The inspection of engine lubricating oil can give an indication of the internal condition of an engine. By means of the Object-Oriented Programming (OOP), an expert system is developed in this paper to computerize the...The inspection of engine lubricating oil can give an indication of the internal condition of an engine. By means of the Object-Oriented Programming (OOP), an expert system is developed in this paper to computerize the inspection. The traditional components of an expert system, such us knowledge base, inference engine and user interface are reconstructed and integrated, based on the Microsoft Foundation Class (MFC) library. To testify the expert system, an inspection example is given at the end of this paper.展开更多
Enhancing the lubricating properties and antibacterial adhesion resistance of implantable medical materials is critical to prevent soft tissue injury during implantation and the formation of bacterial biofilms.Prior s...Enhancing the lubricating properties and antibacterial adhesion resistance of implantable medical materials is critical to prevent soft tissue injury during implantation and the formation of bacterial biofilms.Prior studies may have exhibited limitations in the preparation methodologies and long-term stability of coatings for implantable medical materials.In this study,we developed a multilayered hybrid hydrogel coating method based on the rate difference of polymerization initiation on the material surface.The acquired coating with persistent lubrication capability retained its functionality after 2×10^(4) cycles of friction and 21 days of PBS immersion.A quaternary ammonium salt coating with antibacterial properties was introduced to further functionalize the coating.Animal experiments demonstrated that this coating exhibited remarkable effects on delaying encrustation and bacterial colonization.These studies indicate that this simple method of introducing lubricating and antibacterial coatings on catheters is likely to enhance the biocompatibility of medical devices and has broad application prospects in this field of medical devices.展开更多
Solid lubricating coatings play a crucial role in preventing friction and wear failure of the hot-end sliding components in aviation engines.In this study,VAlN/Ag multi-layer coatings with excellent interfacial matchi...Solid lubricating coatings play a crucial role in preventing friction and wear failure of the hot-end sliding components in aviation engines.In this study,VAlN/Ag multi-layer coatings with excellent interfacial matching were fabricated using a hybrid magnetron sputtering technique.The type and energy of discharge plasmas were analyzed to comprehend their effects on depositing coatings.The coatings exhibit self-adaptive lubrication properties during the designed consecutive friction with stepwise heating from 25℃to 650℃.The microstructure evolution during early friction facilitates sufficient tribo-chemical reaction at 650℃,leading to the formation of a distinctive"ball-on-rail"structure that significantly reduces friction coefficient.Based on the first-principles calculations,it was found that the bond energy of Ag-O is lower than that of V-O in both AgVO_(3)and Ag_(3)VO_(4),which promotes slipping along the(110)crystal plane and contributes to exceptional tribological properties.The fatigue wear failure mechanism of hard coatings under the thermal-force coupling effects has been elucidated,alongside an exploration of consecutive tribology mechanism at atomic scales over a wide temperature range.展开更多
ZIF-8 is widely applied in lubrication,adsorption,and catalysis owing to its unique physicochemical properties.Previous experimental studies have demonstrated its feasibility as a lubricant additive.In the present wor...ZIF-8 is widely applied in lubrication,adsorption,and catalysis owing to its unique physicochemical properties.Previous experimental studies have demonstrated its feasibility as a lubricant additive.In the present work,the lubricating performance of ZIF-8 as an additive to lithiumbased grease is quantitatively and dynamically analyzed at the atomic scale using molecular dynamics simulations.Friction wear experiments are also conducted to elucidate the lubrication mechanism of ZIF-8.The simulation and experimental results indicate that the incorporation of ZIF-8 effectively enhances the antifriction and antiwear characteristics of lithium grease.The most significant improvement in the lubrication performance of the grease is obtained at a mass fraction of 2.0 wt.%ZIF-8,which reduces the friction factorof the grease by about 17.0%and the wear by40.0%.Furthermore,the molecular dynamics simulations reveal that ZIF-8 primarily functions as a ball bearing under low-load conditions.However,under high-load conditions,ZIF-8 undergoes significant deformation and primarily acts as a filler.This explains the experimentally observed significant reduction in friction coefficient after the addition of ZIF-8.The results of this study provide a theoretical foundation for the development of new environmentally friendly grease additives.展开更多
The contact characteristics of the rough tooth surface during the meshing process are significantly affected by the lubrication state.The coupling effect of tooth surface roughness and lubrication on meshing character...The contact characteristics of the rough tooth surface during the meshing process are significantly affected by the lubrication state.The coupling effect of tooth surface roughness and lubrication on meshing characteristics of planetary gear is studied.An improved three-dimensional(3 D)anisotropic tooth surface roughness fractal model is proposed based on the experimental parameters.Considering asperity contact and elastohydrodynamic lubrication(EHL),the contact load and flexibility deformation of the tooth surface are derived,and the deformation compatibility equation of the 3 D loaded tooth contact analysis(3 D-LTCA)method is improved.The asperity of the tooth surface changes the system from EHL to mixed lubrication and reduces the stiffness of the oil film.Compared with the sun planet gear,the asperity has a greater effect on the meshing characteristics of the ring-planet gear.Compared with the proposed method,the comprehensive stiffness obtained by the traditional calculation method considering the lubrication effect is smaller,especially for the ring-planet gear.Compared with roughness,speed and viscosity,the meshing characteristics of planetary gears are most sensitive to torque.展开更多
