafenib.These findings underscore the potential of IL-2-So-Lipo as a promising strategy to improve the therapeutic efficacy of immunotherapy and targeted therapy in cancers.Moreover,the combination of IL-2 and sorafenib in a liposomal delivery system overcame the limitations of conventional IL-2 therapy,offering a synergistic approach to improve therapeutic outcomes for solid tumors.展开更多
Chirality,a common phenomenon in nature,appears in structures ranging from galaxies and condensed matter to atomic nuclei.There is a persistent demand for new,high-precision methods to detect chiral structures,particu...Chirality,a common phenomenon in nature,appears in structures ranging from galaxies and condensed matter to atomic nuclei.There is a persistent demand for new,high-precision methods to detect chiral structures,particularly at the microscale.Here,we propose a novel method,vortex Mössbauer spectroscopy,for probing chiral structures.By leveraging the orbital angular momentum carried by vortex beams,this approach achieves high precision in detecting chiral structures at scales ranging from nanometers to hundreds of nanometers.Our simulation shows the ratio of characteristic lines in the Mössbauer spectra of ^(57)Fe under vortex beams exhibits differences of up to four orders of magnitude for atomic structures with different arrangements.Additionally,simulations reveal the response of ^(229m)Th chiral structures to vortex beams with opposite angular momenta differs by approximately 49-fold.These significant spectral variations indicate that this new vortex Mössbauer probe holds great potential for investigating the microscopic chiral structures and interactions of matter.展开更多
The phenotypes of the adenine-to-guanine transition at position 3243 of mitochondrial DNA(m.3243A>G)are highly variable,with different symptoms observed in different patients.These include mitochondrial encephalomy...The phenotypes of the adenine-to-guanine transition at position 3243 of mitochondrial DNA(m.3243A>G)are highly variable,with different symptoms observed in different patients.These include mitochondrial encephalomyopathy,lactic acidosis,and stroke-like episodes(MELAS);maternally inherited diabetes and deafness syndrome(MIDD);other syndromic conditions;or non-syndromic mitochondrial disorders.Renal involvement associated with this mutation generally manifests as subnephrotic proteinuria,progressive deterioration of kidney function,and increased morbidity.The retinopathies linked to the m.3243A>G mutation have heterogeneous presentations,characterized by variable degrees of retinal pigment epithelium(RPE)atrophy and hyperpigmentation at the posterior pole.As a severe phenotype of the m.3243A>G mutation,MELAS combined with focal and segmental glomerulosclerosis(FSGS)is rare.We herein firstly reported in detail the ophthalmic manifestations of a patient with this condition.Additionally,we reviewed the literature on fundus,ophthalmic electrophysiology,and optical coherence tomography(OCT)findings related to the m.3243A>G mutation.展开更多
Ensuring digital media security through robust image watermarking is essential to prevent unauthorized distribution,tampering,and copyright infringement.This study introduces a novel hybrid watermarking framework that...Ensuring digital media security through robust image watermarking is essential to prevent unauthorized distribution,tampering,and copyright infringement.This study introduces a novel hybrid watermarking framework that integrates Discrete Wavelet Transform(DWT),Redundant Discrete Wavelet Transform(RDWT),and Möbius Transformations(MT),with optimization of transformation parameters achieved via a Genetic Algorithm(GA).By combining frequency and spatial domain techniques,the proposed method significantly enhances both the imper-ceptibility and robustness of watermark embedding.The approach leverages DWT and RDWT for multi-resolution decomposition,enabling watermark insertion in frequency subbands that balance visibility and resistance to attacks.RDWT,in particular,offers shift-invariance,which improves performance under geometric transformations.Möbius transformations are employed for spatial manipulation,providing conformal mapping and spatial dispersion that fortify watermark resilience against rotation,scaling,and translation.The GA dynamically optimizes the Möbius parameters,selecting configurations that maximize robustness metrics such as Peak Signal-to-Noise Ratio(PSNR),Structural Similarity Index Measure(SSIM),Bit Error Rate(BER),and Normalized Cross-Correlation(NCC).Extensive experiments conducted on medical and standard benchmark images demonstrate the efficacy of the proposed RDWT-MT scheme.Results show that PSNR exceeds 68 dB,SSIM approaches 1.0,and BER remains at 0.0000,indicating excellent imperceptibility and perfect watermark recovery.Moreover,the method exhibits exceptional resilience to a wide range of image processing attacks,including Gaussian noise,JPEG compression,histogram equalization,and cropping,achieving NCC values close to or equal to 1.0.Comparative evaluations with state-of-the-art watermarking techniques highlight the superiority of the proposed method in terms of robustness,fidelity,and computational efficiency.The hybrid framework ensures secure,adaptive watermark embedding,making it highly suitable for applications in digital rights management,content authentication,and medical image protection.The integration of spatial and frequency domain features with evolutionary optimization presents a promising direction for future watermarking technologies.展开更多
