This study developed a novel heterogeneous Vis-Photo+Fenton-like system by integrating visible-light-responsive Co_(3)O_(4)/TiO_(2) photocatalysis with peroxymonosulfate(PMS)activation for efficient atrazine(ATZ)degra...This study developed a novel heterogeneous Vis-Photo+Fenton-like system by integrating visible-light-responsive Co_(3)O_(4)/TiO_(2) photocatalysis with peroxymonosulfate(PMS)activation for efficient atrazine(ATZ)degradation.The synergistic process achieved complete ATZ removal within 60 min under near-neutral pH(6.9),outperform-ing individual Fenton-like(39%)and photocatalytic(24%)processes.Key factors influencing the degradation efficiency included light sources(UV>visible),pH(optimal at 6.9),catalyst dosage(0.01 g Co_(3)O_(4)/TiO_(2)),and PMS:ATZ molar ratio(1:2).The system exhibited a synergistic coefficient of 5.03(degradation)and 1.97(miner-alization),attributed to enhanced radical generation and accelerated Co^(3+)/Co^(2+)redox cycling through photoin-duced electron transfer.Intermediate analysis revealed dealkylation,dechlorination,and oxidation pathways,with reduced toxicity of by-products(e.g.,CEAT,CIAT)confirmed by ecotoxicity assessments.The mineralization efficiency(Vis-Photo+Fenton-like)reached 83.1%,significantly higher than that of standalone processes(Fenton-like:43.2%;photocatalysis:30.5%).The catalyst demonstrated excellent stability(nearly 90%recov-ery,<1μg/L Co leaching)and practical applicability.This study provides an efficient,sludge-free,and solar-compatible strategy for eliminating persistent herbicides in water treatment.展开更多
Since 1993, China has become a net importer of energy from a net exporter. The total energy con- sumption has been greater than the total supply, and the external dependence of the energy demand increases rapidly. Ch...Since 1993, China has become a net importer of energy from a net exporter. The total energy con- sumption has been greater than the total supply, and the external dependence of the energy demand increases rapidly. China' s crude oil import volume and imports amount reached 253.78 million tons and 196.664 billion US dollars in 2011, with a growth rate of 6 % and 45.3 %, respectively, year-on-year. The significant increase in demand for oil and the caused structural contradictions are increasingly becoming the greatest challenge for China' s energy security. The energy crisis has not only touched everyone' s nerves, but also sparked a strong desire to find alternative energy.展开更多
This paper analyzes the distribution characteristics of geomagnetic low-value displacement in Gansu and its adjacent areas from 1995 to 2003 on the basis of the data of the daily amplitude minimum value time of the ge...This paper analyzes the distribution characteristics of geomagnetic low-value displacement in Gansu and its adjacent areas from 1995 to 2003 on the basis of the data of the daily amplitude minimum value time of the geomagnetic vertical component. It is shown that in addition to the changing rules of geomagnetic low-value displacement itself, there is a better correlation between geomagnetic low-value displacement and the occurrence of moderately strong earthquakes. There appeared to be geomagnetic low-value displacement before the moderately strong earthquakes in Gansu in the 9 years from 1995 to 2003. This result indicates that geomagnetic low-value displacement is of instructive significance for earthquake prediction to some extents.展开更多
The removal of ammonia nitrogen(NH_(4)^(+)-N)and bacteria from aquaculture wastewater holds paramount ecological and production significance.In this study,Pt/RuO_(2)/g-C_(3)N_(4)photocatalysts were prepared by deposit...The removal of ammonia nitrogen(NH_(4)^(+)-N)and bacteria from aquaculture wastewater holds paramount ecological and production significance.In this study,Pt/RuO_(2)/g-C_(3)N_(4)photocatalysts were prepared by depositing Pt and RuO_(2)particles onto g-C_(3)N_(4).The physicochemical properties of photocatalysts were explored by X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM),X-ray diffraction(XRD),and UV–vis diffuse reflectance spectrometer(UV–vis DRS).The photocatalysts were then applied to the removal of both NH_(4)^(+)-N and bacteria from simulated mariculture wastewater.The results clarified that the removals of both NH_(4)^(+)-N and bacteria were in the sequence of g-C_(3)N_(4)<RuO_(2)/g-C_(3)N_(4)<Pt/g-C_(3)N_(4)<Pt/RuO_(2)/g-C_(3)N_(4).This magnificent photocatalytic ability of Pt/RuO_(2)/g-C_(3)N_(4)can be interpreted by the transfer of holes from g-C_(3)N_(4)to RuO_(2)to facilitate the in situ generation of HClO from Cl^(−)in wastewater,while Pt extracts photogenerated electrons for H_(2)formation to enhance the reaction.The removal of NH_(4)^(+)-N and disinfection effect were more pronounced in simulated seawater than in purewater.The removal efficiency ofNH_(4)^(+)-N increases with an increase in pH of wastewater,while the bactericidal effect was more significant under a lower pH in a pH range of 6–9.In actual seawater aquaculture wastewater,Pt/RuO_(2)/g-C_(3)N_(4)still exhibits effective removal efficiency of NH_(4)^(+)-N and bactericidal performance under sunlight.This study provides an alternative avenue for removement of NH_(4)^(+)-N and bacteria from saline waters under sunlight.展开更多
Using natural minerals to eliminate harmful Cr(Ⅵ)under sustainable sunshine has significant potential.Herein,Palygorskite nanorods were utilized as carriers for the in-situ synthesis of CaIn_(2)S_(4) photocatalysts t...Using natural minerals to eliminate harmful Cr(Ⅵ)under sustainable sunshine has significant potential.Herein,Palygorskite nanorods were utilized as carriers for the in-situ synthesis of CaIn_(2)S_(4) photocatalysts through a simple one-pot thermal process,enabling the efficient reduction of Cr(Ⅵ).With a Palygorskite to CaIn_(2)S_(4) mass ratio of 5%,the conversion rate of Cr(Ⅵ)reached 98%after 60min of visible-light exposure,with a remarkable reaction rate of 0.0633 min^(-1).The effective integration of CaIn_(2)S_(4) with Palygorskite led to a more uniform dispersion of CaIn_(2)S_(4),exposing more reactive sites.Moreover,the establishment of a heterojunction between CaIn_(2)S_(4) and Palygorskite facilitated the transport of photogenerated electrons from CaIn_(2)S_(4),enhancing the efficiency of charge separation.These factors contribute to the improved photocatalytic performance.Additionally,the developed composite photocatalysts demonstrated excellent stability under light exposure and could be reused efficiently.Trapping tests on active substances revealed that e-played key roles in the Cr(Ⅵ)reduction.This research suggests the potential of using natural minerals to fabricate composite photocatalysts capable of effectively removing pollutants from the environment using solar energy.展开更多
The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f...The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception.展开更多
A visible-light-enabled method for the synthesis ofα-azidoketones has been developed via oxo-azidation of alkenyl silanes with trimethylsilylazide and molecular oxygen under mild conditions.The reaction could be carr...A visible-light-enabled method for the synthesis ofα-azidoketones has been developed via oxo-azidation of alkenyl silanes with trimethylsilylazide and molecular oxygen under mild conditions.The reaction could be carried out in gram scale.Various radical sources,including trifluoromethyl radical,thiocyanate radical,bromide radical,chlorine radical could partici-pate effectively instead of azide radical in the reaction.展开更多