Roll coating is a vital industrial process used in printing,packaging,and polymer film production,where maintaining a uniform coating is critical for product quality and efficiency.This work models non-isothermal Carr...Roll coating is a vital industrial process used in printing,packaging,and polymer film production,where maintaining a uniform coating is critical for product quality and efficiency.This work models non-isothermal Carreau fluid flow between a rotating roll and a stationary wall under fixed boundary constraints to evaluate how non-Newtonian and thermal effects influence coating performance.The governing equations are transformed into non-dimensional form and simplified using lubrication approximation theory.Approximate analytical solutions are obtained via the perturbation technique,while numerical results are computed using both the finite difference method and the BVPMidrich technique.Furthermore,Response surface methodology(RSM)is employed for optimization and sensitivity analysis.Analytical and numerical results show strong agreement(<1%deviation).The model predicts coating thickness 0.55≤λ≤0.64,power input 1.05≤P_(w)≤1.99,and separation force 0.91≤S_(f)≤1.82 for 0.1≤We≤0.9 and 0.01≤F≤0.09.Increasing We enhances the coating thickness and power input but reduces velocity and separation force.The findings provide physical insight into elastic and viscous effects in roll coating,providing insight for optimizing coating uniformity,minimizing wear,improving industrial coating processes,and extending substrate lifespan.展开更多
In order to enhance the tribological properties of lubricating oil, suitable surfactants such as Tween-20, Tween-60, Span-20 and Sodium sodecylbenzenesulfonate were selected and lubricating oils containing CeO2 and Ti...In order to enhance the tribological properties of lubricating oil, suitable surfactants such as Tween-20, Tween-60, Span-20 and Sodium sodecylbenzenesulfonate were selected and lubricating oils containing CeO2 and TiO2 nanoparticles were prepared. The morphology and size of CeO2 and TiO2 nanoparticles were examined with a transmission electron microscope (TEM). The tribological properties of the oils were tested using an MRS-1J four-ball tribotester. The research results show that when the proportion by weight of CeO2 nanoparticles to TiO2 nanoparticles is 1:3, and the total weight fraction is 0.6%, the lubricating oil has optimal anti-wear and friction reducing properties. The addition of CeO2 nanoparticles reduces the required amount of TiO2 nanoparticles.展开更多
A specific revised HFCVD apparatus and a novel process combining HFCVD and polishing technique were presented to deposit the micro-and nano-crystalline multilayered ultra-smooth diamond(USCD) film on the interior-ho...A specific revised HFCVD apparatus and a novel process combining HFCVD and polishing technique were presented to deposit the micro-and nano-crystalline multilayered ultra-smooth diamond(USCD) film on the interior-hole surface of WC-Co drawing dies with aperture ranging from d1.0 mm to 60 mm.Characterization results indicate that the surface roughness values(Ra) in the entry zone,drawing zone and bearing zone of as-fabricated USCD coated drawing die were measured as low as 25.7,23.3 and 25.5 nm,respectively.Furthermore,the friction properties of USCD films were examined in both dry sliding and water-lubricating conditions,and the results show that the USCD film presents much superior friction properties.Its friction coefficients against ball-bearing steel,copper and silicon nitride balls(d4 mm),is always lower than that of microcrystalline diamond(MCD) or WC-Co sample,regardless of the lubricating condition.Meanwhile,it still presents competitive wear resistance with the MCD films.Finally,the working lifetime and performance of as-fabricated USCD coated drawing dies were examined under producing low-carbon steel pipes in dry-sliding and water-lubricating conditions.Under the water-lubricating drawing condition,its production significantly increases by about 20 times compared with the conventional WC-Co drawing dies.展开更多
A liquid lubricated head disk system is introduced. Subjected to high shear rate the rheology of the ultra thin film is different from that of the bulk continuum theory. The shear thinning effect is considered in set...A liquid lubricated head disk system is introduced. Subjected to high shear rate the rheology of the ultra thin film is different from that of the bulk continuum theory. The shear thinning effect is considered in setting up the mathematical model of the ultra thin film rheology. The Reynolds equation and the perturbation theory are employed to set up the static pressure distribution model and to deduce the dynamic pressure equation. The static and dynamic equations are solved by finite difference method. Based on the dynamic analysis the dynamic response of the slider is simulated and some valuable results are obtained about the static and dynamic characteristics of the liquid lubricated head disk systems.展开更多
