In this study,a series of Er^3+/Yb^3+co-doped Ca-Mg-Si glasses were prepared via the containerless processing.Phase composition and luminescent properties of the prepared materials were investigated through XRD and sp...In this study,a series of Er^3+/Yb^3+co-doped Ca-Mg-Si glasses were prepared via the containerless processing.Phase composition and luminescent properties of the prepared materials were investigated through XRD and spectrometry,and bioactivity,biocompatibility and cytotoxicity were evaluated.The XRD patterns indicated that akermanite(AKT)ceramic powders were completely transformed into the glassy phase(AKT-G,EYA)through the containerless processing,which exhibit upconversion luminescence,and the luminescence intensity increased with the increase of the doping amount of Er^3+ and Yb^3+.High amount of Yb^3+doping and existence of Ca^2+in glasses resulted in more intensive red-light emission.The SEM observation,combined with EDS analysis,and cell culture experiments showed that the as-prepared glasses were nontoxic,biocompatible and bioactive.All these results demonstrated that the containerless processing is a facile method for preparing homogeneous luminescent bioactive glasses.Furthermore,this luminescent Ca-Mg-Si glasses may be used as bone implant materials to study the in vivo distribution of degradation products of bone implants,which may be of great significance for the development and clinical application of new bone grafting materials.展开更多
文摘In this study,a series of Er^3+/Yb^3+co-doped Ca-Mg-Si glasses were prepared via the containerless processing.Phase composition and luminescent properties of the prepared materials were investigated through XRD and spectrometry,and bioactivity,biocompatibility and cytotoxicity were evaluated.The XRD patterns indicated that akermanite(AKT)ceramic powders were completely transformed into the glassy phase(AKT-G,EYA)through the containerless processing,which exhibit upconversion luminescence,and the luminescence intensity increased with the increase of the doping amount of Er^3+ and Yb^3+.High amount of Yb^3+doping and existence of Ca^2+in glasses resulted in more intensive red-light emission.The SEM observation,combined with EDS analysis,and cell culture experiments showed that the as-prepared glasses were nontoxic,biocompatible and bioactive.All these results demonstrated that the containerless processing is a facile method for preparing homogeneous luminescent bioactive glasses.Furthermore,this luminescent Ca-Mg-Si glasses may be used as bone implant materials to study the in vivo distribution of degradation products of bone implants,which may be of great significance for the development and clinical application of new bone grafting materials.