The torsional low strain integrity test(TLSIT),known for its advantages such as a smaller detection blind zone,improved identification of shallowly buried defects,stable phase velocity for signal interpretation,and be...The torsional low strain integrity test(TLSIT),known for its advantages such as a smaller detection blind zone,improved identification of shallowly buried defects,stable phase velocity for signal interpretation,and better adaptability for existing pile testing.However,it lacks a comprehensive understanding of the authentic three-dimensional(3D)strain wave propagation mechanism,particularly wave reflection and transmission at defects.To address this gap,a novel 3D theoretical framework is introduced in this context to model the authentic 3D wave propagation during the TLSIT.The proposed approach is validated by comparing its results with those obtained from 3D finite element method(FEM)simulations and simplified 1D(one-dimensional)and 3D analytical solutions.Additionally,a parametric study is conducted to enhance insights into the formation mechanism of high-frequency interference observed during the TLSIT.Finally,a defect identification study is performed to provide guidance for interpreting the wave spectrum in terms of defect characteristics.展开更多
The three-dimensional effects of pile head and the applicability of plane-section assumption are main problems in low-strain dynamic tests on cast-in-situ concrete thin-wall pipe piles.The velocity and displacement re...The three-dimensional effects of pile head and the applicability of plane-section assumption are main problems in low-strain dynamic tests on cast-in-situ concrete thin-wall pipe piles.The velocity and displacement responses were calculated by a theoretical formula deduced by the authors.The frequency and influencing factor of high-frequency interference were analyzed.A numerical method was established to calculate the peak value and arrival time of incoming waves on top of the piles.The regularity along circumferential and the influence of radius or impulse width were studied.The applicability of plane-section assumption was investigated by comparison of velocity responses at different points in the sections at different depths.The waveform of velocity response at different points forked after the first peak,indicating that the propagation of stress waves did not well meet the plane-section assumption.展开更多
Based on the analysis and research of the airworthiness objective of integrated modular avionics system(IMA),and the characteristics of IMA system’s comprehensive and complex cross-linking with other airborne systems...Based on the analysis and research of the airworthiness objective of integrated modular avionics system(IMA),and the characteristics of IMA system’s comprehensive and complex cross-linking with other airborne systems,the extraction strategy of IMA system’s compliance flight test subjects and the selection method of IMA system’s compliance flight test parameters are proposed.The data analysis method based on the abnormal probability matrix of the IMA system is proposed for the first time,and the abnormal state information of the IMA system can be quickly identified.The compliance flight test of the IMA system is completed with limited flight test resources,which achieves the purpose of saving flight test sorties and improving flight test efficiency.This research has been successfully applied to the airworthiness certification flight test of a certain civil transport aircraft in China,and can provide technical support for the subsequent type flight test.展开更多
Machine Hammer Peening(MHP)is an emergent treatment that induces high compressive Residual Stresses(RS)which can enhance the in-service performance of components.This paper studies the use of small diameter MHP tools ...Machine Hammer Peening(MHP)is an emergent treatment that induces high compressive Residual Stresses(RS)which can enhance the in-service performance of components.This paper studies the use of small diameter MHP tools to improve the Surface Integrity(SI)of the nickel-based alloy Inconel 718 used in critical aero-engine components.Complementarily,the relaxation of RS is analyzed by in-situ annealing tests at in-service temperature combined with X-ray diffraction measurement.For this purpose,age hardened Inconel 718 discs were turned as reference condition,and then a pneumatic MHP tool was used under different conditions:two tool diameters(4 mm and 12 mm),feed rates(2.5 m/min and 5.0 m/min)and stepover distances(0.07 mm and 0.35 mm).Subsequently,surface topography characterization,RS measurements,nanoindentation tests,and microstructural observations were conducted.The in-situ annealing tests were done in the X-ray diffractometer at 550°C for exposure periods from 0 to 20 h.The results demonstrate that 4 mm diameter tools generate smooth surfaces and induce significant compressive RS within a0.5 mm thick layer.Residual stresses are relaxed,but they remain compressive even after a long thermal exposure.The microstructure of the surface layer(<10–15μm)was affected by the preceding turning operation,but importantly,MHP did not induce additional damage.展开更多