Microglia are present throughout the central nervous system and are vital in neural repair,nutrition,phagocytosis,immunological regulation,and maintaining neuronal function.In a healthy spinal cord,microglia are accou...Microglia are present throughout the central nervous system and are vital in neural repair,nutrition,phagocytosis,immunological regulation,and maintaining neuronal function.In a healthy spinal cord,microglia are accountable for immune surveillance,however,when a spinal cord injury occurs,the microenvironment drastically changes,leading to glial scars and failed axonal regeneration.In this context,microglia vary their gene and protein expression during activation,and proliferation in reaction to the injury,influencing injury responses both favorably and unfavorably.A dynamic and multifaceted injury response is mediated by microglia,which interact directly with neurons,astrocytes,oligodendrocytes,and neural stem/progenitor cells.Despite a clear understanding of their essential nature and origin,the mechanisms of action and new functions of microglia in spinal cord injury require extensive research.This review summarizes current studies on microglial genesis,physiological function,and pathological state,highlights their crucial roles in spinal cord injury,and proposes microglia as a therapeutic target.展开更多
AIM: To help clarifying the possibility of connective-tissue diseases in men with penile or testicular prostheses. METHODS: Eight patients underwent inflatable penile prostheses and 15, testicular prostheses consented...AIM: To help clarifying the possibility of connective-tissue diseases in men with penile or testicular prostheses. METHODS: Eight patients underwent inflatable penile prostheses and 15, testicular prostheses consented to the study. Their medical records were reviewed and a follow-up interview and physical and serological examinations were performed. RESULTS: In patients with penile prostheses, there was no abnormal antinuclear antibody (ANA) or IgM elevation. The serum levels of the rheumatoid factor (RF), C4, IgA and IgG were abnormal in one patient, and the levels of erythrocyte sedimentation rate (ESR) and C3, abnormal in two. Four had elevated IgE. In patients with testicular prostheses, there was no abnormal RF, ANA or IgM. The serum levels of ESR and IgA were abnormal in two, and three had abnormal C4, ten abnormal C3, and eleven decreased IgG. All had increased IgE. Men with penile prostheses had higher serum levels of IgG and IgM than those with testicular prostheses (P=0.001, P=0.016, respectively). The rates of abnormal values of IgE and IgG were higher in men with testicular prostheses than in men with penile prostheses (P=0.008, P=0.009, respectively). Physical examination was normal in all patients and nobody had documented symptoms pertinent to connective-tissue diseases. CONCLUSION: Our findings suggest that the risk of connective-tissue diseases is not higher in patients wearing prostheses as the ANA is negative and there is no apparent manifestation suggestive of connective-tissue diseases.展开更多
基金supported by American Diabetes Association,American Heart Association,NIH NIEHS,NIH NIA,NIH NINDS,and NIH ARRA
文摘Throughout the globe,diabetes mellitus(DM) is increasing in incidence with limited therapies presently available to prevent or resolve the significant complications of this disorder.DM impacts multiple organs and affects all components of the central and peripheral nervous systems that can range from dementia to diabetic neuropathy.The mechanistic target of rapamycin(m TOR) is a promising agent for the development of novel regenerative strategies for the treatment of DM.m TOR and its related signaling pathways impact multiple metabolic parameters that include cellular metabolic homeostasis,insulin resistance,insulin secretion,stem cell proliferation and differentiation,pancreatic β-cell function,and programmed cell death with apoptosis and autophagy.m TOR is central element for the protein complexes m TOR Complex 1(m TORC1) and m TOR Complex 2(m TORC2) and is a critical component for a number of signaling pathways that involve phosphoinositide 3-kinase(PI 3-K),protein kinase B(Akt),AMP activated protein kinase(AMPK),silent mating type information regulation 2 homolog 1(Saccharomyces cerevisiae)(SIRT1),Wnt1 inducible signaling pathway protein 1(WISP1),and growth factors.As a result,m TOR represents an exciting target to offer new clinical avenues for the treatment of DM and the complications of this disease.Future studies directed to elucidate the delicate balance m TOR holds over cellular metabolism and the impact of its broad signaling pathways should foster the translation of these targets into effective clinical regimens for DM.