The process of disposing of expanded polystyrene (EPS) is by burning it in municipal incinerators. This process gives off EPS microplastics, which can find their way into water, food, blood, and major organ systems. Z...The process of disposing of expanded polystyrene (EPS) is by burning it in municipal incinerators. This process gives off EPS microplastics, which can find their way into water, food, blood, and major organ systems. Zophobas morio larvae are capable of consuming and breaking down EPS within their digestive tracts by minimizing the spread of microplastics. Studies of the consumption of EPS by Z. morio larvae are typically conducted under white or no visible light treatments. This study tested whether the color of visible light influenced the consumption rate of EPS by Z. morio larvae. If Z. morio larvae consume EPS under visible light, then visible light will influence the amount of EPS consumed. If results suggest that the consumption rate is influenced by visible light colors, then Z. morio larvae could be a solution for recycling EPS. This study’s procedure placed Z. morio larvae into 25 jars under one of six visible light treatments of red, yellow, green, blue, white, and no visible light. Each jar contained a pre-weighed block of EPS and six Z. morio larvae. After two weeks, the Z. morio larvae were removed from the jars, and the difference between each pre-weighed EPS block and the weight of the same partially consumed block was recorded in three trials. The data indicates that green and blue visible light treatments resulted in the greatest amount of EPS consumed by Z. morio larvae while the red and yellow had the least amount of EPS consumed by the Z. morio larvae. In conclusion, results indicate that green and blue visible light, compared to the no visible light treatment, could be used to influence the Z. morio larvae to consume more EPS. Green and blue visible light and Z. morio larvae could make the recycling process of EPS more environmentally friendly when used in households or by local environmental organizations.展开更多
Regulating the photo-response region of iron metal-organic frameworks(Fe-MOFs)is a viable strategy for enhancing their practical application in the visible-light driven photo-Fenton-like process.This study developed a...Regulating the photo-response region of iron metal-organic frameworks(Fe-MOFs)is a viable strategy for enhancing their practical application in the visible-light driven photo-Fenton-like process.This study developed a novel pyrazine-based Fe-MOFs(MIL-101(Fe)-Pz)by substituting the 1,4-dicarboxybenzene acid ligands in typical MIL-101(Fe)with 2,5-pyrazinedicarboxylic acid(PzDC),in which sodium acetate was used as coordinative modulator to control the crystal size(2–3μm).The incorporation of Fe-pyridine N coordination structures originated from PzDC ligands gave MIL-101(Fe)-Pz narrowed band gap(1.45 eV)than MIL-101(Fe)(2.54 eV)resulting in improved visible-light adsorption capacity(λ>420 nm),and also increased the proportion of Fe(Ⅱ)in the Fe-clusters.Thus MIL-101(Fe)-Pz exhibited a synergistic enhanced photo-Fenton-like catalytic performance under visible-light irradiation.The MIL-101(Fe)-Pz/H_(2)O_(2)/Vis system could degrade 99%of sulfamethoxazolewithin 30min,whichwas 10-fold faster than that of the pristine MIL-101(Fe),it also effectively removed other organic micropollutants with high durability and stability.Mechanistic analysis revealed that the PzDC ligands substitution decreased the band gap of MIL-101(Fe),giving MIL-101(Fe)-Pz appropriate band structure(-0.40∼1.05 V vs.NHE)which can cover several light-driven process for the generation of reactive oxygen species,including Fe(Ⅲ)reduction and H_(2)O_(2) activation for accelerating•OH generation,as well as oxygen reduction reaction for generating H_(2)O_(2),O_(2)^(•−) and ^(1)O_(2).This study highlights the role of pyridine-N containing ligands in regulating the band structure of Fe-MOFs,providing valuable guidance for the design of Fe-MOFs photocatalysts.展开更多
The world-class Jiaodong gold province in the North China Craton hosts over 5000 t of Au resource and is characterized by abundant visible gold mineralization.However,the critical processes controlling the formation o...The world-class Jiaodong gold province in the North China Craton hosts over 5000 t of Au resource and is characterized by abundant visible gold mineralization.However,the critical processes controlling the formation of visible gold in this province remain poorly understood.To solve this problem,integrated microtextural,trace elemental,and sulfur isotopic analyses of pyrite from the high-grade Linglong gold deposit in the Jiaodong gold province were conducted in this study.Two distinct pyrite types were identified within auriferous quartz-sulfide veins:(1)Py1 aggregates in quartz-pyrite veins(hydrothermal stageⅡ),and(2)euhedral to subhedral,coarse-grained Py2 crystals in quartz-polymetallic sulfide veins(hydrothermal stageⅢ).Microtextural and elemental analyses revealed that visible gold predominantly occurs as intergranular particles between primary pyrite crystals within Py1 aggregates.The Py1 exhibits complex microtextures with abundant mineral inclusions of polymetallic sulfides and has low concentrations of Au(median:0.032 ppm)with a narrowδ^(34)S range(4.86‰-6.75‰),indicative of rapid crystallization under unstable,disequilibrium conditions.By contrast,the Py2 is texturally homogeneous and contains higher Au concentrations(median:0.304 ppm)with progressively increasingδ^(34)S values(5.25‰-10.14‰)over time,suggesting slow crystal growth under more stable,near-equilibrium conditions.Based on the microtextural and geochemical information,it is proposed that fluid boiling occurred only during the hydrothermal stage Ⅱ,which resulted in the unstable physicochemical environment and rapid deposition of gold.During the boiling processes,gold colloids likely occurred and promoted the formation of visible gold.展开更多
The purpose of infrared and visible image fusion is to create a single image containing the texture details and significant object information of the source images,particularly in challenging environments.However,exis...The purpose of infrared and visible image fusion is to create a single image containing the texture details and significant object information of the source images,particularly in challenging environments.However,existing image fusion algorithms are generally suitable for normal scenes.In the hazy scene,a lot of texture information in the visible image is hidden,the results of existing methods are filled with infrared information,resulting in the lack of texture details and poor visual effect.To address the aforementioned difficulties,we propose a haze-free infrared and visible fusion method,termed HaIVFusion,which can eliminate the influence of haze and obtain richer texture information in the fused image.Specifically,we first design a scene information restoration network(SIRNet)to mine the masked texture information in visible images.Then,a denoising fusion network(DFNet)is designed to integrate the features extracted from infrared and visible images and remove the influence of residual noise as much as possible.In addition,we use color consistency loss to reduce the color distortion resulting from haze.Furthermore,we publish a dataset of hazy scenes for infrared and visible image fusion to promote research in extreme scenes.Extensive experiments show that HaIVFusion produces fused images with increased texture details and higher contrast in hazy scenes,and achieves better quantitative results,when compared to state-ofthe-art image fusion methods,even combined with state-of-the-art dehazing methods.展开更多
