A new priori estimate of lower- solution is made for the following quasilinear elliptic equation : integral(G) {del v . A (x, u, del u) + vB (x, u, del u)} dx = 0, For All v is an element of (W) over circle(p)(1) (G)....A new priori estimate of lower- solution is made for the following quasilinear elliptic equation : integral(G) {del v . A (x, u, del u) + vB (x, u, del u)} dx = 0, For All v is an element of (W) over circle(p)(1) (G). The result presented in this paper enriches and extends the corresponding result of Gilbarg-Trudinger.展开更多
This paper presents new existence results for singular discrete boundary value problems. In particular our nonlinearity may be singular in its dependent variable and is allowed to change sign.
In this paper, we establish the existence of upper and lower solutions for a periodic boundary value problems (PBVP for short) of impulsive differential equations. which guarantees the existence of at least one soluti...In this paper, we establish the existence of upper and lower solutions for a periodic boundary value problems (PBVP for short) of impulsive differential equations. which guarantees the existence of at least one solution for the problem. As an application, these results are applied to PBVP of ODE and some examples are given to illustrate our results.展开更多
In this paper, estimations of the lower solution bounds for the discrete algebraic Lyapunov Equation (the DALE) are addressed. By utilizing linear algebraic techniques, several new lower solution bounds of the DALE ar...In this paper, estimations of the lower solution bounds for the discrete algebraic Lyapunov Equation (the DALE) are addressed. By utilizing linear algebraic techniques, several new lower solution bounds of the DALE are presented. We also propose numerical algorithms to develop sharper solution bounds. The obtained bounds can give a supplement to those appeared in the literature. 展开更多
In this work,we demonstrate that the existence of an Z-shaped connected component within the set of positive solutions for the one-dimensional prescribed mean curvature equation in Minkowski space■with boundary condi...In this work,we demonstrate that the existence of an Z-shaped connected component within the set of positive solutions for the one-dimensional prescribed mean curvature equation in Minkowski space■with boundary conditions having parameter in two cases f(O)=0 and f(0)>0 by using upper and lower solution method,where λ>0 is a parameter,f∈C^(2)([0,∞),R)is monotonically increasing and lim_(μ→1)^(f(u)/1-u=0,h∈C^(1)([0,1],(0,∞))is a nonincreasing function and h(t)>1.展开更多
A new upper and lower solution theory is presented for the second order problem (G'(y))'+ f(t, y) = 0 on finite and infinite intervals. The theory on finite intervals is based on a Leray-Schauder alternative,...A new upper and lower solution theory is presented for the second order problem (G'(y))'+ f(t, y) = 0 on finite and infinite intervals. The theory on finite intervals is based on a Leray-Schauder alternative, where as the theory on infinite intervals is based on results on the finite interval and a diagonalization process.展开更多
This paper is concerned with a third-order nonlinear separated boundary value problem. By the Leray-Schauder degree theory and the method of upper and lower solutions, we obtain the existence of at least three solutio...This paper is concerned with a third-order nonlinear separated boundary value problem. By the Leray-Schauder degree theory and the method of upper and lower solutions, we obtain the existence of at least three solutions to the problem.展开更多
In this paper,we deal with a class of boundary value problem.We give the existence of solution under the assumption that there exist lower and upper solutions to the problem.Our result extends and complements the rele...In this paper,we deal with a class of boundary value problem.We give the existence of solution under the assumption that there exist lower and upper solutions to the problem.Our result extends and complements the relevant ones which were obtained by many authors previously.展开更多
The existence of solutions for singular nonlinear two point boundary value problems subject to Sturm Liouville boundary conditions with p Laplacian operators is studied by the method of upper and lower solution...The existence of solutions for singular nonlinear two point boundary value problems subject to Sturm Liouville boundary conditions with p Laplacian operators is studied by the method of upper and lower solutions. The proof is based on an application of Schauder’s fixed point theorem to a modified problem whose solutions are that of the original one. At the same time, Arzela Ascoli theorem is used to prove that the defined operator N is a compact map.展开更多
This paper is concerned with a class of degenerate and nondegenerate stable diffusion models.By using the upper and lower solution method and Schauder fixed point principle,the author studies the existence of positive...This paper is concerned with a class of degenerate and nondegenerate stable diffusion models.By using the upper and lower solution method and Schauder fixed point principle,the author studies the existence of positive solutions for these stable_diffusion models under some conditions.展开更多
