Lithium-ion batteries(LIBs),while dominant in energy storage due to high energy density and cycling stability,suffer from severe capacity decay,rate capability degradation,and lithium dendrite formation under low-temp...Lithium-ion batteries(LIBs),while dominant in energy storage due to high energy density and cycling stability,suffer from severe capacity decay,rate capability degradation,and lithium dendrite formation under low-temperature(LT)operation.Therefore,a more comprehensive and systematic understanding of LIB behavior at LT is urgently required.This review article comprehensively reviews recent advancements in electrolyte engineering strategies aimed at improving the low-temperature operational capabilities of LIBs.The study methodically examines critical performance-limiting mechanisms through fundamental analysis of four primary challenges:insufficient ionic conductivity under cryogenic conditions,kinetically hindered charge transfer processes,Li+transport limitations across the solidelectrolyte interphase(SEI),and uncontrolled lithium dendrite growth.The work elaborates on innovative optimization approaches encompassing lithium salt molecular design with tailored dissociation characteristics,solvent matrix optimization through dielectric constant and viscosity regulation,interfacial engineering additives for constructing low-impedance SEI layers,and gel-polymer composite electrolyte systems.Notably,particular emphasis is placed on emerging machine learning-guided electrolyte formulation strategies that enable high-throughput virtual screening of constituent combinations and prediction of structure-property relationships.These artificial intelligence-assisted rational design frameworks demonstrate significant potential for accelerating the development of next-generation LT electrolytes by establishing quantitative composition-performance correlations through advanced data-driven methodologies.展开更多
This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0...This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.1)Mo_(0.05)O_(3-δ)(B S CNM_(0.05)),Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.05)Mo_(0.1)O_(3-δ)(BSCNM_(0.1)),and Ba_(0.6)Sr_(0.4)Co_(0.85)Mo_(0.15)O_(3-δ)(BSCM)—with Mo doping contents of 5mol%,10mol%,and15mol%,respectively,were successfully prepared using the sol-gel method.The effects of Mo doping on the crystal structure,conductivity,thermal expansion coefficient,oxygen reduction reaction(ORR)activity,and electrochemical performance were systematically evaluated using X-ray diffraction analysis,thermally induced characterization,electrochemical impedance spectroscopy,and single-cell performance tests.The results revealed that Mo doping could improve the conductivity of the materials,suppress their thermal expansion effects,and significantly improve the electrochemical performance.Surface chemical state analysis using X-ray photoelectron spectroscopy revealed that 5mol%Mo doping could facilitate a high adsorbed oxygen concentration leading to enhanced ORR activity in the materials.Density functional theory calculations confirmed that Mo doping promoted the ORR activity in the materials.At an operating temperature of 600℃,the BSCNM_(0.05)cathode material exhibited significantly enhanced electrochemical impedance characteristics,with a reduced area specific resistance of 0.048Ω·cm~2,which was lower than that of the undoped BSCN matrix material by 32.39%.At the same operating temperature,an anode-supported single cell using a BSCNM_(0.05)cathode achieved a peak power density of 1477 mW·cm^(-2),which was 30.71%,56.30%,and 171.50%higher than those of BSCN,BSCNM_(0.1),and B SCM,respectively.The improved ORR activity and electrochemical performance of BSCNM_(0.05)indicate that it can be used as a cathode material in low-temperature solid oxide fuel cells.展开更多
Developing a high-efficiency catalyst with both superior low-temperature activity and good N_(2)selectivity is still challenging for the NH_(3)selective catalytic reduction(SCR)of NO_(x)from mobile sources.Herein,we d...Developing a high-efficiency catalyst with both superior low-temperature activity and good N_(2)selectivity is still challenging for the NH_(3)selective catalytic reduction(SCR)of NO_(x)from mobile sources.Herein,we demonstrate the improved low-temperature activity and N_(2)selectivity by regulating the redox and acidic properties of MnCe oxides supported on etched ZSM-5 supports.The etched ZSM-5 enables the highly dispersed state of MnCeOx species and strong interaction between Mn and Ce species,which promotes the reduction of CeO2,facilitates electron transfer from Mn to Ce,and generates more Mn^(4+)and Ce^(3+)species.The strong redox capacity contributes to forming the reactive nitrate species and-NH_(2)species from oxidative dehydrogenation of NH_(3).Moreover,the adsorbed NH_(3)and-NH_(2)species are the reactive intermediates that promote the formation of N_(2).This work demonstrates an effective strategy to enhance the low-temperature activity and N_(2)selectivity of SCR catalysts,contributing to the NO_(x)control for the low-temperature exhaust gas during the cold-start of diesel vehicles.展开更多
Based on the previous findings that the presence of hydroxyl groups on the outer surface is crucial for maintaining skeletal stability,we propose a strategy modified Cu/SAPO-34 using Pr ions in this study.Therefore,we...Based on the previous findings that the presence of hydroxyl groups on the outer surface is crucial for maintaining skeletal stability,we propose a strategy modified Cu/SAPO-34 using Pr ions in this study.Therefore,we conducted several measurements to investigate the effect of Pr ions on the lowtemperature hydrothermal stability of Cu/SAPO-34.We find that Pr exists only on the surface of Cu/SAPO-34 as ions and oxides,with Pr^(3+)ions playing a protective role in occupying surface acidic sites.The addition of small amounts of Pr leads to the re-dispersion of Cu,resulting in improved lowtemperature selective catalytic reduction(SCR)activity in the as-synthesized samples.Furthermore,it enhances the resistance to decomposition of the Si-(OH)-Al framework during low-temperature hydrothermal aging,thereby preserving the framework structure and allowing detached active Cu species to return to exchangeable positions,ultimately restoring SCR activity.However,as the Pr content increases,the enhanced acidity causes some structural damage,gradually weakening the protective effect.Our work demonstrates that Pr modification is a simple and effective solution to the issue of poor lowtemperature hydrothermal stability in Cu/SAPO-34,providing a promising way for the application of light rare earth elements.展开更多