Video imagery enables both qualitative characterization and quantitative retrieval of low-visibility conditions.These phenomena exhibit complex nonlinear dependencies on atmospheric processes,particularly during moist...Video imagery enables both qualitative characterization and quantitative retrieval of low-visibility conditions.These phenomena exhibit complex nonlinear dependencies on atmospheric processes,particularly during moisture-driven weather events such as fog,rain,and snow.To address this challenge,we propose a dual-branch neural architecture that synergistically processes optical imagery and multi-source meteorological data(temperature,humidity,and wind speed).The framework employs a convolutional neural network(CNN)branch to extract visibility-related visual features from video imagery sequences,while a parallel artificial neural network(ANN)branch decodes nonlinear relationships among the meteorological factors.Cross-modal feature fusion is achieved through an adaptive weighting layer.To validate the framework,multimodal Backpropagation-VGG(BP-VGG)and Backpropagation-ResNet(BP-ResNet)models are developed and trained/tested using historical imagery and meteorological observations from Nanjing Lukou International Airport.The results demonstrate that the multimodal networks reduce retrieval errors by approximately 8%–10%compared to unimodal networks relying solely on imagery.Among the multimodal models,BP-ResNet exhibits the best performance with a mean absolute percentage error(MAPE)of 8.5%.Analysis of typical case studies reveals that visibility fluctuates rapidly while meteorological factors change gradually,highlighting the crucial role of high-frequency imaging data in intelligent visibility retrieval models.The superior performance of BP-ResNet over BP-VGG is attributed to its use of residual blocks,which enables BP-ResNet to excel in multimodal processing by effectively leveraging data complementarity for synergistic improvements.This study presents an end-to-end intelligent visibility inversion framework that directly retrieves visibility values,enhancing its applicability across industries.However,while this approach boosts accuracy and applicability,its performance in critical low-visibility scenarios remains suboptimal,necessitating further research into more advanced retrieval techniques—particularly under extreme visibility conditions.展开更多
The high band gap of zinc oxide(ZnO)has significantly limited its potential application for organic contaminant removal in photocatalysis.In this study,ZnO/halloysites(HNTs)composites(ZnO/HNTs)were prepared using a hi...The high band gap of zinc oxide(ZnO)has significantly limited its potential application for organic contaminant removal in photocatalysis.In this study,ZnO/halloysites(HNTs)composites(ZnO/HNTs)were prepared using a high-temperature calcination method to enhance the removal of tetracycline hydrochloride(TCH).The experimental results demonstrated that the band gap of ZnO/HNTs decreased to 3.12 eV,compared to 3.21 eV for pure ZnO.The observed removal rate(k_(obs))of TCH in the ZnO/HNTs/vis system was 1.90×10^(-2) min^(-1),significantly higher than the rates in the HNTs/vis(1.25×10^(-3)min^(-1))and ZnO/vis(1.13×10^(-2) min^(-1))systems.Additionally,ZnO/HNTs exhibited strong resistance to coexisting natural organic and inorganic matter,maintaining high pollutant removal efficiency in natural water samples.The ZnO/HNTs/vis system also effectively removed other common organic pollutants,such as ciprofloxacin and methylene blue.Cycle tests indicated that the ZnO/HNTs/vis system retained 65.57%of its original efficiency,demonstrating good reusability and versatility.Scavenging and electron paramagnetic resonance experiments identified that h+was the primary species in the ZnO/HNTs/vis system,with other species playing auxiliary roles in TCH degradation.This study provides valuable insights into the design of novel ZnO-based photocatalysts for the degradation of organic pollutants in water.展开更多
Urban combat environments pose complex and variable challenges for UAV path planning due to multidimensional factors,such as static and dynamic obstructions as well as risks of exposure to enemy detection,which threat...Urban combat environments pose complex and variable challenges for UAV path planning due to multidimensional factors,such as static and dynamic obstructions as well as risks of exposure to enemy detection,which threaten flight safety and mission success.Traditional path planning methods typically depend solely on the distribution of static obstacles to generate collision-free paths,without accounting for constraints imposed by enemy detection and strike capabilities.Such a simplified approach can yield safety-compromising routes in highly complex urban airspace.To address these limitations,this study proposes a multi-parameter path planning method based on reachable airspace visibility graphs,which integrates UAV performance constraints,environmental limitations,and exposure risks.An innovative heuristic algorithm is developed to balance operational safety and efficiency by both exposure risks and path length.In the case study set in a typical mixed-use urban area,analysis of airspace visibility graphs reveals significant variations in exposure risk at different regions and altitudes due to building encroachments.Path optimization results indicate that the method can effectively generate covert and efficient flight paths by dynamically adjusting the exposure index,which represents the likelihood of enemy detection,and the path length,which corresponds to mission execution time.展开更多
The goal of infrared and visible image fusion(IVIF)is to integrate the unique advantages of both modalities to achieve a more comprehensive understanding of a scene.However,existing methods struggle to effectively han...The goal of infrared and visible image fusion(IVIF)is to integrate the unique advantages of both modalities to achieve a more comprehensive understanding of a scene.However,existing methods struggle to effectively handle modal disparities,resulting in visual degradation of the details and prominent targets of the fused images.To address these challenges,we introduce Prompt Fusion,a prompt-based approach that harmoniously combines multi-modality images under the guidance of semantic prompts.Firstly,to better characterize the features of different modalities,a contourlet autoencoder is designed to separate and extract the high-/low-frequency components of different modalities,thereby improving the extraction of fine details and textures.We also introduce a prompt learning mechanism using positive and negative prompts,leveraging Vision-Language Models to improve the fusion model's understanding and identification of targets in multi-modality images,leading to improved performance in downstream tasks.Furthermore,we employ bi-level asymptotic convergence optimization.This approach simplifies the intricate non-singleton non-convex bi-level problem into a series of convergent and differentiable single optimization problems that can be effectively resolved through gradient descent.Our approach advances the state-of-the-art,delivering superior fusion quality and boosting the performance of related downstream tasks.Project page:https://github.com/hey-it-s-me/PromptFusion.展开更多