In this article, the existence and uniqueness of positive solution for a class of nonlinear fractional differential equations is proved by constructing the upper and lower control functions of the nonlinear term witho...In this article, the existence and uniqueness of positive solution for a class of nonlinear fractional differential equations is proved by constructing the upper and lower control functions of the nonlinear term without any monotone requirement. Our main method to the problem is the method of upper and lower solutions and Schauder fixed point theorem. Finally, we give an example to illuminate our results.展开更多
The purpose of this paper is to investigate the stability and asymptotic behavior of the time-dependent solutions to a linear parabolic equation with nonlinear boundary condition in relation to their corresponding ste...The purpose of this paper is to investigate the stability and asymptotic behavior of the time-dependent solutions to a linear parabolic equation with nonlinear boundary condition in relation to their corresponding steady state solutions. Then, the above results are extended to a semilinear parabolic equation with nonlinear boundary condition by analyzing the corresponding eigenvalue problem and using the method of upper and lower solutions.展开更多
In this paper, we consider the existence of multiple positive solutions of discrete boundary value problem. The theory of fixed point index is used here to derive the existence theorem.
The singularly perturbed initial value problem for a nonlinear singular equation is considered. By using a simple and special method the asymptotic behavior of solution is studied.
In this paper,using the existence and comparison result for the quasi-monotone increasing system developed by C V Pao,the upper and lower solutions principle and an iterative method,we investigate the existence of the...In this paper,using the existence and comparison result for the quasi-monotone increasing system developed by C V Pao,the upper and lower solutions principle and an iterative method,we investigate the existence of the positive solutions of the Volterra-Lotka cooperating model.展开更多
Battery safety is influenced by various factors,with thermal runaway being one of the most significant concerns.While most studies have concentrated on developing one-time,self-activating mechanism for thermal protect...Battery safety is influenced by various factors,with thermal runaway being one of the most significant concerns.While most studies have concentrated on developing one-time,self-activating mechanism for thermal protection,such as temperature-responsive electrodes,and thermal-shutdown separators,these methods only provide irreversible protection.Recently,reversible temperature-sensitive electrolytes have emerged as promising alternatives,offering both thermo-reversibility and self-protective properties.However,further research is crucial to fully understand these thermal-shutdown electrolytes.In this study,we propose lower critical solution temperature(LCST)phase behavior poly(benzyl methacrylate)/imidazolium-based ionic liquid mixtures to prepare temperature-sensitive electrolytes that provide reversible thermal shutdown protection of batteries.This electrolyte features an appropriate protection temperature(~105℃)and responds quickly within a 1 min at 105℃,causing cells to hardly discharge as the voltage suddenly drops to 3.38 V,and providing efficient thermal shutdown protection within 30 min.Upon cooling back to room temperature,the battery regains its original performance.Additionally,the electrolyte exhibits excellent cycling stability with the capacity retention of the battery is 91.6%after 500 cycles.This work provides a viable solution for preventing batteries from thermal runaway triggered by overheating.展开更多
In this paper, by the method of upper and lower solutions, we establish the existence of the non-trivial nonnegative periodic solutions for a class of degenerate diffusion system arising from dynamics of biological gr...In this paper, by the method of upper and lower solutions, we establish the existence of the non-trivial nonnegative periodic solutions for a class of degenerate diffusion system arising from dynamics of biological groups.展开更多
Making use of upper and lower solutions and analytical method, the author studies theexistence of positive solution for the singular equation x + f(t, z) = 0 satisfying nonlinear boundary conditions: x (0) = 0, h(x (1...Making use of upper and lower solutions and analytical method, the author studies theexistence of positive solution for the singular equation x + f(t, z) = 0 satisfying nonlinear boundary conditions: x (0) = 0, h(x (1), x’ (1)) = 0, g (z (0), x’(0)) = 0, and x (1) = 0,which extends the result of J. V. Baxley.展开更多
In this paper, we show that the method of monotone iterative technique is valid to obtain two monotone sequences that converge uniformly to extremal solutions to second order periodic boundary value problems and perio...In this paper, we show that the method of monotone iterative technique is valid to obtain two monotone sequences that converge uniformly to extremal solutions to second order periodic boundary value problems and periodic solutions of functional difference equations. We obtain some new results under the lower solution α and upper solutionβ with α≤β展开更多
文摘A new priori estimate of lower- solution is made for the following quasilinear elliptic equation : integral(G) {del v . A (x, u, del u) + vB (x, u, del u)} dx = 0, For All v is an element of (W) over circle(p)(1) (G). The result presented in this paper enriches and extends the corresponding result of Gilbarg-Trudinger.
