The quantum defect(QD)is an important issue that demands prompt attention in high-power fiber lasers.A large QD may aggravate the thermal load in the laser,which would impact the frequency,amplitude noise and mode sta...The quantum defect(QD)is an important issue that demands prompt attention in high-power fiber lasers.A large QD may aggravate the thermal load in the laser,which would impact the frequency,amplitude noise and mode stability,and threaten the security of the high-power laser system.Here,we propose and demonstrate a cladding-pumped Raman fiber laser(RFL)with QD of less than 1%.Using the Raman gain of the boson peak in a phosphorus-doped fiber to enable the cladding pump,the QD is reduced to as low as 0.78%with a 23.7 W output power.To our knowledge,this is the lowest QD ever reported in a cladding-pumped RFL.Furthermore,the output power can be scaled to 47.7 W with a QD of 1.29%.This work not only offers a preliminary platform for the realization of high-power low-QD fiber lasers,but also proves the great potential of low-QD fiber lasers in power scaling.展开更多
基金the National Natural Science Foundation of China(NSFC)(No.61905284)the National Postdoctoral Program for Innovative Talents(No.BX20190063)the Innovation Group of Hunan Province,China(No.2019JJ10005)。
文摘The quantum defect(QD)is an important issue that demands prompt attention in high-power fiber lasers.A large QD may aggravate the thermal load in the laser,which would impact the frequency,amplitude noise and mode stability,and threaten the security of the high-power laser system.Here,we propose and demonstrate a cladding-pumped Raman fiber laser(RFL)with QD of less than 1%.Using the Raman gain of the boson peak in a phosphorus-doped fiber to enable the cladding pump,the QD is reduced to as low as 0.78%with a 23.7 W output power.To our knowledge,this is the lowest QD ever reported in a cladding-pumped RFL.Furthermore,the output power can be scaled to 47.7 W with a QD of 1.29%.This work not only offers a preliminary platform for the realization of high-power low-QD fiber lasers,but also proves the great potential of low-QD fiber lasers in power scaling.