基金supported by grants from Simons Foundation (SFARI 479754),CIHR (PJT-180565)the Scottish Rite Charitable Foundation of Canada (to YL)funding from the Canada Research Chairs program。
文摘The mechanistic target of rapamycin(m TOR) is a serine/threonine kinase that plays a pivotal role in cellular growth, proliferation, survival, and metabolism. In the central nervous system(CNS), the mTOR pathway regulates diverse aspects of neural development and function. Genetic mutations within the m TOR pathway lead to severe neurodevelopmental disorders, collectively known as “mTORopathies”(Crino, 2020). Dysfunctions of m TOR, including both its hyperactivation and hypoactivation, have also been implicated in a wide spectrum of other neurodevelopmental and neurodegenerative conditions, highlighting its importance in CNS health.
基金supported by the National Natural Science Foundation of China,Nos.32271043(to ZW)and 82171047(to YM)the both Science and Technology Major Project of Shanghai,No.2018SHZDZX01 and ZJLabShanghai Center for Brain Science and Brain-Inspired Technology(to ZW)。
文摘Downregulation of the inwardly rectifying potassium channel Kir4.1 is a key step for inducing retinal Müller cell activation and interaction with other glial cells,which is involved in retinal ganglion cell apoptosis in glaucoma.Modulation of Kir4.1 expression in Müller cells may therefore be a potential strategy for attenuating retinal ganglion cell damage in glaucoma.In this study,we identified seven predicted phosphorylation sites in Kir4.1 and constructed lentiviral expression systems expressing Kir4.1 mutated at each site to prevent phosphorylation.Following this,we treated Müller glial cells in vitro and in vivo with the m Glu R I agonist DHPG to induce Kir4.1 or Kir4.1 Tyr^(9)Asp overexpression.We found that both Kir4.1 and Kir4.1 Tyr^(9)Asp overexpression inhibited activation of Müller glial cells.Subsequently,we established a rat model of chronic ocular hypertension by injecting microbeads into the anterior chamber and overexpressed Kir4.1 or Kir4.1 Tyr^(9)Asp in the eye,and observed similar results in Müller cells in vivo as those seen in vitro.Both Kir4.1 and Kir4.1 Tyr^(9)Asp overexpression inhibited Müller cell activation,regulated the balance of Bax/Bcl-2,and reduced the m RNA and protein levels of pro-inflammatory factors,including interleukin-1βand tumor necrosis factor-α.Furthermore,we investigated the regulatory effects of Kir4.1 and Kir4.1 Tyr^(9)Asp overexpression on the release of pro-inflammatory factors in a co-culture system of Müller glial cells and microglia.In this co-culture system,we observed elevated adenosine triphosphate concentrations in activated Müller cells,increased levels of translocator protein(a marker of microglial activation),and elevated interleukin-1βm RNA and protein levels in microglia induced by activated Müller cells.These changes could be reversed by Kir4.1 and Kir4.1 Tyr^(9)Asp overexpression in Müller cells.Kir4.1 overexpression,but not Kir4.1 Tyr^(9)Asp overexpression,reduced the number of proliferative and migratory microglia induced by activated Müller cells.Collectively,these results suggest that the tyrosine residue at position nine in Kir4.1 may serve as a functional modulation site in the retina in an experimental model of glaucoma.Kir4.1 and Kir4.1 Tyr^(9)Asp overexpression attenuated Müller cell activation,reduced ATP/P2X receptor–mediated interactions between glial cells,inhibited microglial activation,and decreased the synthesis and release of pro-inflammatory factors,consequently ameliorating retinal ganglion cell apoptosis in glaucoma.