Ammonia is essential for agriculture and,as a next-generation carbon-free fuel,typically produced through the Haber-Bosch method.This process requires high temperature and pressure,leading to significant energy consum...Ammonia is essential for agriculture and,as a next-generation carbon-free fuel,typically produced through the Haber-Bosch method.This process requires high temperature and pressure,leading to significant energy consumption and greenhouse gas emissions.Therefore,achieving ammonia synthesis under milder conditions has been a long-standing goal.In this study,we design and synthesize a series of CeO_(2)-modified Fe/carbon-based catalysts with varying amounts of CeO_(2)(Ce_(x)Fe_(y)/C).The catalyst Ce_(2)Fe_(5)/C demonstrates an ammonia yield rate of 3.5 mmol/(g·h),which is 44 times greater than that of Fe/C and 8 times greater than that of commercial Fe-based catalysts at 300℃and 1 MPa.Temperature-programmed desorption experiments show that Ce_(2)Fe_(5)/C has enhanced nitrogen adsorption capabilities.Multiple analyses confirm that the CeO_(2)in Ce_(2)Fe_(5)/C is rich in oxygen vacancies,which can provide electrons to Fe,facilitating nitrogen adsorption,dissociation,and activity in low-temperature ammonia synthesis.展开更多
Low‐temperature CO oxidation is important for both fundamental studies and practical applica‐tions. Supported gold catalysts are generally regarded as the most active catalysts for low‐temperature CO oxidation. The...Low‐temperature CO oxidation is important for both fundamental studies and practical applica‐tions. Supported gold catalysts are generally regarded as the most active catalysts for low‐temperature CO oxidation. The active sites are traditionally believed to be Au nanoclusters or nanoparticles in the size range of 0.5–5 nm. Only in the last few years have single‐atom Au catalysts been proved to be active for CO oxidation. Recent advances in both experimental and theoretical studies on single‐atom Au catalysts unambiguously demonstrated that when dispersed on suitable oxide supports the Au single atoms can be extremely active for CO oxidation. In this mini‐review, recent advances in the development of Au single‐atom catalysts are discussed, with the aim of illus‐trating their unique catalytic features during CO oxidation.展开更多
We investigated high catalytic activity of Ni/HZSM-5 catalysts synthesized by the impregnation method, which was successfully applied for low-temperature steam reforming of bio-oil. The influences of the catalyst comp...We investigated high catalytic activity of Ni/HZSM-5 catalysts synthesized by the impregnation method, which was successfully applied for low-temperature steam reforming of bio-oil. The influences of the catalyst composition, reforming temperature and the molar ratio of steam to carbon fed on the stream reforming process of bio-oil over the Ni/HZSM-5 catalysts were investigated in the reforming reactor. The promoting effects of current passing through the catalyst on the bio-oil reforming were also studied using the electrochemical catalytic reforming approach. By comparing Ni/HZSM-5 with commonly used Ni/Al2O3 catalysts, the Ni2O/ZSM catalyst with Ni-loading content of about 20% on the HZSM-5 support showed the highest catalytic activity. Even at 450 ℃, the hydrogen yield of about 90% with a near complete conversion of bio-oil was obtained using the Ni2O/ZSM catalyst. It was found that the performance of the bio-oil reforming was remarkably enhanced by the HZSM-5 supporter and the current through the catalyst. The features of the Ni/HZSM-5 catalysts were also investigated via X-ray diffraction, inductively coupled plasma and atomic emission spectroscopy, hydrogen temperature-programmed reduction, and Brunauer-Emmett-Teller methods.展开更多
Catalytic properties of MnOx-FeOx complex oxide (hereafter denoted as Mn-Fe) catalysts modified with different loadings of chromium oxide were investigated by using the combination of physico-cbemical techniques, su...Catalytic properties of MnOx-FeOx complex oxide (hereafter denoted as Mn-Fe) catalysts modified with different loadings of chromium oxide were investigated by using the combination of physico-cbemical techniques, such as N2 physisorption, X-ray diffraction (XRD), high-resolution transmission electron microscope (HRTEM), in situ Fourier transform infrared spectroscopy (in situ FT-IR) and temperature-programmed reduction (TPR) and their catalytic activities were evaluated with the selective catalytic reduction (SCR) of NOx by NH3. It was found that with the addition of Cr, more NO could be removed in the low-temperature window (below 120 ℃). Among the tested catalysts, Mn-Fe- Cr (2 : 2 : 1) catalyst exhibited the best catalytic performance at 80 ℃ with the NO conversion higher than 90%. The combination of the reaction and characterization results indicated that (1) the strong interaction among tertiary metal oxides existed in the catalysts when Cr was appropriately added, which made the active components better dispersed with less agglomeration and sintering and the largest BET specific surface area could be obtained; (2) Cr improved the low-temperature reducibility of the catalyst and promoted the formation of the active intermediate (-NH3+), which favored the low-temperature SCR reaction.展开更多
Series of Mn/TiO2 catalysts modified with various contents of Nd for low-temperature SCR were synthesized.It can be found that the appropriate amount of Nd can markedly reduce the take-off temperature of Mn/TiO2 catal...Series of Mn/TiO2 catalysts modified with various contents of Nd for low-temperature SCR were synthesized.It can be found that the appropriate amount of Nd can markedly reduce the take-off temperature of Mn/TiO2 catalyst to 80℃and NOx conversion is stabilized over 90%in the wide temperature range of 100-2600 C.0.1 Nd-Mn/Ti shows higher N2 selectivity and better SO2 resistance than Mn/Ti catalyst.The results reveal that Nd-doped Mn/TiO2 catalyst exhibits larger BET surface area and better dispersion of active component Mn2O3.XPS results indicate that the optimal 0.1 Nd-Mn/Ti sample possesses higher concentration of Mn4+and larger amount of adsorbed oxygen at the surface compared with the unmodified counterpart.In situ DRIFTS show that the surface acidity is evidently increased after adding Nd,especially,the Lewis acid sites,and the intermediate(-NH2)is more stable.The reaction mechanism over Mn/Ti and 0.1 Nd-Mn/Ti catalysts obey the Eley-Rideal(E-R)mechanisms under low temperature reaction conditions.H2-TPR results show that Nd-Mn/TiO2 catalyst exhibits better lowtemperature redox properties.展开更多
Nanometer SnO2 particles were synthesized by sol-gel dialytic processes and used as a support to prepare CuO supported catalysts via a deposition-precipitation method. The samples were characterized by means of TG-DTA...Nanometer SnO2 particles were synthesized by sol-gel dialytic processes and used as a support to prepare CuO supported catalysts via a deposition-precipitation method. The samples were characterized by means of TG-DTA, XRD, H2-TPR and XPS. The catalytic activity of the CuO/TiO2-SnO2 catalysts was markedly depended on the loading of CuO, and the optimum CuO loading was 8 wt.% (Tloo = 80 ℃). The CuO/TiO2-SnO2 catalysts exhibited much higher catalytic activity than the CuO/TiO2 and CuO/SnO2 catalysts. H2-TPR result indicated that a large amount of CuO formed the active site for CO oxidation in 8 wt.% CuO/TiO2-SnO2 catalyst.展开更多
