An analysis of a 3 dB lumped-element directional coupler (LEDC) based on arbitrary terminal impedance is described numerically. To solve the conflicted requirement for broad bandwidth and small size in LEDC, a new s...An analysis of a 3 dB lumped-element directional coupler (LEDC) based on arbitrary terminal impedance is described numerically. To solve the conflicted requirement for broad bandwidth and small size in LEDC, a new structure of coupler is introduced, which can significantly improve bandwidth and whose size is only 3 cm×4 cm on the conditions of the frequency domain of 410 MHz to 490 MHz. The measure results are in good agreement with simulations despite the unexpected resistor loss.展开更多
Josephson parametric amplifiers (JPAs) with nearly quantum-limited noise performance have become indispensable devices for the measurements of superconducting quantum information. We have developed an all-Nb lumped-el...Josephson parametric amplifiers (JPAs) with nearly quantum-limited noise performance have become indispensable devices for the measurements of superconducting quantum information. We have developed an all-Nb lumped-element flux-driven JPA operating in the three-wave mixing mode. Our Nb-based JPA comprises Nb/Al-AlOx/Nb Josephson junctions, a parallel-plate capacitor with SiO2 dielectric sandwiched between two Nb layers, a bottom coplanar waveguides layer, and a top Nb wiring layer. We experimentally demonstrate a 20 dB gain over a 190 MHz bandwidth, a mean 1 dB compression of -123 dBm, and near quantum-limited noise performance. This fabrication process can be further used to design impedance transformed parametric amplifiers for multiple-qubit readout.展开更多
The implementation and characteristics of a compact lumped-element three-order low pass filter are presented in this paper. The filter with 120 MHz cut off frequency, as well as more than 20 dB of the attenuation abov...The implementation and characteristics of a compact lumped-element three-order low pass filter are presented in this paper. The filter with 120 MHz cut off frequency, as well as more than 20 dB of the attenuation above 360 MHz frequency band is successfully manufactured in an LTCC substrate with 40 pm layer thickness. The overall size of the filter is 2.0 mm×1.2 mm×0.9 mm. A good coincidence between the measured results and the full-wave electromagnetic designed responses is observed.展开更多
A 3-D modeling of FEA (finite element analysis) design provides for high-speed synchronous with PMs (permanent magnets) applied in aerospace application will be examined under design considerations ofn = 12,000 rp...A 3-D modeling of FEA (finite element analysis) design provides for high-speed synchronous with PMs (permanent magnets) applied in aerospace application will be examined under design considerations ofn = 12,000 rpm, short-duty operation, and etc. for an ARWM (aerospace retraction wheel motor). First, lumped-elements will be fine-tuned following numerical method results is reported steady-state and transient solutions. Besides, the equations of thermal modeling such as Re, N,,, G,. and Pr numbers in order to calculate heat-transfer coefficient of convection on the rotor and stator surfaces in the air-gap have calculated. This section illustrates the temperature distribution of each point in a clear view. By CFD (fluid dynamic analysis) analysis, the fluid dynamics were modeled, pressure and velocity streamlines of cooling-flow have analyzed. An optimization algorithm was derived in order to have optimized number of water-channels as well. Second, calculation of nodal and tangential forces which deal with mechanical stresses of the ARWM have represented. The paper discusses an accurate magnetic-field analysis that addresses equivalent stress distribution in the magnetic core through using the transient FEA to estimate motor characteristics. The whole model shear and normal mechanical stresses and total deformation oftbe ARWM has been investigated by transient FEA. The end-winding effects were included by the authors.展开更多
文摘An analysis of a 3 dB lumped-element directional coupler (LEDC) based on arbitrary terminal impedance is described numerically. To solve the conflicted requirement for broad bandwidth and small size in LEDC, a new structure of coupler is introduced, which can significantly improve bandwidth and whose size is only 3 cm×4 cm on the conditions of the frequency domain of 410 MHz to 490 MHz. The measure results are in good agreement with simulations despite the unexpected resistor loss.
基金Project supported by the National Natural Science Foundation of China(Grant No.92065116)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA18000000)the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2020B0303030002).
文摘Josephson parametric amplifiers (JPAs) with nearly quantum-limited noise performance have become indispensable devices for the measurements of superconducting quantum information. We have developed an all-Nb lumped-element flux-driven JPA operating in the three-wave mixing mode. Our Nb-based JPA comprises Nb/Al-AlOx/Nb Josephson junctions, a parallel-plate capacitor with SiO2 dielectric sandwiched between two Nb layers, a bottom coplanar waveguides layer, and a top Nb wiring layer. We experimentally demonstrate a 20 dB gain over a 190 MHz bandwidth, a mean 1 dB compression of -123 dBm, and near quantum-limited noise performance. This fabrication process can be further used to design impedance transformed parametric amplifiers for multiple-qubit readout.
基金This work was supported by the National Nature Science Foundation of China under Grant No. 60425102.
文摘The implementation and characteristics of a compact lumped-element three-order low pass filter are presented in this paper. The filter with 120 MHz cut off frequency, as well as more than 20 dB of the attenuation above 360 MHz frequency band is successfully manufactured in an LTCC substrate with 40 pm layer thickness. The overall size of the filter is 2.0 mm×1.2 mm×0.9 mm. A good coincidence between the measured results and the full-wave electromagnetic designed responses is observed.
文摘A 3-D modeling of FEA (finite element analysis) design provides for high-speed synchronous with PMs (permanent magnets) applied in aerospace application will be examined under design considerations ofn = 12,000 rpm, short-duty operation, and etc. for an ARWM (aerospace retraction wheel motor). First, lumped-elements will be fine-tuned following numerical method results is reported steady-state and transient solutions. Besides, the equations of thermal modeling such as Re, N,,, G,. and Pr numbers in order to calculate heat-transfer coefficient of convection on the rotor and stator surfaces in the air-gap have calculated. This section illustrates the temperature distribution of each point in a clear view. By CFD (fluid dynamic analysis) analysis, the fluid dynamics were modeled, pressure and velocity streamlines of cooling-flow have analyzed. An optimization algorithm was derived in order to have optimized number of water-channels as well. Second, calculation of nodal and tangential forces which deal with mechanical stresses of the ARWM have represented. The paper discusses an accurate magnetic-field analysis that addresses equivalent stress distribution in the magnetic core through using the transient FEA to estimate motor characteristics. The whole model shear and normal mechanical stresses and total deformation oftbe ARWM has been investigated by transient FEA. The end-winding effects were included by the authors.