This paper analyzed 11 lubricating oil 50-1-4Ф samples of different base oil content (standard oil) and 28 used oil samples by Fourier transform mid-infrared spectrometer (FTIR). First, the absorption peak of 1 4...This paper analyzed 11 lubricating oil 50-1-4Ф samples of different base oil content (standard oil) and 28 used oil samples by Fourier transform mid-infrared spectrometer (FTIR). First, the absorption peak of 1 465 cm 1 was selected as the characteristic peak for determining their kinematic viscosities. And then correlation of the kinematic viscosity and the absorbance at characteristic peaks of corresponding infrared spectrum of standard oil and used oil samples was analyzed, re- spectively, and two regression equations were proposed. Finally, the regression equation of standard oil was corrected through other 20 new oil samples. The results show that determining kinematic viscosity of new lubricating oil 50-1-4Ф and the used one by FTIR is feasible and reliable.展开更多
A series of aviation lubrication oil 50-1-4φ samples were prepared with different RP-3 content, and then these sam- ples were analyzed by Fourier transform mid-infrared spectrometer (FTIR). The infrared region of ...A series of aviation lubrication oil 50-1-4φ samples were prepared with different RP-3 content, and then these sam- ples were analyzed by Fourier transform mid-infrared spectrometer (FTIR). The infrared region of 805--755 cm-1 was selected as quantitative area for determining fuel pollution level of aviation lubrication oil. Finally, correlation of the testing peak area and the fuel pollution level of corresponding samples were analyzed, and the regression equation was proposed. The results show that determining jet fuel pollution level of aviation lubricating oil by FTIR is feasible and reliable.展开更多
Lubricant infused surface(LIS)always displays efficient anti-fouling performance.However,the inherent liquid properties of infused lubricants often lead to their rapid depletion in harsh conditions such as water flush...Lubricant infused surface(LIS)always displays efficient anti-fouling performance.However,the inherent liquid properties of infused lubricants often lead to their rapid depletion in harsh conditions such as water flushing,thereby reducing the antifouling capability of LIS.Herein,we reported a thermal-responsive lubricant infused surface(TLIS)based on composite phase change materials(CPCMs),exhibiting durable and efficient anti-scaling performance.During multicycle scalingdescaling test,the anti-scaling efficiencies of TLIS based on paraffin and vaseline can be increased to 91.4%±0.5% for first cycle and 85.3%±3.3% for sixth cycle.The paraffin acts as solid scaffolds for structural stability while the vaseline acts as liquid lubricants for anti-scaling enhancement.The universality of this surface can be revealed by suppressing various scales(e.g.,CaCO_(3),CaSO_(4),CaC_(2)O_(4),and MgCO_(3))and varying CPCMs types(e.g.,n-alkanes,ionic liquids,and fatty acids).Therefore,this study presents a promising strategy that enhances the durability of anti-scaling capability and potentially applys in heat exchange systems.展开更多
The aging behaviors and mechanism of fluoroelastomer(FKM)under lubricating oil(FKM-O)and air(FKM-A,as a comparison)at elevated temperatures were studied from both physical and chemical viewpoints.The obvious changes o...The aging behaviors and mechanism of fluoroelastomer(FKM)under lubricating oil(FKM-O)and air(FKM-A,as a comparison)at elevated temperatures were studied from both physical and chemical viewpoints.The obvious changes of mechanical and swelling performances indicate that the coupling effect of lubricating oil and temperature causes more serious deterioration of FKM-O compared to that of FKM-A.Meanwhile,much stronger temperature dependence of both bulk properties and micro-structures for FKM-O is found.Three-stage physical diffusion process is defined in FKM-O due to the competition between oil diffusion and elastic retraction of network.FTIR results reveal that the dehydrofluorination reaction causes the fracture of C-F bonds and produces a large number of C=C bonds in the backbone.The coupling effect of oil medium and high temperature could accelerate the scission of C=C bonds and generate a series of fragments with different molecular sizes.The TGA results,crosslinking density Ve,and glass transition temperature Tg derived from different measurements coherently demonstrate the network destruction in the initial stage and the simultaneous reconstruction occurring at the final stage.The newly formed local network induced by reconstruction cannot compensate the break of the original rubber network and thus only provides lower tensile strength and thermal stability.展开更多
The ceria (CeO2) nanoparticles and calcium carbonate (CaCO3) nanoparticles were chosen as additives of anti-wear and extreme pressure for lubricating oils, and the morphology and sizes of nanoparticles were examin...The ceria (CeO2) nanoparticles and calcium carbonate (CaCO3) nanoparticles were chosen as additives of anti-wear and extreme pressure for lubricating oils, and the morphology and sizes of nanoparticles were examined using Transmission Electron Microscope (TEM). The tribological performance of lubricating oils containing combined nanoparticles were determined by four-ball friction and wear tester, and the chemical composition of steel ball with worn surface were analyzed by X-ray Photoelectron Spectrurn(XPS). The results showed that the lubricating oils containing combined nanoparticles had good anti-wear and friction reducing effects, and the tribological properties were optimal when WCeO2+CaCO3=0.6%, WCeO2:WCaCO3=1:1. The extreme pressure value increased by 40.25%, the wear spot diameter reduced by 33.5%, and friction coefficient reduced by 32% compared with 40CD oil. The coordinated action of big and small particles made anti-wear and friction reducing effective. Tribological chemical reactions resulting from the friction surface formed metal calcium, metal cerium and oxides film, and they could fill up the concave surface and protect the worn surface.展开更多