基金supported by National Natural Science Foundation of China(Grant No.81900873 to A.Q.)the Jiangsu Provincial Key Research and Development Programme-social development(Grant No.BE2023777 to W.Z.)+1 种基金the Key Medical Research Project of Jiangsu Commission of Health(Grant No.H2022185 to W.Z.)the Clinical Capacity Enhancement Project of Jiangsu Province Hospital(Grant No.JSPH-MB-2023-18 to W.Z.)。
文摘Diabetic retinopathy(DR),a common complication of diabetes,is characterized by retinal angiogenesis and inflammation.The role of hepatoma-derived growth factor(HDGF)in mediating inflammation during DR remains unclear.We measured HDGF levels in the aqueous humor and found that HDGF was increased in DR but decreased after anti-angiogenesis treatment.Using public single-cell RNA sequencing datasets,we found that elevated HDGF in DR was mainly produced by Müller cells and targeted microglia.Additionally,integrin beta 2(Itgb2),a target gene of HDGF that induces microglial activation,was significantly upregulated in DR.To verify these results,we performed enzyme-linked immunosorbent assays,quantitative reverse transcription-PCR,Western blotting,and fluorescence immunostaining in cultured Müller and microglial cells treated with HDGF or anti-HDGF,as well as in DR mice receiving intravitreal injections of HDGF or its antibody.Exogenous HDGF further promoted microglial activation,migration,and secretion of pro-inflammatory cytokines,while neutralization of HDGF suppressed these effects caused by high glucose.Furthermore,the HDGF receptor nucleolin was overexpressed in microglia under high glucose stimulation.Therefore,blocking HDGF from Müller cells in DR reduced the excessive inflammatory response in microglia,highlighting HDGF as a potential therapeutic target.
基金supported by the National Natural Science Foundation of China,No.31930068National Key Research and Development Program of China,Nos.2018YFA0107302 and 2021YFA1101203(all to HX).
文摘Müller glia,as prominent glial cells within the retina,plays a significant role in maintaining retinal homeostasis in both healthy and diseased states.In lower vertebrates like zebrafish,these cells assume responsibility for spontaneous retinal regeneration,wherein endogenous Müller glia undergo proliferation,transform into Müller glia-derived progenitor cells,and subsequently regenerate the entire retina with restored functionality.Conversely,Müller glia in the mouse and human retina exhibit limited neural reprogramming.Müller glia reprogramming is thus a promising strategy for treating neurodegenerative ocular disorders.Müller glia reprogramming in mice has been accomplished with remarkable success,through various technologies.Advancements in molecular,genetic,epigenetic,morphological,and physiological evaluations have made it easier to document and investigate the Müller glia programming process in mice.Nevertheless,there remain issues that hinder improving reprogramming efficiency and maturity.Thus,understanding the reprogramming mechanism is crucial toward exploring factors that will improve Müller glia reprogramming efficiency,and for developing novel Müller glia reprogramming strategies.This review describes recent progress in relatively successful Müller glia reprogramming strategies.It also provides a basis for developing new Müller glia reprogramming strategies in mice,including epigenetic remodeling,metabolic modulation,immune regulation,chemical small-molecules regulation,extracellular matrix remodeling,and cell-cell fusion,to achieve Müller glia reprogramming in mice.