Binary metal oxide(MnOx-A/TiO2)catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 sele...Binary metal oxide(MnOx-A/TiO2)catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 selectivity,and SO2 poisonous tolerance were investigated.The catalytic performance at low temperatures decreased in the following order:Mn-W/TiO2〉Mn-Fe/TiO2〉Mn-Cr/TiO2〉Mn-Mo/TiO2,whereas the N2 selectivity decreased in the order:Mn-Fe/TiO2〉Mn-W/TiO2〉Mn-Mo/TiO2〉Mn-Cr/TiO2.In the presence of 0.01%SO2 and 6%H2O,the NOx conversions in the presence of Mn-W/TiO2,Mn-Fe/TiO2,or Mn-Mo/TiO2 maintain 98.5%,95.8%and 94.2%, respectively,after 8 h at 120°C at GHSV 12600 h? 1 .As effective promoters,WO3 and Fe2O3 can increase N2 selectivity and the resistance to SO2 of MnOx/TiO2 significantly.The Fourier transform infrared(FTIR)spectra of NH3 over WO3 show the presence of Lewis acid sites.The results suggest that WO3 is the best promoter of MnOx/TiO2,and Mn-W/TiO2 is one of the most active catalysts for the low temperature selective catalytic reduction of NO with NH3.展开更多
CeO2 was synthesized via sol-gel process and used as supporter to prepare CuO/CeO2, Cu/CeO2 catalysts by impregnation method. The catalytic properties and characterization of CeO2, CuO/CeO2 and Cu/CeO2 catalysts were ...CeO2 was synthesized via sol-gel process and used as supporter to prepare CuO/CeO2, Cu/CeO2 catalysts by impregnation method. The catalytic properties and characterization of CeO2, CuO/CeO2 and Cu/CeO2 catalysts were examined by means of a microreactor-GC system, HRTEM, XRD, TPR and XPS techniques. The results show that CuO has not catalytic activity and the activity of CeO2 is quite low for CO oxidation. However, the catalytic activity of CuO/CeO2 and Cu/ CeO2 catalysts increases significantly. Furthermore, the activity of CuO/CeO2 is higher than that of Cu/CeO2 catalysts.展开更多
CuO-CeO2 catalysts were prepared by a urea precipitation method for the oxidative steam reforming of ethanol at low-temperature.The catalytic performance was evaluated and the catalysts were characterized by inductive...CuO-CeO2 catalysts were prepared by a urea precipitation method for the oxidative steam reforming of ethanol at low-temperature.The catalytic performance was evaluated and the catalysts were characterized by inductively coupled plasma atomic emission spectroscopy,X-ray diffraction,temperature-programmed reduction,field emission scanning electron microscopy and thermo-gravimetric analysis.Over CuOCeO2 catalysts,H2 with low CO content was produced in the whole tested temperature range of 250–450 C.The non-noble metal catalyst 20CuCe showed higher H2production rate than 1%Rh/CeO2 catalyst at 300–400 C and the advantage was more obvious after 20 h testing at400 C.These results further confirmed that CuO-CeO2 catalysts may be suitable candidates for low temperature hydrogen production from ethanol.展开更多
Alcohol-assisted low-temperature methanol synthesis was conducted over Cu/ZnO;catalysts while varying the copper content(X). Unlike conventional methanol synthesis, ethanol acted as both solvent and reaction interme...Alcohol-assisted low-temperature methanol synthesis was conducted over Cu/ZnO;catalysts while varying the copper content(X). Unlike conventional methanol synthesis, ethanol acted as both solvent and reaction intermediate in this reaction, creating a different reaction pathway. The formation of crystalline phases and characteristic morphology of the co-precipitated precursors during the co-precipitation step were important factors in obtaining an efficient Cu/ZnO catalyst with a high dispersion of metallic copper,which is one of the main active sites for methanol synthesis. The acidic properties of the Cu/ZnO catalyst were also revealed as important factors, since alcohol esterification is considered the rate-limiting step in alcohol-assisted low-temperature methanol synthesis. As a consequence, bifunctionality of the Cu/ZnO catalyst such as metallic copper and acidic properties was required for this reaction. In this respect, the copper content(X) strongly affected the catalytic activity of the Cu/ZnO;catalysts, and accordingly, the Cu/ZnO;.5 catalyst with a high copper dispersion and sufficient acid sites exhibited the best catalytic performance in this reaction.展开更多
The cognition of active sites in the Ni-based catalysts plays a vital role and remains a huge challenge in improving catalytic performance of low temperature CO_(2) dry reforming of methane(LTDRM).In this work,typical...The cognition of active sites in the Ni-based catalysts plays a vital role and remains a huge challenge in improving catalytic performance of low temperature CO_(2) dry reforming of methane(LTDRM).In this work,typical catalysts of SiO_(2) and γ-Al_(2)O_(3) supported Ni and Ni-Ce were designed and prepared.Importantly,the difference in the chemical speciations of active sites on the Ni-based catalysts is revealed by advanced characterizations and further estimates respective catalytic performance for LTDRM.Results show that larger[Ni0-]particles mixed with[Ni-O-Sin])species on the Ni/SiO_(2)(R)make CH_(4) excessive decomposition,leading to poor activity and stability.Once the Ce species is doped,however,superior activity(59.0%CH_(4) and 59.8%CO_(2) conversions),stability and high H_(2)/CO ratio(0.96)at 600℃ can be achieved on the Ni-Ce/SiO_(2)(R),in comparison with other catalysts and even reported studies.The improved performance can be ascribed to the formation of integral([Ni0_(n))]-[CeⅢ-□-CeⅢ])species on the Ni-Ce/SiO_(2)(R)catalyst,containing highly dispersed[Ni]particles and rich oxygen vacancies,which can synergistically establish a new stable balance between gasification of carbon species and CO_(2) dissocia-tion.With respect to Ni-Ce/γ-Al_(2)O_(3)(R),the Ni and Ce precursors are easily captured by extra-framework Al_(n)-OH groups and further form stable isolated([Ni0_(n))]-[Ni-O-Al_(n)])and[CeⅢ-O-Al_(n)]species.In such a case,both of them preferentially accelerate CO_(2) adsorption and dissociation,causing more car-bon deposition due to the disproportionation of superfuous CO product.This deep distinguishment of chemical speciations of active sites can guide us to further develop new efficient Ni-based catalysts for LTDRM in the future.展开更多