The friction and wear characteristics of lauroyl glutamine, lauroyl glycine and lauroyl alanine, used as green additives in HVI 350 mineral lubricating oil, were evaluated on a four-ball tribotester. The morphologies ...The friction and wear characteristics of lauroyl glutamine, lauroyl glycine and lauroyl alanine, used as green additives in HVI 350 mineral lubricating oil, were evaluated on a four-ball tribotester. The morphologies and chemical species of the worn surfaces were analyzed by scanning electron microscope (SEM) and X-ray photoelectron spectroscope (XPS), respectively. The test results indicated that the three fatty acyl amino acids could effectively improve the anti-wear and friction-reducing abilities of the HVI 350 mineral oil. The improvement in anti-wear and friction-reducing abilities of the mineral oil by the related amino acids was mainly ascribed to the formation of a composite boundary lubrication film due to the adsorption of amino acids on the friction surfaces.展开更多
In this paper,an ab initio,local density functional(LDF)method was used to explore the relationship between the molecular properties of additives and the lubricating performance of aluminum rolling oil.The structural ...In this paper,an ab initio,local density functional(LDF)method was used to explore the relationship between the molecular properties of additives and the lubricating performance of aluminum rolling oil.The structural properties of butyl stearate,dodecanol,docosanol,and methyl dodecanoate were studied according to the density functional theory.The calculated data showed that the atoms in or around the functional groups might be likely the reacting sites.Because of the different functional groups and structure of ester and alcohol,two types of complex additives,dodecanol and butyl stearate,methyl dodecanoate and butyl stearate,respectively,were chosen for studying their tribological properties and performing aluminum cold rolling experiments.The test results agreed with the calculated results very well.The complex ester,viz.methyl dodecanoate and butyl stearate,had the best lubricating performance with a friction coefficient of 0.084 1 and a permissive-rolling thickness of 0.040 mm as compared with that of dodecanol-butyl stearate-base oil formulation.展开更多
The optical properties of four kinds of lubricating greases (urea, lithium, extreme pressure lithium, molybdenum disulfide lithium greases) with different NLGL (National Lubricant Grease Institute of America) numb...The optical properties of four kinds of lubricating greases (urea, lithium, extreme pressure lithium, molybdenum disulfide lithium greases) with different NLGL (National Lubricant Grease Institute of America) numbers were investigated using terahertz time-domain spectroscopy. Greases with different NLGL grades have unique spectral features in the terahertz range. Comparison of the experimental data with predictions based on Lorentz Lorenz theory exhibited that the refractive indices of each kind of lubricating grease were dependent on the their consistency. In addition, molybdenum disullfide (MoS2) aa a libricant additive shows strong absorption from 0.2 to 1.4 THz, leading to higher absorption of MoS2-1ithium grease than that of lithium grease.展开更多
The NiCrAlY-Mo-Ag composite coatings were prepared by atmospheric plasma spraying. The tribological properties of the composite coatings were investigated from 25 to 900 ℃ in details. The tribo-layer formed on the wo...The NiCrAlY-Mo-Ag composite coatings were prepared by atmospheric plasma spraying. The tribological properties of the composite coatings were investigated from 25 to 900 ℃ in details. The tribo-layer formed on the worn surface of the composite coatings and influenced the tribological properties at different temperatures. The addition of silver could effectively decrease the friction coefficient and wear rate of the coatings at the wide range of temperature. The rubbing process could form the nickel molybdate and promote the formation of silver molybdate within the worn surfaces at high temperature. The synergistic lubricating effects of nickel molybdate and silver molybdate are attributed to the improvement of the tribological properties of coatings at high temperature.展开更多
This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations The whole engine system is divided i...This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine's output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).展开更多
Nanosized copper powders were prepared by a gel-casting method using copper nitrate, acrylamide(AM) and N, N′-methylenebisacrylamide(MBAM) as the main raw materials. The as-prepared copper powders were characteri...Nanosized copper powders were prepared by a gel-casting method using copper nitrate, acrylamide(AM) and N, N′-methylenebisacrylamide(MBAM) as the main raw materials. The as-prepared copper powders were characterized by X-ray diffractometry and scanning electron microscopy, and then added into a 48# industrial white oil. Dispersion and wear properties of the compounded lubricating oil were tested. The results show that the copper powders prepared are of high purity, fine dispersibility with mean particle size of about 60 nm and with a narrow particle size distribution. The nanosized copper powders can be well dispersed in the lubricating oil. The addition of the copper powders obviously improves the anti-wear properties of the lubricating oil owing to their good self-repairing performance. Compared with 48# industrial white lubricating oil, the friction coefficient of GCr15 steel with the compounded oil containing 0.6% copper powders reduces by 0.07 and nearly no wear chippings are found in the scratches of the friction counter parts.展开更多
文摘The inspection of engine lubricating oil can give an indication of the internal condition of an engine. By means of the Object-Oriented Programming (OOP), an expert system is developed in this paper to computerize the inspection. The traditional components of an expert system, such us knowledge base, inference engine and user interface are reconstructed and integrated, based on the Microsoft Foundation Class (MFC) library. To testify the expert system, an inspection example is given at the end of this paper.