The natural visibility graph method has been widely used in physiological signal analysis,but it fails to accurately handle signals with data points below the baseline.Such signals are common across various physiologi...The natural visibility graph method has been widely used in physiological signal analysis,but it fails to accurately handle signals with data points below the baseline.Such signals are common across various physiological measurements,including electroencephalograph(EEG)and functional magnetic resonance imaging(fMRI),and are crucial for insights into physiological phenomena.This study introduces a novel method,the baseline perspective visibility graph(BPVG),which can analyze time series by accurately capturing connectivity across data points both above and below the baseline.We present the BPVG construction process and validate its performance using simulated signals.Results demonstrate that BPVG accurately translates periodic,random,and fractal signals into regular,random,and scale-free networks respectively,exhibiting diverse degree distribution traits.Furthermore,we apply BPVG to classify Alzheimer’s disease(AD)patients from healthy controls using EEG data and identify non-demented adults at varying dementia risk using resting-state fMRI(rs-fMRI)data.Utilizing degree distribution entropy derived from BPVG networks,our results exceed the best accuracy benchmark(77.01%)in EEG analysis,especially at channels F4(78.46%)and O1(81.54%).Additionally,our rs-fMRI analysis achieves a statistically significant classification accuracy of 76.74%.These findings highlight the effectiveness of BPVG in distinguishing various time series types and its practical utility in EEG and rs-fMRI analysis for early AD detection and dementia risk assessment.In conclusion,BPVG’s validation across both simulated and real data confirms its capability to capture comprehensive information from time series,irrespective of baseline constraints,providing a novel method for studying neural physiological signals.展开更多
Carbon dot(CD)is an edge-bound,nanometer-sized carbon material possessing unique optical and electronic properties,making it promising metal-free,environmentally benign.In this study,we identified a highly hydrophilic...Carbon dot(CD)is an edge-bound,nanometer-sized carbon material possessing unique optical and electronic properties,making it promising metal-free,environmentally benign.In this study,we identified a highly hydrophilic CD complexed with Fe(Ⅲ)via carboxyl groups to form CD-COOFeⅢ,which exhibited remarkably enhanced Fenton-like reaction performance boosted by visible light irradiation.CD-COOFeⅢenabled high activity in the visible region beyondλ>420 nm,and maintained stable oxidation efficiency in the presence of H_(2)O_(2)over at least ten cycles.The capacity of electrons transferred from photo-excited CD to reduce Fe(Ⅲ)was calculated to be 1.1 mmol/g of CD.Furthermore,the quantum yield(QY)of solarto-Fe(Ⅱ)conversion reached an impressive 87.7%.These findings not only suggest a viable strategy for efficient conversion of solar-to-chemical using a CD-COOFeⅢcomplex in visible light boosted Fenton-like oxidation reaction,but also provide insight for understanding the effect of nanosized artificial and/or natural carbon materials in iron recycling in a natural surface environment.展开更多
In this study,the visible-light photocatalytic reaction properties of perovskite catalysts was investigated with excellent visible-light sensitivity.Titanate-based and ferrite-based perovskites were introduced as ligh...In this study,the visible-light photocatalytic reaction properties of perovskite catalysts was investigated with excellent visible-light sensitivity.Titanate-based and ferrite-based perovskites were introduced as light-responsive catalysts.A novel ferrite-based perovskite composite,PrBiFeO_(3),was synthesized,which demonstrated significantly enhanced light absorption under both visible light and UV illumination.The composite was prepared according to a combined sol-gel and solvothermal method.The newly synthesized PrBiFeO_(3)exhibited excellent absorption capabilities for both UV and visible light,with a band gap energy of about 2.0 eV.These perovskites showed photocatalytic activity in the decomposition of methylene blue and formaldehyde under visible light LED lamp illumination.Notably,the ferrite-based perovskites,including PrFeO_(3),displayed better photocatalytic activity under visible light compared to the titanate-based perovskites.The novel PrBiFeO_(3)composite also produced hydrogen and oxygen through water splitting under artificial sunlight and liquid plasma discharging.The amount of hydrogen produced by photocatalytic water splitting in PrBiFeO_(3)under liquid plasma irradiation was approximately 50 times higher than that produced under artificial sunlight irradiation.展开更多
Perfluoroalkyl substances(PFASs)are typical persistent organic pollutants,and their removal is urgently required but challenging.Photocatalysis has shown potential in PFASs degradation due to the redox capabilities of...Perfluoroalkyl substances(PFASs)are typical persistent organic pollutants,and their removal is urgently required but challenging.Photocatalysis has shown potential in PFASs degradation due to the redox capabilities of photoinduced charge carriers in photocatalysts.Herein,hexagonal ZnIn_(2)S_(4)(ZIS)nanosheets were synthesized by a one-pot oil bath method and were well characterized by a series of techniques.In the degradation of sodium p-perfluorous nonenoxybenzenesulfonate(OBS),one kind of representative PFASs,the assynthesized ZIS showed activity superior to P25 TiO_(2) under both simulated sunlight and visible-light irradiation.The good photocatalytic performance was attributed to the enhanced light absorption and facilitated charge separation.The pH conditions were found crucial in the photocatalytic process by influencing the OBS adsorption on the ZIS surface.Photogenerated e−and h+were the main active species involved in OBS degradation in the ZIS system.This work confirmed the feasibility and could provide mechanistic insights into the degradation and defluorination of PFASs by visible-light photocatalysis.展开更多
基金supported by the Financial Supports of the National Natural Science Foundation of China(Nos.51508056,52370030 and 42007352)the Chongqing Postgraduate Joint Training Base Project(No.JDLHPYJD2022005)the special fund of Henan Key Labora-tory of Water Pollution Control and Rehabilitation Technology(No.CJSZ2024001).