文摘AIM:To investigate the pathway(s)mediating rat antral circular smooth muscle contractile responses to the cholinomimetic agent,bethanechol and the subtypes of muscarinic receptors mediating the cholinergic contraction. METHODS:Circular smooth muscle strips from the antrum of Sprague-Dawley rats were mounted in muscle baths in Krebs buffer.Isometric tension was recorded.Cumulative concentration-response curves were obtained for(+)-cis- dioxolane(cD),a nonspecific muscarinic agonist,at 10^(-8)- 10^(-4)mol/L,in the presence of tetrodotoxin(TTX,10^(-7)mol/L). Results were normalized to cross sectional area.A repeat concentration-response curve was obtained after incubation of the muscle for 90 min with antagonists for M1(pirenzepine), M2(methoctramine)and M3(darifenadn)muscarinic receptor subtypes.The sensitivity to PTX was tested by the ip injection of 100 mg/kg of PTX 5 d before the experiment.The antral circular smooth muscles were removed from PTX-treated and non-treated rats as strips and dispersed smooth muscle cells to identify whether PTX-linked pathway mediated the contractility to bethanechol. RESULTS:A dose-dependent contractile response observed with bethanechol,was not affected by TTx.The pretreatment of rats with pertussis toxin decreased the contraction induced by bethanechol.Lack of calcium as well as the presence of the L-type calcium channel blocker,nifedipine,also inhibited the cholinergic contraction,with a reduction in response from 2.5±0.4 g/mm^2 to 1.2±0.4 g/mm^2(P<0.05).The dose- response curves were shifted to the right by muscarinic antagonists in the following order of affinity:darifenacin (M_3)>methocramine(M_2)>pirenzepine(M_1). CONCLUSION:The muscarinic receptors-dependent contraction of rat antral circular smooth muscles was linked to the signal transduction pathway(s)involving pertussis-toxin sensitive GTP-binding proteins and to extracellular calcium via L-type voltage gated calcium channels.The presence of the residual contractile response after the treatment with nifedipine,suggests that an additional pathway could mediate the cholinergic contraction.The involvement of more than one muscarinic receptor(functionally predominant type 3 over type 2)also suggests more than one pathway mediating the cholinergic contraction in rat antrum.
基金supported by grants from the Shanghai Agriculture Applied Technology Development Program(2021-02-08-00-12-F00792)Projects of International Cooperation and Exchanges NSFC(3201101910).
文摘Tomato is one of the most essential vegetable crops worldwide,with the highest annual production rate of all agricultural staples(Kimura and Sinha,2008).Long-term domestication of tomatoes has led to the selection of favorable agronomic traits that often come at the expense of stress resistance.To identify potential genetic targets for improved stress tolerance,whole-genome sequencing(WGS)has been applied to wild and cultivated accessions.
文摘BACKGROUND Macrophages play a crucial role in the tumor microenvironment,displaying remarkable plasticity that allows them to either suppress or promote tumor progression.Their polarization into M1 or M2 phenotypes could have significant prognostic implications,and manipulating this polarization may offer a novel approach to controlling colorectal neoplasms.AIM To evaluate the infiltration rates of M1 and M2 macrophages in colorectal neoplasia,specifically comparing cases with and without metalloproteinase mutations.Additionally,it sought to explore potential prognostic factors as-sociated with the disease.