At low temperature of 723 K, methane can be easily activated in the presence of ethylene in the feed, and converted to higher hydrocarbons (C2-C4) and aromatics (C6-C10), through its reaction over rare metals modi...At low temperature of 723 K, methane can be easily activated in the presence of ethylene in the feed, and converted to higher hydrocarbons (C2-C4) and aromatics (C6-C10), through its reaction over rare metals modified Zn/HZSM-5 zeolite catalysts without undesirable carbon oxides formation. Methane can get 37.3% conversion over the above catalysts under low temperature, and the catalysts show a longer lifetime than usual metal supported HZSM-5 zeolite catalysts without adding any rare earth metals. The effects of methane activation over various rare earth metal promoted Zn/HZSM-5 catalysts on the products and influences of several reaction conditions such as temperature, catalyst lifetime and molar ratio of CH4/C2H4 have been discussed.展开更多
A series of TiO_(2)-Al_(2)O_(3) composites with Al/Ti molar ratios of 0.1,0.2,and 0.4 were synthesized by a coprecipitation method and used as supports to prepare supported MnCeO_(x) catalysts by an impregnation metho...A series of TiO_(2)-Al_(2)O_(3) composites with Al/Ti molar ratios of 0.1,0.2,and 0.4 were synthesized by a coprecipitation method and used as supports to prepare supported MnCeO_(x) catalysts by an impregnation method.The physico-chemical properties of the samples were extensively characterized by N_(2) physisorption,X-ray diffraction,Raman spectroscopy,scanning electron micro scopy and energy-dispersive Xray spectroscopy element mapping,X-ray photoelectron spectroscopy,H_(2)-temperature programmed reduction,ammonia temperature programmed desorption,and in-situ diffuse reflectance infrared Fourier transform spectroscopy.The catalytic activity and resistance to water vapor and SO_(2) of the asprepared catalysts for the SCR of NO_(x) with NH_(3) were evaluated at 50-250℃ and GHSV of 80000 mL/(gcat·h).The results reveal that MnCeO_(x)/TiO_(2)-Al_(2)O_(3) exhibits higher activity and better SO_(2) tolerance than MnCeO_(x)/TiO_(2).Combining with the characterization results,the enhanced activity and SO_(2) tolerance of MnCeO_(x)/TiO_(2)-Al_(2)O_(3) can be mainly attributed to higher relative concentrations of Mn4+and chemisorbed oxygen species,stronger reducibility,and larger adsorption capacity for NH_(3) and NO,which originate from the larger specific surface area and pore volume,higher dispersion of Mn and Ce species compared with MnCeO_(x)/TiO_(2).Moreover,in situ DRIFTS was used to investigate the reaction mechanism,and the results indicate that the NH_(3)-SCR reaction over MnCeO_(x)/TiO_(2) and MnCeO_(x)/TiO_(2)-Al_(2)O_(3) takes place by both the E-R and L-H mechanisms.展开更多
A series of Mn-based catalysts, MnOx, MnOx-CeO, Pd-Mn-Ce, MnOx/AC were prepared. And their performances for NO low-temperature SCR were investigated in this study. The NO conversion is about 90% at 100 ℃ on MnOx-CeOa...A series of Mn-based catalysts, MnOx, MnOx-CeO, Pd-Mn-Ce, MnOx/AC were prepared. And their performances for NO low-temperature SCR were investigated in this study. The NO conversion is about 90% at 100 ℃ on MnOx-CeOand almost all NO can be converted at 120 ℃. Similar results are also observed in the tests on MnOx-CeO/AC. The excellent low-temperature catalytic activity of modified Mn-based catalysts, which may be mainly due to the oxygen storage function of CeO, can improve the oxygen flow on the catalysts surface. Then the oxidation of NO to NO2 is accelerated, which is the key step of NO SCR.展开更多
The effects of CeO2 contents and silica carrier porosity with their pore diameters ranging from 5.2 nm to 12.5 nm of CuO-CeO2/SiO2 cata-lysts in CO oxidation were investigated.The catalysts were characterized by N2 ad...The effects of CeO2 contents and silica carrier porosity with their pore diameters ranging from 5.2 nm to 12.5 nm of CuO-CeO2/SiO2 cata-lysts in CO oxidation were investigated.The catalysts were characterized by N2 adsorption/desorption at low temperature,X-ray diffraction (XRD),temperature-programmed reduction by H2 (H2-TPR),oxygen temperature programmed desorption (O2-TPD) and X-ray photoelectron spectroscopy (XPS).The results suggested that,the ceria content and the porosity of SiO2 carrier possessed great impacts on the structures and catalytic performances of CuO-CeO2/SiO2 catalysts.When appropriate content of CeO2 (Ce content 8 wt%) was added,the catalytic activity was greatly enhanced.In the catalyst supported on silica carrier with larger pore diameter,higher dispersion of CuO was observed,better agglomeration-resistant capacity was displayed and more lattice oxygen could be found,thus the CuO-CeO2 supported on Si-1 showed higher catalytic activity for low-temperature CO oxidation.展开更多
In the work,supported catalysts of FeO_(x) and MnO_(x) co-supported on aluminum-modified CeO_(2)was synthesized for low-temperature NH_(3)-selective catalytic reduction(NH_(3)-SCR)of NO.Impressively,the SCR activity o...In the work,supported catalysts of FeO_(x) and MnO_(x) co-supported on aluminum-modified CeO_(2)was synthesized for low-temperature NH_(3)-selective catalytic reduction(NH_(3)-SCR)of NO.Impressively,the SCR activity of the obtained catalyst is markedly influenced by the adding amount of Al and the appropriate Ce/Al molar ratio is 1/2.The activity tests demonstrate that Fe-Mn/Ce1 Al2 catalyst shows over 90%NO conversion at 75-250℃and exhibits better SO_(2)resistance compared to Fe-Mn/CeO_(2).Fe-Mn/Ce1 Al2 shows the expected physicochemical characters of the ideal catalyst including the larger surface and increased active reaction active sites by controlling the amount of Al doping.Also,the better catalytic activity is well correlated with the present advantaged surface adsorption oxygen species,Mn^(4+)species,Ce^(3+)species and the enhanced reducibility of Fe-Mn/Ce1 Al2,which is superior to the Fe-Mn/CeO_(2)catalyst.More importantly,we further demonstrate that the amount and strength of surface acid sites are improved by Al-doping and more active intermediates(monodentate nitrate)is generated during NH_(3)-SCR reaction.This work provides certain insight into the rational creation of simple and practical denitration catalyst environmental purification.展开更多
基金the financial support from the Key Project of Shaanxi Provincial Natural Science Foundation-Key Project of Laboratory(2025SYS-SYSZD-117)the Natural Science Basic Research Program of Shaanxi(2025JCYBQN-125)+8 种基金Young Talent Fund of Xi'an Association for Science and Technology(0959202513002)the Key Industrial Chain Technology Research Program of Xi'an(24ZDCYJSGG0048)the Key Research and Development Program of Xianyang(L2023-ZDYF-SF-077)Postdoctoral Fellowship Program of CPSF(GZC20241442)Shaanxi Postdoctoral Science Foundation(2024BSHSDZZ070)Research Funds for the Interdisciplinary Projects,CHU(300104240913)the Fundamental Research Funds for the Central Universities,CHU(300102385739,300102384201,300102384103)the Scientific Innovation Practice Project of Postgraduate of Chang'an University(300103725063)the financial support from the Australian Research Council。