文摘This study developed a novel heterogeneous Vis-Photo+Fenton-like system by integrating visible-light-responsive Co_(3)O_(4)/TiO_(2) photocatalysis with peroxymonosulfate(PMS)activation for efficient atrazine(ATZ)degradation.The synergistic process achieved complete ATZ removal within 60 min under near-neutral pH(6.9),outperform-ing individual Fenton-like(39%)and photocatalytic(24%)processes.Key factors influencing the degradation efficiency included light sources(UV>visible),pH(optimal at 6.9),catalyst dosage(0.01 g Co_(3)O_(4)/TiO_(2)),and PMS:ATZ molar ratio(1:2).The system exhibited a synergistic coefficient of 5.03(degradation)and 1.97(miner-alization),attributed to enhanced radical generation and accelerated Co^(3+)/Co^(2+)redox cycling through photoin-duced electron transfer.Intermediate analysis revealed dealkylation,dechlorination,and oxidation pathways,with reduced toxicity of by-products(e.g.,CEAT,CIAT)confirmed by ecotoxicity assessments.The mineralization efficiency(Vis-Photo+Fenton-like)reached 83.1%,significantly higher than that of standalone processes(Fenton-like:43.2%;photocatalysis:30.5%).The catalyst demonstrated excellent stability(nearly 90%recov-ery,<1μg/L Co leaching)and practical applicability.This study provides an efficient,sludge-free,and solar-compatible strategy for eliminating persistent herbicides in water treatment.
文摘Since 1993, China has become a net importer of energy from a net exporter. The total energy con- sumption has been greater than the total supply, and the external dependence of the energy demand increases rapidly. China' s crude oil import volume and imports amount reached 253.78 million tons and 196.664 billion US dollars in 2011, with a growth rate of 6 % and 45.3 %, respectively, year-on-year. The significant increase in demand for oil and the caused structural contradictions are increasingly becoming the greatest challenge for China' s energy security. The energy crisis has not only touched everyone' s nerves, but also sparked a strong desire to find alternative energy.
基金sponsored by the Natural Science Foundation of Gansu Province (3ZS061-A25-008),China
文摘This paper analyzes the distribution characteristics of geomagnetic low-value displacement in Gansu and its adjacent areas from 1995 to 2003 on the basis of the data of the daily amplitude minimum value time of the geomagnetic vertical component. It is shown that in addition to the changing rules of geomagnetic low-value displacement itself, there is a better correlation between geomagnetic low-value displacement and the occurrence of moderately strong earthquakes. There appeared to be geomagnetic low-value displacement before the moderately strong earthquakes in Gansu in the 9 years from 1995 to 2003. This result indicates that geomagnetic low-value displacement is of instructive significance for earthquake prediction to some extents.
基金supported by the Science and Technology Planning Project of Fujian Province(No.2023Y4015)the Marine and Fishery Development Special Fund of Xiamen(No.23YYST064QCB36)the Natural Science Foundation of Fujian Province(No.2021J011210).
文摘The removal of ammonia nitrogen(NH_(4)^(+)-N)and bacteria from aquaculture wastewater holds paramount ecological and production significance.In this study,Pt/RuO_(2)/g-C_(3)N_(4)photocatalysts were prepared by depositing Pt and RuO_(2)particles onto g-C_(3)N_(4).The physicochemical properties of photocatalysts were explored by X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM),X-ray diffraction(XRD),and UV–vis diffuse reflectance spectrometer(UV–vis DRS).The photocatalysts were then applied to the removal of both NH_(4)^(+)-N and bacteria from simulated mariculture wastewater.The results clarified that the removals of both NH_(4)^(+)-N and bacteria were in the sequence of g-C_(3)N_(4)<RuO_(2)/g-C_(3)N_(4)<Pt/g-C_(3)N_(4)<Pt/RuO_(2)/g-C_(3)N_(4).This magnificent photocatalytic ability of Pt/RuO_(2)/g-C_(3)N_(4)can be interpreted by the transfer of holes from g-C_(3)N_(4)to RuO_(2)to facilitate the in situ generation of HClO from Cl^(−)in wastewater,while Pt extracts photogenerated electrons for H_(2)formation to enhance the reaction.The removal of NH_(4)^(+)-N and disinfection effect were more pronounced in simulated seawater than in purewater.The removal efficiency ofNH_(4)^(+)-N increases with an increase in pH of wastewater,while the bactericidal effect was more significant under a lower pH in a pH range of 6–9.In actual seawater aquaculture wastewater,Pt/RuO_(2)/g-C_(3)N_(4)still exhibits effective removal efficiency of NH_(4)^(+)-N and bactericidal performance under sunlight.This study provides an alternative avenue for removement of NH_(4)^(+)-N and bacteria from saline waters under sunlight.
基金supported by the National Natural Science Foundation of China(Nos.22206065 and 22109059)the Jinling Institute of Technology's Doctor Start-up Fund(No.jitb-202024)the Natural Science Foundation of Jiangsu Province(No.BK20221167).
文摘Using natural minerals to eliminate harmful Cr(Ⅵ)under sustainable sunshine has significant potential.Herein,Palygorskite nanorods were utilized as carriers for the in-situ synthesis of CaIn_(2)S_(4) photocatalysts through a simple one-pot thermal process,enabling the efficient reduction of Cr(Ⅵ).With a Palygorskite to CaIn_(2)S_(4) mass ratio of 5%,the conversion rate of Cr(Ⅵ)reached 98%after 60min of visible-light exposure,with a remarkable reaction rate of 0.0633 min^(-1).The effective integration of CaIn_(2)S_(4) with Palygorskite led to a more uniform dispersion of CaIn_(2)S_(4),exposing more reactive sites.Moreover,the establishment of a heterojunction between CaIn_(2)S_(4) and Palygorskite facilitated the transport of photogenerated electrons from CaIn_(2)S_(4),enhancing the efficiency of charge separation.These factors contribute to the improved photocatalytic performance.Additionally,the developed composite photocatalysts demonstrated excellent stability under light exposure and could be reused efficiently.Trapping tests on active substances revealed that e-played key roles in the Cr(Ⅵ)reduction.This research suggests the potential of using natural minerals to fabricate composite photocatalysts capable of effectively removing pollutants from the environment using solar energy.