基金supported by the Macao Science and Technology Development Fund (FDCT 0148/2022/A3 and 0019/2024/RIA1)the National Natural Science Foundation of China (No. 81572979)
文摘Immunotherapy with interleukin-2(IL-2)in treating cancers is subject to several limitations such as systemic side effects and reduced efficacy against tumors with low immune cell infiltration despite its promise.To address these challenges,IL-2-So-Lipo,a novel liposomal formulation combining IL-2 with sorafenib derivative,was developed as an anti-angiogenic drug that inhibits the growth of new blood vessels which play crucial roles in tumor growth.Sorafenib derivatives could target at melanoma-specific receptors,further enhancing liposomal specificity at the tumor site.Our results demonstrated that the prepared IL-2-So-Lipo significantly enhanced anti-tumor activity compared to IL-2 or sorafenib monotherapies,as well as their combination.In a B16F10 melanoma model,IL-2-So-Lipo was found to significantly inhibit tumor progression(tumor volume of 108.01±62.99 mm^(3))compared to the control group(tumor volume of 1,397.13±75.55 mm^(3)),improving the therapeutic efficacy.This enhanced efficacy is attributed to the targeted delivery of IL-2 which promoted the infiltration and activation of cytotoxic T lymphocytes.Additionally,liposomal encapsulation of sorafenib derivatives enhanced its delivery efficiency,promoting tumor cell apoptosis and suppressing angiogenesis.Mechanistically,IL-2-So-Lipo could kill tumors by inducing a shift towards an anti-tumor immune response via facilitating the polarization of macrophages towards the M1 phenotype.Furthermore,IL-2-So-Lipo downregulated several key proteins in the MAPK signaling pathway,exerting a significant role in mediating tumor resistance to sorafenib.These findings underscore the potential of IL-2-So-Lipo as a promising strategy to improve the therapeutic efficacy of immunotherapy and targeted therapy in cancers.Moreover,the combination of IL-2 and sorafenib in a liposomal delivery system overcame the limitations of conventional IL-2 therapy,offering a synergistic approach to improve therapeutic outcomes for solid tumors.
基金supported in part by the National Key R&D Program(Grant No.2023YFA1606900)the National Natural Science Foundation of China(Grant No.12235003)。
文摘Chirality,a common phenomenon in nature,appears in structures ranging from galaxies and condensed matter to atomic nuclei.There is a persistent demand for new,high-precision methods to detect chiral structures,particularly at the microscale.Here,we propose a novel method,vortex Mössbauer spectroscopy,for probing chiral structures.By leveraging the orbital angular momentum carried by vortex beams,this approach achieves high precision in detecting chiral structures at scales ranging from nanometers to hundreds of nanometers.Our simulation shows the ratio of characteristic lines in the Mössbauer spectra of ^(57)Fe under vortex beams exhibits differences of up to four orders of magnitude for atomic structures with different arrangements.Additionally,simulations reveal the response of ^(229m)Th chiral structures to vortex beams with opposite angular momenta differs by approximately 49-fold.These significant spectral variations indicate that this new vortex Mössbauer probe holds great potential for investigating the microscopic chiral structures and interactions of matter.
基金Supported by the Clinical Research Plan of SHDC(No.SHDC2020CR6029).
文摘The phenotypes of the adenine-to-guanine transition at position 3243 of mitochondrial DNA(m.3243A>G)are highly variable,with different symptoms observed in different patients.These include mitochondrial encephalomyopathy,lactic acidosis,and stroke-like episodes(MELAS);maternally inherited diabetes and deafness syndrome(MIDD);other syndromic conditions;or non-syndromic mitochondrial disorders.Renal involvement associated with this mutation generally manifests as subnephrotic proteinuria,progressive deterioration of kidney function,and increased morbidity.The retinopathies linked to the m.3243A>G mutation have heterogeneous presentations,characterized by variable degrees of retinal pigment epithelium(RPE)atrophy and hyperpigmentation at the posterior pole.As a severe phenotype of the m.3243A>G mutation,MELAS combined with focal and segmental glomerulosclerosis(FSGS)is rare.We herein firstly reported in detail the ophthalmic manifestations of a patient with this condition.Additionally,we reviewed the literature on fundus,ophthalmic electrophysiology,and optical coherence tomography(OCT)findings related to the m.3243A>G mutation.