文摘Lithium-ion batteries(LIBs),while dominant in energy storage due to high energy density and cycling stability,suffer from severe capacity decay,rate capability degradation,and lithium dendrite formation under low-temperature(LT)operation.Therefore,a more comprehensive and systematic understanding of LIB behavior at LT is urgently required.This review article comprehensively reviews recent advancements in electrolyte engineering strategies aimed at improving the low-temperature operational capabilities of LIBs.The study methodically examines critical performance-limiting mechanisms through fundamental analysis of four primary challenges:insufficient ionic conductivity under cryogenic conditions,kinetically hindered charge transfer processes,Li+transport limitations across the solidelectrolyte interphase(SEI),and uncontrolled lithium dendrite growth.The work elaborates on innovative optimization approaches encompassing lithium salt molecular design with tailored dissociation characteristics,solvent matrix optimization through dielectric constant and viscosity regulation,interfacial engineering additives for constructing low-impedance SEI layers,and gel-polymer composite electrolyte systems.Notably,particular emphasis is placed on emerging machine learning-guided electrolyte formulation strategies that enable high-throughput virtual screening of constituent combinations and prediction of structure-property relationships.These artificial intelligence-assisted rational design frameworks demonstrate significant potential for accelerating the development of next-generation LT electrolytes by establishing quantitative composition-performance correlations through advanced data-driven methodologies.
基金financially supported by the National Natural Science Foundation of China(No.22309067)the Open Project Program of the State Key Laboratory of Materials-Oriented Chemical Engineering,China(No.KL21-05)the Marine Equipment and Technology Institute,Jiangsu University of Science and Technology,China(No.XTCX202404)。
文摘This study focused on improving the cathode performance of Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.15)O_(3-δ)(BSCN)-based perovskite materials through molybdenum(Mo)doping.Pure BSCN and Mo-modified-BSCN—Ea_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.1)Mo_(0.05)O_(3-δ)(B S CNM_(0.05)),Ba_(0.6)Sr_(0.4)Co_(0.85)Nb_(0.05)Mo_(0.1)O_(3-δ)(BSCNM_(0.1)),and Ba_(0.6)Sr_(0.4)Co_(0.85)Mo_(0.15)O_(3-δ)(BSCM)—with Mo doping contents of 5mol%,10mol%,and15mol%,respectively,were successfully prepared using the sol-gel method.The effects of Mo doping on the crystal structure,conductivity,thermal expansion coefficient,oxygen reduction reaction(ORR)activity,and electrochemical performance were systematically evaluated using X-ray diffraction analysis,thermally induced characterization,electrochemical impedance spectroscopy,and single-cell performance tests.The results revealed that Mo doping could improve the conductivity of the materials,suppress their thermal expansion effects,and significantly improve the electrochemical performance.Surface chemical state analysis using X-ray photoelectron spectroscopy revealed that 5mol%Mo doping could facilitate a high adsorbed oxygen concentration leading to enhanced ORR activity in the materials.Density functional theory calculations confirmed that Mo doping promoted the ORR activity in the materials.At an operating temperature of 600℃,the BSCNM_(0.05)cathode material exhibited significantly enhanced electrochemical impedance characteristics,with a reduced area specific resistance of 0.048Ω·cm~2,which was lower than that of the undoped BSCN matrix material by 32.39%.At the same operating temperature,an anode-supported single cell using a BSCNM_(0.05)cathode achieved a peak power density of 1477 mW·cm^(-2),which was 30.71%,56.30%,and 171.50%higher than those of BSCN,BSCNM_(0.1),and B SCM,respectively.The improved ORR activity and electrochemical performance of BSCNM_(0.05)indicate that it can be used as a cathode material in low-temperature solid oxide fuel cells.
基金the National Natural Science Foundation of China(Nos.22125604,22106100,21976117,22276119)Shanghai Rising-Star Program(No.22QA1403700).
文摘Developing a high-efficiency catalyst with both superior low-temperature activity and good N_(2)selectivity is still challenging for the NH_(3)selective catalytic reduction(SCR)of NO_(x)from mobile sources.Herein,we demonstrate the improved low-temperature activity and N_(2)selectivity by regulating the redox and acidic properties of MnCe oxides supported on etched ZSM-5 supports.The etched ZSM-5 enables the highly dispersed state of MnCeOx species and strong interaction between Mn and Ce species,which promotes the reduction of CeO2,facilitates electron transfer from Mn to Ce,and generates more Mn^(4+)and Ce^(3+)species.The strong redox capacity contributes to forming the reactive nitrate species and-NH_(2)species from oxidative dehydrogenation of NH_(3).Moreover,the adsorbed NH_(3)and-NH_(2)species are the reactive intermediates that promote the formation of N_(2).This work demonstrates an effective strategy to enhance the low-temperature activity and N_(2)selectivity of SCR catalysts,contributing to the NO_(x)control for the low-temperature exhaust gas during the cold-start of diesel vehicles.
基金supported by the National Key R&D Program of China(2021YFB3503200)the Innovative Research Groups of the National Natural Science Foundation of China(51921004)+1 种基金Young Elite Scientists Sponsorship Program by CAST(2021QNRC001)the Key R&D project of Shandong Province(2021CXGC010703,2022CXGC020311)。
文摘Based on the previous findings that the presence of hydroxyl groups on the outer surface is crucial for maintaining skeletal stability,we propose a strategy modified Cu/SAPO-34 using Pr ions in this study.Therefore,we conducted several measurements to investigate the effect of Pr ions on the lowtemperature hydrothermal stability of Cu/SAPO-34.We find that Pr exists only on the surface of Cu/SAPO-34 as ions and oxides,with Pr^(3+)ions playing a protective role in occupying surface acidic sites.The addition of small amounts of Pr leads to the re-dispersion of Cu,resulting in improved lowtemperature selective catalytic reduction(SCR)activity in the as-synthesized samples.Furthermore,it enhances the resistance to decomposition of the Si-(OH)-Al framework during low-temperature hydrothermal aging,thereby preserving the framework structure and allowing detached active Cu species to return to exchangeable positions,ultimately restoring SCR activity.However,as the Pr content increases,the enhanced acidity causes some structural damage,gradually weakening the protective effect.Our work demonstrates that Pr modification is a simple and effective solution to the issue of poor lowtemperature hydrothermal stability in Cu/SAPO-34,providing a promising way for the application of light rare earth elements.