基金Supported by the Henan Province Key Research and Development Project(231111211300)the Central Government of Henan Province Guides Local Science and Technology Development Funds(Z20231811005)+2 种基金Henan Province Key Research and Development Project(231111110100)Henan Provincial Outstanding Foreign Scientist Studio(GZS2024006)Henan Provincial Joint Fund for Scientific and Technological Research and Development Plan(Application and Overcoming Technical Barriers)(242103810028)。
文摘The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception.
文摘A visible-light-enabled method for the synthesis ofα-azidoketones has been developed via oxo-azidation of alkenyl silanes with trimethylsilylazide and molecular oxygen under mild conditions.The reaction could be carried out in gram scale.Various radical sources,including trifluoromethyl radical,thiocyanate radical,bromide radical,chlorine radical could partici-pate effectively instead of azide radical in the reaction.
文摘The process of disposing of expanded polystyrene (EPS) is by burning it in municipal incinerators. This process gives off EPS microplastics, which can find their way into water, food, blood, and major organ systems. Zophobas morio larvae are capable of consuming and breaking down EPS within their digestive tracts by minimizing the spread of microplastics. Studies of the consumption of EPS by Z. morio larvae are typically conducted under white or no visible light treatments. This study tested whether the color of visible light influenced the consumption rate of EPS by Z. morio larvae. If Z. morio larvae consume EPS under visible light, then visible light will influence the amount of EPS consumed. If results suggest that the consumption rate is influenced by visible light colors, then Z. morio larvae could be a solution for recycling EPS. This study’s procedure placed Z. morio larvae into 25 jars under one of six visible light treatments of red, yellow, green, blue, white, and no visible light. Each jar contained a pre-weighed block of EPS and six Z. morio larvae. After two weeks, the Z. morio larvae were removed from the jars, and the difference between each pre-weighed EPS block and the weight of the same partially consumed block was recorded in three trials. The data indicates that green and blue visible light treatments resulted in the greatest amount of EPS consumed by Z. morio larvae while the red and yellow had the least amount of EPS consumed by the Z. morio larvae. In conclusion, results indicate that green and blue visible light, compared to the no visible light treatment, could be used to influence the Z. morio larvae to consume more EPS. Green and blue visible light and Z. morio larvae could make the recycling process of EPS more environmentally friendly when used in households or by local environmental organizations.
基金supported by the National Natural Science Foundation of China(Nos.52300120 and 52070144)the Fundamental Research Funds for the Central Universities(No.22120240465).
文摘Regulating the photo-response region of iron metal-organic frameworks(Fe-MOFs)is a viable strategy for enhancing their practical application in the visible-light driven photo-Fenton-like process.This study developed a novel pyrazine-based Fe-MOFs(MIL-101(Fe)-Pz)by substituting the 1,4-dicarboxybenzene acid ligands in typical MIL-101(Fe)with 2,5-pyrazinedicarboxylic acid(PzDC),in which sodium acetate was used as coordinative modulator to control the crystal size(2–3μm).The incorporation of Fe-pyridine N coordination structures originated from PzDC ligands gave MIL-101(Fe)-Pz narrowed band gap(1.45 eV)than MIL-101(Fe)(2.54 eV)resulting in improved visible-light adsorption capacity(λ>420 nm),and also increased the proportion of Fe(Ⅱ)in the Fe-clusters.Thus MIL-101(Fe)-Pz exhibited a synergistic enhanced photo-Fenton-like catalytic performance under visible-light irradiation.The MIL-101(Fe)-Pz/H_(2)O_(2)/Vis system could degrade 99%of sulfamethoxazolewithin 30min,whichwas 10-fold faster than that of the pristine MIL-101(Fe),it also effectively removed other organic micropollutants with high durability and stability.Mechanistic analysis revealed that the PzDC ligands substitution decreased the band gap of MIL-101(Fe),giving MIL-101(Fe)-Pz appropriate band structure(-0.40∼1.05 V vs.NHE)which can cover several light-driven process for the generation of reactive oxygen species,including Fe(Ⅲ)reduction and H_(2)O_(2) activation for accelerating•OH generation,as well as oxygen reduction reaction for generating H_(2)O_(2),O_(2)^(•−) and ^(1)O_(2).This study highlights the role of pyridine-N containing ligands in regulating the band structure of Fe-MOFs,providing valuable guidance for the design of Fe-MOFs photocatalysts.
基金supported by the National Natural Science Foundation of China(Grant Nos.42302106 and 42102089)National Foundation for Guiding Local Science and Technology Development(Guizhou[2024]043)Innovation and Development Fund of Science and Technology of Institute of Geochemistry,Chinese Academy of Sciences(Grant No.2025-1).
文摘The world-class Jiaodong gold province in the North China Craton hosts over 5000 t of Au resource and is characterized by abundant visible gold mineralization.However,the critical processes controlling the formation of visible gold in this province remain poorly understood.To solve this problem,integrated microtextural,trace elemental,and sulfur isotopic analyses of pyrite from the high-grade Linglong gold deposit in the Jiaodong gold province were conducted in this study.Two distinct pyrite types were identified within auriferous quartz-sulfide veins:(1)Py1 aggregates in quartz-pyrite veins(hydrothermal stageⅡ),and(2)euhedral to subhedral,coarse-grained Py2 crystals in quartz-polymetallic sulfide veins(hydrothermal stageⅢ).Microtextural and elemental analyses revealed that visible gold predominantly occurs as intergranular particles between primary pyrite crystals within Py1 aggregates.The Py1 exhibits complex microtextures with abundant mineral inclusions of polymetallic sulfides and has low concentrations of Au(median:0.032 ppm)with a narrowδ^(34)S range(4.86‰-6.75‰),indicative of rapid crystallization under unstable,disequilibrium conditions.By contrast,the Py2 is texturally homogeneous and contains higher Au concentrations(median:0.304 ppm)with progressively increasingδ^(34)S values(5.25‰-10.14‰)over time,suggesting slow crystal growth under more stable,near-equilibrium conditions.Based on the microtextural and geochemical information,it is proposed that fluid boiling occurred only during the hydrothermal stage Ⅱ,which resulted in the unstable physicochemical environment and rapid deposition of gold.During the boiling processes,gold colloids likely occurred and promoted the formation of visible gold.
基金supported by the Natural Science Foundation of Shandong Province,China(ZR2022MF237)the National Natural Science Foundation of China Youth Fund(62406155)the Major Innovation Project(2023JBZ02)of Qilu University of Technology(Shandong Academy of Sciences).