基金financially supported by the National Natural Science Foundation of China(Nos.52373296 and 52173287)。
文摘Enhancing the lubricating properties and antibacterial adhesion resistance of implantable medical materials is critical to prevent soft tissue injury during implantation and the formation of bacterial biofilms.Prior studies may have exhibited limitations in the preparation methodologies and long-term stability of coatings for implantable medical materials.In this study,we developed a multilayered hybrid hydrogel coating method based on the rate difference of polymerization initiation on the material surface.The acquired coating with persistent lubrication capability retained its functionality after 2×10^(4) cycles of friction and 21 days of PBS immersion.A quaternary ammonium salt coating with antibacterial properties was introduced to further functionalize the coating.Animal experiments demonstrated that this coating exhibited remarkable effects on delaying encrustation and bacterial colonization.These studies indicate that this simple method of introducing lubricating and antibacterial coatings on catheters is likely to enhance the biocompatibility of medical devices and has broad application prospects in this field of medical devices.
基金supported by the National Natural Science Foundation of China(No.52025014)Natural Science Foundation of Zhejiang Province(No.LQ23E010002)+1 种基金Natural Science Foundation of Ningbo(No.2023QL049)Major Special Project of Ningbo(No.2023Z022).
文摘Solid lubricating coatings play a crucial role in preventing friction and wear failure of the hot-end sliding components in aviation engines.In this study,VAlN/Ag multi-layer coatings with excellent interfacial matching were fabricated using a hybrid magnetron sputtering technique.The type and energy of discharge plasmas were analyzed to comprehend their effects on depositing coatings.The coatings exhibit self-adaptive lubrication properties during the designed consecutive friction with stepwise heating from 25℃to 650℃.The microstructure evolution during early friction facilitates sufficient tribo-chemical reaction at 650℃,leading to the formation of a distinctive"ball-on-rail"structure that significantly reduces friction coefficient.Based on the first-principles calculations,it was found that the bond energy of Ag-O is lower than that of V-O in both AgVO_(3)and Ag_(3)VO_(4),which promotes slipping along the(110)crystal plane and contributes to exceptional tribological properties.The fatigue wear failure mechanism of hard coatings under the thermal-force coupling effects has been elucidated,alongside an exploration of consecutive tribology mechanism at atomic scales over a wide temperature range.
基金supported by the National Natural Science Foundation of China(52275178)the Fujian Industry University Cooperation Project(2020H6025)。
文摘ZIF-8 is widely applied in lubrication,adsorption,and catalysis owing to its unique physicochemical properties.Previous experimental studies have demonstrated its feasibility as a lubricant additive.In the present work,the lubricating performance of ZIF-8 as an additive to lithiumbased grease is quantitatively and dynamically analyzed at the atomic scale using molecular dynamics simulations.Friction wear experiments are also conducted to elucidate the lubrication mechanism of ZIF-8.The simulation and experimental results indicate that the incorporation of ZIF-8 effectively enhances the antifriction and antiwear characteristics of lithium grease.The most significant improvement in the lubrication performance of the grease is obtained at a mass fraction of 2.0 wt.%ZIF-8,which reduces the friction factorof the grease by about 17.0%and the wear by40.0%.Furthermore,the molecular dynamics simulations reveal that ZIF-8 primarily functions as a ball bearing under low-load conditions.However,under high-load conditions,ZIF-8 undergoes significant deformation and primarily acts as a filler.This explains the experimentally observed significant reduction in friction coefficient after the addition of ZIF-8.The results of this study provide a theoretical foundation for the development of new environmentally friendly grease additives.
基金Project(2024A1515240020)supported by the Guangdong Basic and Applied Basic Research Foundation,China。
文摘The contact characteristics of the rough tooth surface during the meshing process are significantly affected by the lubrication state.The coupling effect of tooth surface roughness and lubrication on meshing characteristics of planetary gear is studied.An improved three-dimensional(3 D)anisotropic tooth surface roughness fractal model is proposed based on the experimental parameters.Considering asperity contact and elastohydrodynamic lubrication(EHL),the contact load and flexibility deformation of the tooth surface are derived,and the deformation compatibility equation of the 3 D loaded tooth contact analysis(3 D-LTCA)method is improved.The asperity of the tooth surface changes the system from EHL to mixed lubrication and reduces the stiffness of the oil film.Compared with the sun planet gear,the asperity has a greater effect on the meshing characteristics of the ring-planet gear.Compared with the proposed method,the comprehensive stiffness obtained by the traditional calculation method considering the lubrication effect is smaller,especially for the ring-planet gear.Compared with roughness,speed and viscosity,the meshing characteristics of planetary gears are most sensitive to torque.