基金the Haihe Laboratory of Sus-tainable Chemical Transformations for financial support(No.24HHWCSS00009).
文摘Ammonia is essential for agriculture and,as a next-generation carbon-free fuel,typically produced through the Haber-Bosch method.This process requires high temperature and pressure,leading to significant energy consumption and greenhouse gas emissions.Therefore,achieving ammonia synthesis under milder conditions has been a long-standing goal.In this study,we design and synthesize a series of CeO_(2)-modified Fe/carbon-based catalysts with varying amounts of CeO_(2)(Ce_(x)Fe_(y)/C).The catalyst Ce_(2)Fe_(5)/C demonstrates an ammonia yield rate of 3.5 mmol/(g·h),which is 44 times greater than that of Fe/C and 8 times greater than that of commercial Fe-based catalysts at 300℃and 1 MPa.Temperature-programmed desorption experiments show that Ce_(2)Fe_(5)/C has enhanced nitrogen adsorption capabilities.Multiple analyses confirm that the CeO_(2)in Ce_(2)Fe_(5)/C is rich in oxygen vacancies,which can provide electrons to Fe,facilitating nitrogen adsorption,dissociation,and activity in low-temperature ammonia synthesis.
文摘Low‐temperature CO oxidation is important for both fundamental studies and practical applica‐tions. Supported gold catalysts are generally regarded as the most active catalysts for low‐temperature CO oxidation. The active sites are traditionally believed to be Au nanoclusters or nanoparticles in the size range of 0.5–5 nm. Only in the last few years have single‐atom Au catalysts been proved to be active for CO oxidation. Recent advances in both experimental and theoretical studies on single‐atom Au catalysts unambiguously demonstrated that when dispersed on suitable oxide supports the Au single atoms can be extremely active for CO oxidation. In this mini‐review, recent advances in the development of Au single‐atom catalysts are discussed, with the aim of illus‐trating their unique catalytic features during CO oxidation.
基金ACKNOWLEDGMENTS This work is supported by the National High Tech Research and Development Program (No.2009AA05Z435), the National Basic Research Program of Ministry of Science and Technology of China (No.2007CB210206), and the General Program of the National Natural Science Foundation of China (No.50772107).
文摘We investigated high catalytic activity of Ni/HZSM-5 catalysts synthesized by the impregnation method, which was successfully applied for low-temperature steam reforming of bio-oil. The influences of the catalyst composition, reforming temperature and the molar ratio of steam to carbon fed on the stream reforming process of bio-oil over the Ni/HZSM-5 catalysts were investigated in the reforming reactor. The promoting effects of current passing through the catalyst on the bio-oil reforming were also studied using the electrochemical catalytic reforming approach. By comparing Ni/HZSM-5 with commonly used Ni/Al2O3 catalysts, the Ni2O/ZSM catalyst with Ni-loading content of about 20% on the HZSM-5 support showed the highest catalytic activity. Even at 450 ℃, the hydrogen yield of about 90% with a near complete conversion of bio-oil was obtained using the Ni2O/ZSM catalyst. It was found that the performance of the bio-oil reforming was remarkably enhanced by the HZSM-5 supporter and the current through the catalyst. The features of the Ni/HZSM-5 catalysts were also investigated via X-ray diffraction, inductively coupled plasma and atomic emission spectroscopy, hydrogen temperature-programmed reduction, and Brunauer-Emmett-Teller methods.
基金supported by Jiangsu Natural Science Foundation (No. BK2012347)the National High Technology and Development Program of China (863 Programs, No.2007AA061802)
文摘Catalytic properties of MnOx-FeOx complex oxide (hereafter denoted as Mn-Fe) catalysts modified with different loadings of chromium oxide were investigated by using the combination of physico-cbemical techniques, such as N2 physisorption, X-ray diffraction (XRD), high-resolution transmission electron microscope (HRTEM), in situ Fourier transform infrared spectroscopy (in situ FT-IR) and temperature-programmed reduction (TPR) and their catalytic activities were evaluated with the selective catalytic reduction (SCR) of NOx by NH3. It was found that with the addition of Cr, more NO could be removed in the low-temperature window (below 120 ℃). Among the tested catalysts, Mn-Fe- Cr (2 : 2 : 1) catalyst exhibited the best catalytic performance at 80 ℃ with the NO conversion higher than 90%. The combination of the reaction and characterization results indicated that (1) the strong interaction among tertiary metal oxides existed in the catalysts when Cr was appropriately added, which made the active components better dispersed with less agglomeration and sintering and the largest BET specific surface area could be obtained; (2) Cr improved the low-temperature reducibility of the catalyst and promoted the formation of the active intermediate (-NH3+), which favored the low-temperature SCR reaction.
基金Project supported by the Key Research and Development Projects of Jiangsu Province(BE2017716)National Key R&D Program of China(2017YFB0603201)Environmental Nonprofit Industry Research subject(2016YFC0208102)。
文摘Series of Mn/TiO2 catalysts modified with various contents of Nd for low-temperature SCR were synthesized.It can be found that the appropriate amount of Nd can markedly reduce the take-off temperature of Mn/TiO2 catalyst to 80℃and NOx conversion is stabilized over 90%in the wide temperature range of 100-2600 C.0.1 Nd-Mn/Ti shows higher N2 selectivity and better SO2 resistance than Mn/Ti catalyst.The results reveal that Nd-doped Mn/TiO2 catalyst exhibits larger BET surface area and better dispersion of active component Mn2O3.XPS results indicate that the optimal 0.1 Nd-Mn/Ti sample possesses higher concentration of Mn4+and larger amount of adsorbed oxygen at the surface compared with the unmodified counterpart.In situ DRIFTS show that the surface acidity is evidently increased after adding Nd,especially,the Lewis acid sites,and the intermediate(-NH2)is more stable.The reaction mechanism over Mn/Ti and 0.1 Nd-Mn/Ti catalysts obey the Eley-Rideal(E-R)mechanisms under low temperature reaction conditions.H2-TPR results show that Nd-Mn/TiO2 catalyst exhibits better lowtemperature redox properties.