文摘The purpose of infrared and visible image fusion is to create a single image containing the texture details and significant object information of the source images,particularly in challenging environments.However,existing image fusion algorithms are generally suitable for normal scenes.In the hazy scene,a lot of texture information in the visible image is hidden,the results of existing methods are filled with infrared information,resulting in the lack of texture details and poor visual effect.To address the aforementioned difficulties,we propose a haze-free infrared and visible fusion method,termed HaIVFusion,which can eliminate the influence of haze and obtain richer texture information in the fused image.Specifically,we first design a scene information restoration network(SIRNet)to mine the masked texture information in visible images.Then,a denoising fusion network(DFNet)is designed to integrate the features extracted from infrared and visible images and remove the influence of residual noise as much as possible.In addition,we use color consistency loss to reduce the color distortion resulting from haze.Furthermore,we publish a dataset of hazy scenes for infrared and visible image fusion to promote research in extreme scenes.Extensive experiments show that HaIVFusion produces fused images with increased texture details and higher contrast in hazy scenes,and achieves better quantitative results,when compared to state-ofthe-art image fusion methods,even combined with state-of-the-art dehazing methods.
基金Foundation of Key Laboratory of Smart Earth(KF2023ZD03-02)China Meteorological Administration Innovation development project(CXFZ2025J116)+1 种基金National Natural Science Foundation of China(42205197)Basic Research Fund of CAMS(2022Y023,2022Y025)。
文摘Video imagery enables both qualitative characterization and quantitative retrieval of low-visibility conditions.These phenomena exhibit complex nonlinear dependencies on atmospheric processes,particularly during moisture-driven weather events such as fog,rain,and snow.To address this challenge,we propose a dual-branch neural architecture that synergistically processes optical imagery and multi-source meteorological data(temperature,humidity,and wind speed).The framework employs a convolutional neural network(CNN)branch to extract visibility-related visual features from video imagery sequences,while a parallel artificial neural network(ANN)branch decodes nonlinear relationships among the meteorological factors.Cross-modal feature fusion is achieved through an adaptive weighting layer.To validate the framework,multimodal Backpropagation-VGG(BP-VGG)and Backpropagation-ResNet(BP-ResNet)models are developed and trained/tested using historical imagery and meteorological observations from Nanjing Lukou International Airport.The results demonstrate that the multimodal networks reduce retrieval errors by approximately 8%–10%compared to unimodal networks relying solely on imagery.Among the multimodal models,BP-ResNet exhibits the best performance with a mean absolute percentage error(MAPE)of 8.5%.Analysis of typical case studies reveals that visibility fluctuates rapidly while meteorological factors change gradually,highlighting the crucial role of high-frequency imaging data in intelligent visibility retrieval models.The superior performance of BP-ResNet over BP-VGG is attributed to its use of residual blocks,which enables BP-ResNet to excel in multimodal processing by effectively leveraging data complementarity for synergistic improvements.This study presents an end-to-end intelligent visibility inversion framework that directly retrieves visibility values,enhancing its applicability across industries.However,while this approach boosts accuracy and applicability,its performance in critical low-visibility scenarios remains suboptimal,necessitating further research into more advanced retrieval techniques—particularly under extreme visibility conditions.
基金financially supported by the National Natural Science Foundation of China(Nos.52270149,51908528,2200013)Natural Science Foundation of Henan Province,China(No.242300421443)+1 种基金The Science and Technology Key Project of Henan Province,China(No.242102321073)Doctoral Fund Project of Henan University of Technology,China(Nos.2020BS005,2023BS004).
文摘The high band gap of zinc oxide(ZnO)has significantly limited its potential application for organic contaminant removal in photocatalysis.In this study,ZnO/halloysites(HNTs)composites(ZnO/HNTs)were prepared using a high-temperature calcination method to enhance the removal of tetracycline hydrochloride(TCH).The experimental results demonstrated that the band gap of ZnO/HNTs decreased to 3.12 eV,compared to 3.21 eV for pure ZnO.The observed removal rate(k_(obs))of TCH in the ZnO/HNTs/vis system was 1.90×10^(-2) min^(-1),significantly higher than the rates in the HNTs/vis(1.25×10^(-3)min^(-1))and ZnO/vis(1.13×10^(-2) min^(-1))systems.Additionally,ZnO/HNTs exhibited strong resistance to coexisting natural organic and inorganic matter,maintaining high pollutant removal efficiency in natural water samples.The ZnO/HNTs/vis system also effectively removed other common organic pollutants,such as ciprofloxacin and methylene blue.Cycle tests indicated that the ZnO/HNTs/vis system retained 65.57%of its original efficiency,demonstrating good reusability and versatility.Scavenging and electron paramagnetic resonance experiments identified that h+was the primary species in the ZnO/HNTs/vis system,with other species playing auxiliary roles in TCH degradation.This study provides valuable insights into the design of novel ZnO-based photocatalysts for the degradation of organic pollutants in water.
基金supported by the Ministry of Industry and Information Technology(No.23100002022102001)。
文摘Urban combat environments pose complex and variable challenges for UAV path planning due to multidimensional factors,such as static and dynamic obstructions as well as risks of exposure to enemy detection,which threaten flight safety and mission success.Traditional path planning methods typically depend solely on the distribution of static obstacles to generate collision-free paths,without accounting for constraints imposed by enemy detection and strike capabilities.Such a simplified approach can yield safety-compromising routes in highly complex urban airspace.To address these limitations,this study proposes a multi-parameter path planning method based on reachable airspace visibility graphs,which integrates UAV performance constraints,environmental limitations,and exposure risks.An innovative heuristic algorithm is developed to balance operational safety and efficiency by both exposure risks and path length.In the case study set in a typical mixed-use urban area,analysis of airspace visibility graphs reveals significant variations in exposure risk at different regions and altitudes due to building encroachments.Path optimization results indicate that the method can effectively generate covert and efficient flight paths by dynamically adjusting the exposure index,which represents the likelihood of enemy detection,and the path length,which corresponds to mission execution time.