基金supported by the Talent Project of Tianchi Young-Doctoral Program in Xinjiang Uygur Autonomous Region of China(No.51052401510)Natural Science Foundation General Project(Grant Number 2025D01C36)of the Xinjiang Uyghur Autonomous Region of China+1 种基金This study received financial support from the National Natural Science Foundation of Xinjiang Province(Grant Nos.2022TSYCTD0019 and 2022D01D32)the China Scholarship Council(CSC)(Grant No.2021SLJ009915).
文摘Roll coating is a vital industrial process used in printing,packaging,and polymer film production,where maintaining a uniform coating is critical for product quality and efficiency.This work models non-isothermal Carreau fluid flow between a rotating roll and a stationary wall under fixed boundary constraints to evaluate how non-Newtonian and thermal effects influence coating performance.The governing equations are transformed into non-dimensional form and simplified using lubrication approximation theory.Approximate analytical solutions are obtained via the perturbation technique,while numerical results are computed using both the finite difference method and the BVPMidrich technique.Furthermore,Response surface methodology(RSM)is employed for optimization and sensitivity analysis.Analytical and numerical results show strong agreement(<1%deviation).The model predicts coating thickness 0.55≤λ≤0.64,power input 1.05≤P_(w)≤1.99,and separation force 0.91≤S_(f)≤1.82 for 0.1≤We≤0.9 and 0.01≤F≤0.09.Increasing We enhances the coating thickness and power input but reduces velocity and separation force.The findings provide physical insight into elastic and viscous effects in roll coating,providing insight for optimizing coating uniformity,minimizing wear,improving industrial coating processes,and extending substrate lifespan.
基金Supported by the Shanghai Municipal Education Commission(06FZ008)Shanghai Municipal Education Commission Key Disciplines(J50603)
文摘In order to enhance the tribological properties of lubricating oil, suitable surfactants such as Tween-20, Tween-60, Span-20 and Sodium sodecylbenzenesulfonate were selected and lubricating oils containing CeO2 and TiO2 nanoparticles were prepared. The morphology and size of CeO2 and TiO2 nanoparticles were examined with a transmission electron microscope (TEM). The tribological properties of the oils were tested using an MRS-1J four-ball tribotester. The research results show that when the proportion by weight of CeO2 nanoparticles to TiO2 nanoparticles is 1:3, and the total weight fraction is 0.6%, the lubricating oil has optimal anti-wear and friction reducing properties. The addition of CeO2 nanoparticles reduces the required amount of TiO2 nanoparticles.
基金Project(51005154) supported by the National Natural Science Foundation of ChinaProject(12CG11) supported by the Chenguang Program of Shanghai Municipal Education Commission,ChinaProject(201104271) supported by the China Postdoctoral Science Foundation Special Funded Project
文摘A specific revised HFCVD apparatus and a novel process combining HFCVD and polishing technique were presented to deposit the micro-and nano-crystalline multilayered ultra-smooth diamond(USCD) film on the interior-hole surface of WC-Co drawing dies with aperture ranging from d1.0 mm to 60 mm.Characterization results indicate that the surface roughness values(Ra) in the entry zone,drawing zone and bearing zone of as-fabricated USCD coated drawing die were measured as low as 25.7,23.3 and 25.5 nm,respectively.Furthermore,the friction properties of USCD films were examined in both dry sliding and water-lubricating conditions,and the results show that the USCD film presents much superior friction properties.Its friction coefficients against ball-bearing steel,copper and silicon nitride balls(d4 mm),is always lower than that of microcrystalline diamond(MCD) or WC-Co sample,regardless of the lubricating condition.Meanwhile,it still presents competitive wear resistance with the MCD films.Finally,the working lifetime and performance of as-fabricated USCD coated drawing dies were examined under producing low-carbon steel pipes in dry-sliding and water-lubricating conditions.Under the water-lubricating drawing condition,its production significantly increases by about 20 times compared with the conventional WC-Co drawing dies.
文摘A liquid lubricated head disk system is introduced. Subjected to high shear rate the rheology of the ultra thin film is different from that of the bulk continuum theory. The shear thinning effect is considered in setting up the mathematical model of the ultra thin film rheology. The Reynolds equation and the perturbation theory are employed to set up the static pressure distribution model and to deduce the dynamic pressure equation. The static and dynamic equations are solved by finite difference method. Based on the dynamic analysis the dynamic response of the slider is simulated and some valuable results are obtained about the static and dynamic characteristics of the liquid lubricated head disk systems.