基金supported by the National Natural Science Foundation of China (20771061 and 20871071)the 973 Program (2005CB623607)Science and Technology Commission Foundation of Tianjin (08JCYBJC00100 and 09JCYBJC03600)
文摘Nanometer SnO2 particles were synthesized by sol-gel dialytic processes and used as a support to prepare CuO supported catalysts via a deposition-precipitation method. The samples were characterized by means of TG-DTA, XRD, H2-TPR and XPS. The catalytic activity of the CuO/TiO2-SnO2 catalysts was markedly depended on the loading of CuO, and the optimum CuO loading was 8 wt.% (Tloo = 80 ℃). The CuO/TiO2-SnO2 catalysts exhibited much higher catalytic activity than the CuO/TiO2 and CuO/SnO2 catalysts. H2-TPR result indicated that a large amount of CuO formed the active site for CO oxidation in 8 wt.% CuO/TiO2-SnO2 catalyst.
文摘Binary metal oxide(MnOx-A/TiO2)catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 selectivity,and SO2 poisonous tolerance were investigated.The catalytic performance at low temperatures decreased in the following order:Mn-W/TiO2〉Mn-Fe/TiO2〉Mn-Cr/TiO2〉Mn-Mo/TiO2,whereas the N2 selectivity decreased in the order:Mn-Fe/TiO2〉Mn-W/TiO2〉Mn-Mo/TiO2〉Mn-Cr/TiO2.In the presence of 0.01%SO2 and 6%H2O,the NOx conversions in the presence of Mn-W/TiO2,Mn-Fe/TiO2,or Mn-Mo/TiO2 maintain 98.5%,95.8%and 94.2%, respectively,after 8 h at 120°C at GHSV 12600 h? 1 .As effective promoters,WO3 and Fe2O3 can increase N2 selectivity and the resistance to SO2 of MnOx/TiO2 significantly.The Fourier transform infrared(FTIR)spectra of NH3 over WO3 show the presence of Lewis acid sites.The results suggest that WO3 is the best promoter of MnOx/TiO2,and Mn-W/TiO2 is one of the most active catalysts for the low temperature selective catalytic reduction of NO with NH3.
基金Projected supported by the National Natural Science Foundation of China (20271028) and Tianjin Natural Science Foundation(033602511)
文摘CeO2 was synthesized via sol-gel process and used as supporter to prepare CuO/CeO2, Cu/CeO2 catalysts by impregnation method. The catalytic properties and characterization of CeO2, CuO/CeO2 and Cu/CeO2 catalysts were examined by means of a microreactor-GC system, HRTEM, XRD, TPR and XPS techniques. The results show that CuO has not catalytic activity and the activity of CeO2 is quite low for CO oxidation. However, the catalytic activity of CuO/CeO2 and Cu/ CeO2 catalysts increases significantly. Furthermore, the activity of CuO/CeO2 is higher than that of Cu/CeO2 catalysts.
基金supported by the National Basic Research Program of China (2010CB732304)the National Natural Science Foundation of China (21177142 and 20973193)
文摘CuO-CeO2 catalysts were prepared by a urea precipitation method for the oxidative steam reforming of ethanol at low-temperature.The catalytic performance was evaluated and the catalysts were characterized by inductively coupled plasma atomic emission spectroscopy,X-ray diffraction,temperature-programmed reduction,field emission scanning electron microscopy and thermo-gravimetric analysis.Over CuOCeO2 catalysts,H2 with low CO content was produced in the whole tested temperature range of 250–450 C.The non-noble metal catalyst 20CuCe showed higher H2production rate than 1%Rh/CeO2 catalyst at 300–400 C and the advantage was more obvious after 20 h testing at400 C.These results further confirmed that CuO-CeO2 catalysts may be suitable candidates for low temperature hydrogen production from ethanol.
基金supported by C1 Gas Refinery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science,ICT & Future Planning (2015M3D3A1A01064908)
文摘Alcohol-assisted low-temperature methanol synthesis was conducted over Cu/ZnO;catalysts while varying the copper content(X). Unlike conventional methanol synthesis, ethanol acted as both solvent and reaction intermediate in this reaction, creating a different reaction pathway. The formation of crystalline phases and characteristic morphology of the co-precipitated precursors during the co-precipitation step were important factors in obtaining an efficient Cu/ZnO catalyst with a high dispersion of metallic copper,which is one of the main active sites for methanol synthesis. The acidic properties of the Cu/ZnO catalyst were also revealed as important factors, since alcohol esterification is considered the rate-limiting step in alcohol-assisted low-temperature methanol synthesis. As a consequence, bifunctionality of the Cu/ZnO catalyst such as metallic copper and acidic properties was required for this reaction. In this respect, the copper content(X) strongly affected the catalytic activity of the Cu/ZnO;catalysts, and accordingly, the Cu/ZnO;.5 catalyst with a high copper dispersion and sufficient acid sites exhibited the best catalytic performance in this reaction.
基金financially supported by the National Natural Science Foundation of China (22006059, 21968015)National Engineering Laboratory for Flue Gas Pollutants Control Technology and Equipment (NEL-KF-201905)+1 种基金Applied Basic Research Program of Yunnan Province, China (202101AU070154, 2019FD034)Analysis and Testing Fund of Kunming University of Science and Technology (2020 T20200006)
文摘The cognition of active sites in the Ni-based catalysts plays a vital role and remains a huge challenge in improving catalytic performance of low temperature CO_(2) dry reforming of methane(LTDRM).In this work,typical catalysts of SiO_(2) and γ-Al_(2)O_(3) supported Ni and Ni-Ce were designed and prepared.Importantly,the difference in the chemical speciations of active sites on the Ni-based catalysts is revealed by advanced characterizations and further estimates respective catalytic performance for LTDRM.Results show that larger[Ni0-]particles mixed with[Ni-O-Sin])species on the Ni/SiO_(2)(R)make CH_(4) excessive decomposition,leading to poor activity and stability.Once the Ce species is doped,however,superior activity(59.0%CH_(4) and 59.8%CO_(2) conversions),stability and high H_(2)/CO ratio(0.96)at 600℃ can be achieved on the Ni-Ce/SiO_(2)(R),in comparison with other catalysts and even reported studies.The improved performance can be ascribed to the formation of integral([Ni0_(n))]-[CeⅢ-□-CeⅢ])species on the Ni-Ce/SiO_(2)(R)catalyst,containing highly dispersed[Ni]particles and rich oxygen vacancies,which can synergistically establish a new stable balance between gasification of carbon species and CO_(2) dissocia-tion.With respect to Ni-Ce/γ-Al_(2)O_(3)(R),the Ni and Ce precursors are easily captured by extra-framework Al_(n)-OH groups and further form stable isolated([Ni0_(n))]-[Ni-O-Al_(n)])and[CeⅢ-O-Al_(n)]species.In such a case,both of them preferentially accelerate CO_(2) adsorption and dissociation,causing more car-bon deposition due to the disproportionation of superfuous CO product.This deep distinguishment of chemical speciations of active sites can guide us to further develop new efficient Ni-based catalysts for LTDRM in the future.