基金partially supported by China Postdoctoral Science Foundation(2023M730741)the National Natural Science Foundation of China(U22B2052,52102432,52202452,62372080,62302078)
文摘The goal of infrared and visible image fusion(IVIF)is to integrate the unique advantages of both modalities to achieve a more comprehensive understanding of a scene.However,existing methods struggle to effectively handle modal disparities,resulting in visual degradation of the details and prominent targets of the fused images.To address these challenges,we introduce Prompt Fusion,a prompt-based approach that harmoniously combines multi-modality images under the guidance of semantic prompts.Firstly,to better characterize the features of different modalities,a contourlet autoencoder is designed to separate and extract the high-/low-frequency components of different modalities,thereby improving the extraction of fine details and textures.We also introduce a prompt learning mechanism using positive and negative prompts,leveraging Vision-Language Models to improve the fusion model's understanding and identification of targets in multi-modality images,leading to improved performance in downstream tasks.Furthermore,we employ bi-level asymptotic convergence optimization.This approach simplifies the intricate non-singleton non-convex bi-level problem into a series of convergent and differentiable single optimization problems that can be effectively resolved through gradient descent.Our approach advances the state-of-the-art,delivering superior fusion quality and boosting the performance of related downstream tasks.Project page:https://github.com/hey-it-s-me/PromptFusion.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFF1204803)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20190736)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.NJ2024029)the National Natural Science Foundation of China(Grant Nos.81701346 and 62201265).
文摘The natural visibility graph method has been widely used in physiological signal analysis,but it fails to accurately handle signals with data points below the baseline.Such signals are common across various physiological measurements,including electroencephalograph(EEG)and functional magnetic resonance imaging(fMRI),and are crucial for insights into physiological phenomena.This study introduces a novel method,the baseline perspective visibility graph(BPVG),which can analyze time series by accurately capturing connectivity across data points both above and below the baseline.We present the BPVG construction process and validate its performance using simulated signals.Results demonstrate that BPVG accurately translates periodic,random,and fractal signals into regular,random,and scale-free networks respectively,exhibiting diverse degree distribution traits.Furthermore,we apply BPVG to classify Alzheimer’s disease(AD)patients from healthy controls using EEG data and identify non-demented adults at varying dementia risk using resting-state fMRI(rs-fMRI)data.Utilizing degree distribution entropy derived from BPVG networks,our results exceed the best accuracy benchmark(77.01%)in EEG analysis,especially at channels F4(78.46%)and O1(81.54%).Additionally,our rs-fMRI analysis achieves a statistically significant classification accuracy of 76.74%.These findings highlight the effectiveness of BPVG in distinguishing various time series types and its practical utility in EEG and rs-fMRI analysis for early AD detection and dementia risk assessment.In conclusion,BPVG’s validation across both simulated and real data confirms its capability to capture comprehensive information from time series,irrespective of baseline constraints,providing a novel method for studying neural physiological signals.
基金the support of Natural Science Foundation of China(No.22276123)the Shanghai Engineering Research Center of Water Environment Simulation and Ecological Restoration(No.WESER-202201)the Postdoctoral Fellowship Program of CPSF(No.GZB20240456)。
文摘Carbon dot(CD)is an edge-bound,nanometer-sized carbon material possessing unique optical and electronic properties,making it promising metal-free,environmentally benign.In this study,we identified a highly hydrophilic CD complexed with Fe(Ⅲ)via carboxyl groups to form CD-COOFeⅢ,which exhibited remarkably enhanced Fenton-like reaction performance boosted by visible light irradiation.CD-COOFeⅢenabled high activity in the visible region beyondλ>420 nm,and maintained stable oxidation efficiency in the presence of H_(2)O_(2)over at least ten cycles.The capacity of electrons transferred from photo-excited CD to reduce Fe(Ⅲ)was calculated to be 1.1 mmol/g of CD.Furthermore,the quantum yield(QY)of solarto-Fe(Ⅱ)conversion reached an impressive 87.7%.These findings not only suggest a viable strategy for efficient conversion of solar-to-chemical using a CD-COOFeⅢcomplex in visible light boosted Fenton-like oxidation reaction,but also provide insight for understanding the effect of nanosized artificial and/or natural carbon materials in iron recycling in a natural surface environment.
基金supported by Basic Science Research Program through the National Research Program Foundation of Korea(NRF)funded by the Ministry of Education(No.NRF-2022R111A3069740).
文摘In this study,the visible-light photocatalytic reaction properties of perovskite catalysts was investigated with excellent visible-light sensitivity.Titanate-based and ferrite-based perovskites were introduced as light-responsive catalysts.A novel ferrite-based perovskite composite,PrBiFeO_(3),was synthesized,which demonstrated significantly enhanced light absorption under both visible light and UV illumination.The composite was prepared according to a combined sol-gel and solvothermal method.The newly synthesized PrBiFeO_(3)exhibited excellent absorption capabilities for both UV and visible light,with a band gap energy of about 2.0 eV.These perovskites showed photocatalytic activity in the decomposition of methylene blue and formaldehyde under visible light LED lamp illumination.Notably,the ferrite-based perovskites,including PrFeO_(3),displayed better photocatalytic activity under visible light compared to the titanate-based perovskites.The novel PrBiFeO_(3)composite also produced hydrogen and oxygen through water splitting under artificial sunlight and liquid plasma discharging.The amount of hydrogen produced by photocatalytic water splitting in PrBiFeO_(3)under liquid plasma irradiation was approximately 50 times higher than that produced under artificial sunlight irradiation.
基金supported by the National Natural Science Foundation of China (Nos.22206113 and 22376124)the Outstanding Youth Science Fund (Overseas)of Shandong Provincial Natural Science Foundation (No.2022HWYQ-015)+2 种基金the Taishan Scholars Project Special Fund (No.tsqn202211039)the Guangdong Basic and Applied Basic Research Foundation (No.2021A1515111137)Qilu Youth Talent Program of Shandong University (No.61440082163171).
文摘Perfluoroalkyl substances(PFASs)are typical persistent organic pollutants,and their removal is urgently required but challenging.Photocatalysis has shown potential in PFASs degradation due to the redox capabilities of photoinduced charge carriers in photocatalysts.Herein,hexagonal ZnIn_(2)S_(4)(ZIS)nanosheets were synthesized by a one-pot oil bath method and were well characterized by a series of techniques.In the degradation of sodium p-perfluorous nonenoxybenzenesulfonate(OBS),one kind of representative PFASs,the assynthesized ZIS showed activity superior to P25 TiO_(2) under both simulated sunlight and visible-light irradiation.The good photocatalytic performance was attributed to the enhanced light absorption and facilitated charge separation.The pH conditions were found crucial in the photocatalytic process by influencing the OBS adsorption on the ZIS surface.Photogenerated e−and h+were the main active species involved in OBS degradation in the ZIS system.This work confirmed the feasibility and could provide mechanistic insights into the degradation and defluorination of PFASs by visible-light photocatalysis.