文摘This paper analyzed 11 lubricating oil 50-1-4Ф samples of different base oil content (standard oil) and 28 used oil samples by Fourier transform mid-infrared spectrometer (FTIR). First, the absorption peak of 1 465 cm 1 was selected as the characteristic peak for determining their kinematic viscosities. And then correlation of the kinematic viscosity and the absorbance at characteristic peaks of corresponding infrared spectrum of standard oil and used oil samples was analyzed, re- spectively, and two regression equations were proposed. Finally, the regression equation of standard oil was corrected through other 20 new oil samples. The results show that determining kinematic viscosity of new lubricating oil 50-1-4Ф and the used one by FTIR is feasible and reliable.
文摘A series of aviation lubrication oil 50-1-4φ samples were prepared with different RP-3 content, and then these sam- ples were analyzed by Fourier transform mid-infrared spectrometer (FTIR). The infrared region of 805--755 cm-1 was selected as quantitative area for determining fuel pollution level of aviation lubrication oil. Finally, correlation of the testing peak area and the fuel pollution level of corresponding samples were analyzed, and the regression equation was proposed. The results show that determining jet fuel pollution level of aviation lubricating oil by FTIR is feasible and reliable.
基金supported by the Beijing Natural Science Foundation(No.JQ23008)the National Natural Science Foundation of China(Nos.22275203 and 22035008)Beijing Outstanding Young Scientist Program(No.JWZQ20240102014).
文摘Lubricant infused surface(LIS)always displays efficient anti-fouling performance.However,the inherent liquid properties of infused lubricants often lead to their rapid depletion in harsh conditions such as water flushing,thereby reducing the antifouling capability of LIS.Herein,we reported a thermal-responsive lubricant infused surface(TLIS)based on composite phase change materials(CPCMs),exhibiting durable and efficient anti-scaling performance.During multicycle scalingdescaling test,the anti-scaling efficiencies of TLIS based on paraffin and vaseline can be increased to 91.4%±0.5% for first cycle and 85.3%±3.3% for sixth cycle.The paraffin acts as solid scaffolds for structural stability while the vaseline acts as liquid lubricants for anti-scaling enhancement.The universality of this surface can be revealed by suppressing various scales(e.g.,CaCO_(3),CaSO_(4),CaC_(2)O_(4),and MgCO_(3))and varying CPCMs types(e.g.,n-alkanes,ionic liquids,and fatty acids).Therefore,this study presents a promising strategy that enhances the durability of anti-scaling capability and potentially applys in heat exchange systems.
基金This work was financially supported by the Joint Foundation from Ministry of Education and Advanced Research of Equipment(No.6141A02022201)the National Natural Science Foundation of China(Nos.U19A2096,51721091)Department of Science and Technology of Sichuan Province(No.2019YFH0027).
文摘The aging behaviors and mechanism of fluoroelastomer(FKM)under lubricating oil(FKM-O)and air(FKM-A,as a comparison)at elevated temperatures were studied from both physical and chemical viewpoints.The obvious changes of mechanical and swelling performances indicate that the coupling effect of lubricating oil and temperature causes more serious deterioration of FKM-O compared to that of FKM-A.Meanwhile,much stronger temperature dependence of both bulk properties and micro-structures for FKM-O is found.Three-stage physical diffusion process is defined in FKM-O due to the competition between oil diffusion and elastic retraction of network.FTIR results reveal that the dehydrofluorination reaction causes the fracture of C-F bonds and produces a large number of C=C bonds in the backbone.The coupling effect of oil medium and high temperature could accelerate the scission of C=C bonds and generate a series of fragments with different molecular sizes.The TGA results,crosslinking density Ve,and glass transition temperature Tg derived from different measurements coherently demonstrate the network destruction in the initial stage and the simultaneous reconstruction occurring at the final stage.The newly formed local network induced by reconstruction cannot compensate the break of the original rubber network and thus only provides lower tensile strength and thermal stability.
基金the Shanghai Municipal Education Commission (06FZ008)Shanghai Municipal Education Commission Key Disciplines (J50603)
文摘The ceria (CeO2) nanoparticles and calcium carbonate (CaCO3) nanoparticles were chosen as additives of anti-wear and extreme pressure for lubricating oils, and the morphology and sizes of nanoparticles were examined using Transmission Electron Microscope (TEM). The tribological performance of lubricating oils containing combined nanoparticles were determined by four-ball friction and wear tester, and the chemical composition of steel ball with worn surface were analyzed by X-ray Photoelectron Spectrurn(XPS). The results showed that the lubricating oils containing combined nanoparticles had good anti-wear and friction reducing effects, and the tribological properties were optimal when WCeO2+CaCO3=0.6%, WCeO2:WCaCO3=1:1. The extreme pressure value increased by 40.25%, the wear spot diameter reduced by 33.5%, and friction coefficient reduced by 32% compared with 40CD oil. The coordinated action of big and small particles made anti-wear and friction reducing effective. Tribological chemical reactions resulting from the friction surface formed metal calcium, metal cerium and oxides film, and they could fill up the concave surface and protect the worn surface.