文摘Ensuring digital media security through robust image watermarking is essential to prevent unauthorized distribution,tampering,and copyright infringement.This study introduces a novel hybrid watermarking framework that integrates Discrete Wavelet Transform(DWT),Redundant Discrete Wavelet Transform(RDWT),and Möbius Transformations(MT),with optimization of transformation parameters achieved via a Genetic Algorithm(GA).By combining frequency and spatial domain techniques,the proposed method significantly enhances both the imper-ceptibility and robustness of watermark embedding.The approach leverages DWT and RDWT for multi-resolution decomposition,enabling watermark insertion in frequency subbands that balance visibility and resistance to attacks.RDWT,in particular,offers shift-invariance,which improves performance under geometric transformations.Möbius transformations are employed for spatial manipulation,providing conformal mapping and spatial dispersion that fortify watermark resilience against rotation,scaling,and translation.The GA dynamically optimizes the Möbius parameters,selecting configurations that maximize robustness metrics such as Peak Signal-to-Noise Ratio(PSNR),Structural Similarity Index Measure(SSIM),Bit Error Rate(BER),and Normalized Cross-Correlation(NCC).Extensive experiments conducted on medical and standard benchmark images demonstrate the efficacy of the proposed RDWT-MT scheme.Results show that PSNR exceeds 68 dB,SSIM approaches 1.0,and BER remains at 0.0000,indicating excellent imperceptibility and perfect watermark recovery.Moreover,the method exhibits exceptional resilience to a wide range of image processing attacks,including Gaussian noise,JPEG compression,histogram equalization,and cropping,achieving NCC values close to or equal to 1.0.Comparative evaluations with state-of-the-art watermarking techniques highlight the superiority of the proposed method in terms of robustness,fidelity,and computational efficiency.The hybrid framework ensures secure,adaptive watermark embedding,making it highly suitable for applications in digital rights management,content authentication,and medical image protection.The integration of spatial and frequency domain features with evolutionary optimization presents a promising direction for future watermarking technologies.
文摘Microglia are present throughout the central nervous system and are vital in neural repair,nutrition,phagocytosis,immunological regulation,and maintaining neuronal function.In a healthy spinal cord,microglia are accountable for immune surveillance,however,when a spinal cord injury occurs,the microenvironment drastically changes,leading to glial scars and failed axonal regeneration.In this context,microglia vary their gene and protein expression during activation,and proliferation in reaction to the injury,influencing injury responses both favorably and unfavorably.A dynamic and multifaceted injury response is mediated by microglia,which interact directly with neurons,astrocytes,oligodendrocytes,and neural stem/progenitor cells.Despite a clear understanding of their essential nature and origin,the mechanisms of action and new functions of microglia in spinal cord injury require extensive research.This review summarizes current studies on microglial genesis,physiological function,and pathological state,highlights their crucial roles in spinal cord injury,and proposes microglia as a therapeutic target.
文摘AIM: To help clarifying the possibility of connective-tissue diseases in men with penile or testicular prostheses. METHODS: Eight patients underwent inflatable penile prostheses and 15, testicular prostheses consented to the study. Their medical records were reviewed and a follow-up interview and physical and serological examinations were performed. RESULTS: In patients with penile prostheses, there was no abnormal antinuclear antibody (ANA) or IgM elevation. The serum levels of the rheumatoid factor (RF), C4, IgA and IgG were abnormal in one patient, and the levels of erythrocyte sedimentation rate (ESR) and C3, abnormal in two. Four had elevated IgE. In patients with testicular prostheses, there was no abnormal RF, ANA or IgM. The serum levels of ESR and IgA were abnormal in two, and three had abnormal C4, ten abnormal C3, and eleven decreased IgG. All had increased IgE. Men with penile prostheses had higher serum levels of IgG and IgM than those with testicular prostheses (P=0.001, P=0.016, respectively). The rates of abnormal values of IgE and IgG were higher in men with testicular prostheses than in men with penile prostheses (P=0.008, P=0.009, respectively). Physical examination was normal in all patients and nobody had documented symptoms pertinent to connective-tissue diseases. CONCLUSION: Our findings suggest that the risk of connective-tissue diseases is not higher in patients wearing prostheses as the ANA is negative and there is no apparent manifestation suggestive of connective-tissue diseases.