基金supported by the National Natural Science Foundation of China (Grants No. 20273021)the Key Project of Shanghai Science and Technology Committee (No. 05JC14070, 06DZ05025, 0552nm042, 08JC1408600)Scientific Research Foundation of the Education Department of Heilongjiang Province (No.11544005)
文摘At low temperature of 723 K, methane can be easily activated in the presence of ethylene in the feed, and converted to higher hydrocarbons (C2-C4) and aromatics (C6-C10), through its reaction over rare metals modified Zn/HZSM-5 zeolite catalysts without undesirable carbon oxides formation. Methane can get 37.3% conversion over the above catalysts under low temperature, and the catalysts show a longer lifetime than usual metal supported HZSM-5 zeolite catalysts without adding any rare earth metals. The effects of methane activation over various rare earth metal promoted Zn/HZSM-5 catalysts on the products and influences of several reaction conditions such as temperature, catalyst lifetime and molar ratio of CH4/C2H4 have been discussed.
基金Project supported by the Alliance Project of Shanghai City in China(LM201641)。
文摘A series of TiO_(2)-Al_(2)O_(3) composites with Al/Ti molar ratios of 0.1,0.2,and 0.4 were synthesized by a coprecipitation method and used as supports to prepare supported MnCeO_(x) catalysts by an impregnation method.The physico-chemical properties of the samples were extensively characterized by N_(2) physisorption,X-ray diffraction,Raman spectroscopy,scanning electron micro scopy and energy-dispersive Xray spectroscopy element mapping,X-ray photoelectron spectroscopy,H_(2)-temperature programmed reduction,ammonia temperature programmed desorption,and in-situ diffuse reflectance infrared Fourier transform spectroscopy.The catalytic activity and resistance to water vapor and SO_(2) of the asprepared catalysts for the SCR of NO_(x) with NH_(3) were evaluated at 50-250℃ and GHSV of 80000 mL/(gcat·h).The results reveal that MnCeO_(x)/TiO_(2)-Al_(2)O_(3) exhibits higher activity and better SO_(2) tolerance than MnCeO_(x)/TiO_(2).Combining with the characterization results,the enhanced activity and SO_(2) tolerance of MnCeO_(x)/TiO_(2)-Al_(2)O_(3) can be mainly attributed to higher relative concentrations of Mn4+and chemisorbed oxygen species,stronger reducibility,and larger adsorption capacity for NH_(3) and NO,which originate from the larger specific surface area and pore volume,higher dispersion of Mn and Ce species compared with MnCeO_(x)/TiO_(2).Moreover,in situ DRIFTS was used to investigate the reaction mechanism,and the results indicate that the NH_(3)-SCR reaction over MnCeO_(x)/TiO_(2) and MnCeO_(x)/TiO_(2)-Al_(2)O_(3) takes place by both the E-R and L-H mechanisms.
基金the Key Project of the National Natural Science Foundation of China (20437010)the Natural Science Foundation of Yunnan Province (2007E184M)the Science Foundation of the Education Department of Yunnan Province(07C11400)
文摘A series of Mn-based catalysts, MnOx, MnOx-CeO, Pd-Mn-Ce, MnOx/AC were prepared. And their performances for NO low-temperature SCR were investigated in this study. The NO conversion is about 90% at 100 ℃ on MnOx-CeOand almost all NO can be converted at 120 ℃. Similar results are also observed in the tests on MnOx-CeO/AC. The excellent low-temperature catalytic activity of modified Mn-based catalysts, which may be mainly due to the oxygen storage function of CeO, can improve the oxygen flow on the catalysts surface. Then the oxidation of NO to NO2 is accelerated, which is the key step of NO SCR.
基金supported by the National Natural Science Foundation of China(20590360)New Century Excellent Talent Project of China(NCET-05-0783)
文摘The effects of CeO2 contents and silica carrier porosity with their pore diameters ranging from 5.2 nm to 12.5 nm of CuO-CeO2/SiO2 cata-lysts in CO oxidation were investigated.The catalysts were characterized by N2 adsorption/desorption at low temperature,X-ray diffraction (XRD),temperature-programmed reduction by H2 (H2-TPR),oxygen temperature programmed desorption (O2-TPD) and X-ray photoelectron spectroscopy (XPS).The results suggested that,the ceria content and the porosity of SiO2 carrier possessed great impacts on the structures and catalytic performances of CuO-CeO2/SiO2 catalysts.When appropriate content of CeO2 (Ce content 8 wt%) was added,the catalytic activity was greatly enhanced.In the catalyst supported on silica carrier with larger pore diameter,higher dispersion of CuO was observed,better agglomeration-resistant capacity was displayed and more lattice oxygen could be found,thus the CuO-CeO2 supported on Si-1 showed higher catalytic activity for low-temperature CO oxidation.
基金Project supported by the National Natural Science Foundation of China(21806077,21773106,2197681)。
文摘In the work,supported catalysts of FeO_(x) and MnO_(x) co-supported on aluminum-modified CeO_(2)was synthesized for low-temperature NH_(3)-selective catalytic reduction(NH_(3)-SCR)of NO.Impressively,the SCR activity of the obtained catalyst is markedly influenced by the adding amount of Al and the appropriate Ce/Al molar ratio is 1/2.The activity tests demonstrate that Fe-Mn/Ce1 Al2 catalyst shows over 90%NO conversion at 75-250℃and exhibits better SO_(2)resistance compared to Fe-Mn/CeO_(2).Fe-Mn/Ce1 Al2 shows the expected physicochemical characters of the ideal catalyst including the larger surface and increased active reaction active sites by controlling the amount of Al doping.Also,the better catalytic activity is well correlated with the present advantaged surface adsorption oxygen species,Mn^(4+)species,Ce^(3+)species and the enhanced reducibility of Fe-Mn/Ce1 Al2,which is superior to the Fe-Mn/CeO_(2)catalyst.More importantly,we further demonstrate that the amount and strength of surface acid sites are improved by Al-doping and more active intermediates(monodentate nitrate)is generated during NH_(3)-SCR reaction.This work provides certain insight into the rational creation of simple and practical denitration catalyst environmental purification.