基金the financial support from National Natural Science Foundation of China(project No.50975282)Chongqing Science Foundation for Outstanding Youth(project No. CSTC2008,BA4037)
文摘The friction and wear characteristics of lauroyl glutamine, lauroyl glycine and lauroyl alanine, used as green additives in HVI 350 mineral lubricating oil, were evaluated on a four-ball tribotester. The morphologies and chemical species of the worn surfaces were analyzed by scanning electron microscope (SEM) and X-ray photoelectron spectroscope (XPS), respectively. The test results indicated that the three fatty acyl amino acids could effectively improve the anti-wear and friction-reducing abilities of the HVI 350 mineral oil. The improvement in anti-wear and friction-reducing abilities of the mineral oil by the related amino acids was mainly ascribed to the formation of a composite boundary lubrication film due to the adsorption of amino acids on the friction surfaces.
基金the financial support of this study provided by the National Natural Science Foundation of China(No.51274037)the Cooperation Program between USTB and SINOPEC(No.112116)
文摘In this paper,an ab initio,local density functional(LDF)method was used to explore the relationship between the molecular properties of additives and the lubricating performance of aluminum rolling oil.The structural properties of butyl stearate,dodecanol,docosanol,and methyl dodecanoate were studied according to the density functional theory.The calculated data showed that the atoms in or around the functional groups might be likely the reacting sites.Because of the different functional groups and structure of ester and alcohol,two types of complex additives,dodecanol and butyl stearate,methyl dodecanoate and butyl stearate,respectively,were chosen for studying their tribological properties and performing aluminum cold rolling experiments.The test results agreed with the calculated results very well.The complex ester,viz.methyl dodecanoate and butyl stearate,had the best lubricating performance with a friction coefficient of 0.084 1 and a permissive-rolling thickness of 0.040 mm as compared with that of dodecanol-butyl stearate-base oil formulation.
基金Project supported by the New Century Excellent Talents in University(Grant No.NCET-08-0841)the National Natural Science Foundation of China(Grant Nos.60778034,60877038,and10804077)+2 种基金the Beijng Natural Science Foundation(Grant No.4082026)the Research Fund for the Doctoral Program of Higher Education(Grant No.200804250006)the State KeyLaboratory of Heavy Oil Processing,China University of Petroleum(Grant No.2008-14)
文摘The optical properties of four kinds of lubricating greases (urea, lithium, extreme pressure lithium, molybdenum disulfide lithium greases) with different NLGL (National Lubricant Grease Institute of America) numbers were investigated using terahertz time-domain spectroscopy. Greases with different NLGL grades have unique spectral features in the terahertz range. Comparison of the experimental data with predictions based on Lorentz Lorenz theory exhibited that the refractive indices of each kind of lubricating grease were dependent on the their consistency. In addition, molybdenum disullfide (MoS2) aa a libricant additive shows strong absorption from 0.2 to 1.4 THz, leading to higher absorption of MoS2-1ithium grease than that of lithium grease.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51272207, 51471181 and 51575505)
文摘The NiCrAlY-Mo-Ag composite coatings were prepared by atmospheric plasma spraying. The tribological properties of the composite coatings were investigated from 25 to 900 ℃ in details. The tribo-layer formed on the worn surface of the composite coatings and influenced the tribological properties at different temperatures. The addition of silver could effectively decrease the friction coefficient and wear rate of the coatings at the wide range of temperature. The rubbing process could form the nickel molybdate and promote the formation of silver molybdate within the worn surfaces at high temperature. The synergistic lubricating effects of nickel molybdate and silver molybdate are attributed to the improvement of the tribological properties of coatings at high temperature.
文摘This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine's output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).
基金Project(51674095)supported by the National Natural Science Foundation of China
文摘Nanosized copper powders were prepared by a gel-casting method using copper nitrate, acrylamide(AM) and N, N′-methylenebisacrylamide(MBAM) as the main raw materials. The as-prepared copper powders were characterized by X-ray diffractometry and scanning electron microscopy, and then added into a 48# industrial white oil. Dispersion and wear properties of the compounded lubricating oil were tested. The results show that the copper powders prepared are of high purity, fine dispersibility with mean particle size of about 60 nm and with a narrow particle size distribution. The nanosized copper powders can be well dispersed in the lubricating oil. The addition of the copper powders obviously improves the anti-wear properties of the lubricating oil owing to their good self-repairing performance. Compared with 48# industrial white lubricating oil, the friction coefficient of GCr15 steel with the compounded oil containing 0.6% copper powders reduces by 0.07 and nearly no wear chippings are found in the scratches of the friction counter parts.