文摘This paper presents new existence results for singular discrete boundary value problems. In particular our nonlinearity may be singular in its dependent variable and is allowed to change sign.
文摘In this paper, we establish the existence of upper and lower solutions for a periodic boundary value problems (PBVP for short) of impulsive differential equations. which guarantees the existence of at least one solution for the problem. As an application, these results are applied to PBVP of ODE and some examples are given to illustrate our results.
文摘In this paper, estimations of the lower solution bounds for the discrete algebraic Lyapunov Equation (the DALE) are addressed. By utilizing linear algebraic techniques, several new lower solution bounds of the DALE are presented. We also propose numerical algorithms to develop sharper solution bounds. The obtained bounds can give a supplement to those appeared in the literature.
基金Supported by the National Natural Science Foundation of China(12361040)。
文摘In this work,we demonstrate that the existence of an Z-shaped connected component within the set of positive solutions for the one-dimensional prescribed mean curvature equation in Minkowski space■with boundary conditions having parameter in two cases f(O)=0 and f(0)>0 by using upper and lower solution method,where λ>0 is a parameter,f∈C^(2)([0,∞),R)is monotonically increasing and lim_(μ→1)^(f(u)/1-u=0,h∈C^(1)([0,1],(0,∞))is a nonincreasing function and h(t)>1.
基金Supported by Grant No.201/01/1451 of the Grant Agency of Czech Republicthe Council of Czech Government J14/98:153100011
文摘A new upper and lower solution theory is presented for the second order problem (G'(y))'+ f(t, y) = 0 on finite and infinite intervals. The theory on finite intervals is based on a Leray-Schauder alternative, where as the theory on infinite intervals is based on results on the finite interval and a diagonalization process.
基金supported by the National Natural Science Foundation of China (11071205)the NSF of Jiangsu Province (BK2008119)+1 种基金the NSF of the Education Department of Jiangsu Provincethe Innovation Project of Jiangsu Province Postgraduate Project
文摘This paper is concerned with a third-order nonlinear separated boundary value problem. By the Leray-Schauder degree theory and the method of upper and lower solutions, we obtain the existence of at least three solutions to the problem.
基金The work was supported by NNSF of China (No.10571021).
文摘In this paper,we deal with a class of boundary value problem.We give the existence of solution under the assumption that there exist lower and upper solutions to the problem.Our result extends and complements the relevant ones which were obtained by many authors previously.
文摘The existence of solutions for singular nonlinear two point boundary value problems subject to Sturm Liouville boundary conditions with p Laplacian operators is studied by the method of upper and lower solutions. The proof is based on an application of Schauder’s fixed point theorem to a modified problem whose solutions are that of the original one. At the same time, Arzela Ascoli theorem is used to prove that the defined operator N is a compact map.
文摘This paper is concerned with a class of degenerate and nondegenerate stable diffusion models.By using the upper and lower solution method and Schauder fixed point principle,the author studies the existence of positive solutions for these stable_diffusion models under some conditions.
基金supported by Science and Technology Project of Chongqing Municipal Education Committee (kJ110501) of ChinaNatural Science Foundation Project of CQ CSTC (cstc2012jjA20016) of ChinaNational Natural Science Foundation of China (11101298)
文摘In this article, the existence and uniqueness of positive solution for a class of nonlinear fractional differential equations is proved by constructing the upper and lower control functions of the nonlinear term without any monotone requirement. Our main method to the problem is the method of upper and lower solutions and Schauder fixed point theorem. Finally, we give an example to illuminate our results.
基金The project is supported by National Natural Science Foundation of China (10071026)
文摘The purpose of this paper is to investigate the stability and asymptotic behavior of the time-dependent solutions to a linear parabolic equation with nonlinear boundary condition in relation to their corresponding steady state solutions. Then, the above results are extended to a semilinear parabolic equation with nonlinear boundary condition by analyzing the corresponding eigenvalue problem and using the method of upper and lower solutions.
文摘In this paper, we consider the existence of multiple positive solutions of discrete boundary value problem. The theory of fixed point index is used here to derive the existence theorem.
基金Supported by Important Project of the National Natural Science Foundation of China( 90 2 1 1 0 0 4 ) andby the"Hundred Talents Project" of Chinese Academy of Science
文摘The singularly perturbed initial value problem for a nonlinear singular equation is considered. By using a simple and special method the asymptotic behavior of solution is studied.
文摘In this paper,using the existence and comparison result for the quasi-monotone increasing system developed by C V Pao,the upper and lower solutions principle and an iterative method,we investigate the existence of the positive solutions of the Volterra-Lotka cooperating model.
基金funded by the National Natural Science Foundation of China(no.22075155)the Zhejiang Provincial Natural Science Foundation of China(No.LY24B030002)+2 种基金Ningbo Natural Science Foundation(2023J089)the China Scholarship Council(CSC)the Ningbo Science and Technology Bureau(2024QL036).
文摘Battery safety is influenced by various factors,with thermal runaway being one of the most significant concerns.While most studies have concentrated on developing one-time,self-activating mechanism for thermal protection,such as temperature-responsive electrodes,and thermal-shutdown separators,these methods only provide irreversible protection.Recently,reversible temperature-sensitive electrolytes have emerged as promising alternatives,offering both thermo-reversibility and self-protective properties.However,further research is crucial to fully understand these thermal-shutdown electrolytes.In this study,we propose lower critical solution temperature(LCST)phase behavior poly(benzyl methacrylate)/imidazolium-based ionic liquid mixtures to prepare temperature-sensitive electrolytes that provide reversible thermal shutdown protection of batteries.This electrolyte features an appropriate protection temperature(~105℃)and responds quickly within a 1 min at 105℃,causing cells to hardly discharge as the voltage suddenly drops to 3.38 V,and providing efficient thermal shutdown protection within 30 min.Upon cooling back to room temperature,the battery regains its original performance.Additionally,the electrolyte exhibits excellent cycling stability with the capacity retention of the battery is 91.6%after 500 cycles.This work provides a viable solution for preventing batteries from thermal runaway triggered by overheating.
文摘In this paper, by the method of upper and lower solutions, we establish the existence of the non-trivial nonnegative periodic solutions for a class of degenerate diffusion system arising from dynamics of biological groups.
文摘Making use of upper and lower solutions and analytical method, the author studies theexistence of positive solution for the singular equation x + f(t, z) = 0 satisfying nonlinear boundary conditions: x (0) = 0, h(x (1), x’ (1)) = 0, g (z (0), x’(0)) = 0, and x (1) = 0,which extends the result of J. V. Baxley.
文摘In this paper, we show that the method of monotone iterative technique is valid to obtain two monotone sequences that converge uniformly to extremal solutions to second order periodic boundary value problems and periodic solutions of functional difference equations. We obtain some new results under the lower solution α and upper solutionβ with α≤β