The principle and process of parallel seismic (PS) testing for the integrity testing of cemented soil columns are in- troduced in this paper. A three-dimensional (3D) finite element model (FEM) for the pile-soil syste...The principle and process of parallel seismic (PS) testing for the integrity testing of cemented soil columns are in- troduced in this paper. A three-dimensional (3D) finite element model (FEM) for the pile-soil system is established for impulse responses. Under saturated soil or unsaturated soil condition, several vibrating velocity-time histories at different depths in parallel hole are obtained based on the numerical simulation. It shows that the length of the pile and the one-dimensional (1D) P-wave velocity in the pile can be determined easily from the features of the mentioned velocity-time histories. By examining the slopes of the first arrival time plotted versus depth or the depth where the amplitude of the first arrival significantly decreases, the length of the pile can be determined. The effects of the 3D P-wave propagation through the saturated soil and the defect of the cemented soil column on the velocity-time histories are also investigated.展开更多
This paper assessed the benefit of the in-situ pressure test to support steam generator tube integrity assessment and reviewed a conservatism of currently applied structural integrity assessment methodology against de...This paper assessed the benefit of the in-situ pressure test to support steam generator tube integrity assessment and reviewed a conservatism of currently applied structural integrity assessment methodology against defected tubes. According to the steam generator program requirement, condition monitoring assessment was performed to the all detected flaws. For condition monitoring assessments, the limiting structural integrity requirement should be demonstrated for all detected degraded tubes at a probability of at least 0.95 at 50% confidence. Some flaws were slightly exceeded the structural integrity threshold values of the condition monitoring performance limits using analytical method. As a direct evaluation of tube integrity with degraded tubes, in-situ pressure testing performed on some selected flaws and passed all proof and leakage test criteria with no leakage. From this pressure testing, the authors have verified that degraded tubes met a specified value containing a defined safety margins. Also, the authors have confirmed that existing structural assessment methodology has enough margins to retain integrity of steam generator tubes.展开更多
Submerged abrasive waterjet peening(SAWJP)is an effective anti-fatigue manufacturing technology that is widely used to strengthen aeroengine components.This study investigated the correlation of SAWJP process paramete...Submerged abrasive waterjet peening(SAWJP)is an effective anti-fatigue manufacturing technology that is widely used to strengthen aeroengine components.This study investigated the correlation of SAWJP process parameters on surface integrity and fatigue life of titanium alloy TA19.SAWJP with different water pressures and standoff distances(SoDs)was conducted on the TA19 specimens.The surface integrity of the specimens before and after SAWJP with different process parameters was experimentally studied,including microstructure,surface roughness,microhardness,and compressive residual stress(CRS).Finally,fatigue tests of the specimens before and after SAWJP treatment with different process parameters were carried out at room temperature.The results highlighted that the fatigue life of the TA19 specimen can be increased by 5.46,5.98,and 6.28 times under relatively optimal process parameters,which is mainly due to the improved surface integrity of the specimen after SAWJP treatment.However,the fatigue life of specimens treated with improper process parameters is decreased by 0.55 to 0.69 times owing to the terrible surface roughness caused by the material erosion.This work verifies that SAWJP can effectively improve the surface integrity and fatigue life of workpieces,and reveals the relationship between process parameters,surface integrity,and fatigue life,which provides support for the promotion of SAWJP in the manufacturing fields.展开更多
Actual sea condition testing and inspection and evaluation method research are carried out for tidal energy devices to provide scientific and effective technical support for the ocean high-tech achievement transformat...Actual sea condition testing and inspection and evaluation method research are carried out for tidal energy devices to provide scientific and effective technical support for the ocean high-tech achievement transformation and marine renewable energy development. By analyzing three core indicators, including the power output characteristics of the tidal current device, the generating capacity, energy conversion efficiency, proposed the test contents and evaluation methods of indicators are proposed in this paper; and based on the research of wind farms, power quality testing and assessment methods of offshore tidal energy device are proposed; given the security access to the test contents of tidal current energy device, tidal current energy device running conditions in the testing ground are comprehensively assessed.展开更多
In detecting system fault algorithms,the false alarm rate and undectect rate generated by residual Chi-square test can affect the stability of filters.The paper proposes a fault detection algorithm based on sequential...In detecting system fault algorithms,the false alarm rate and undectect rate generated by residual Chi-square test can affect the stability of filters.The paper proposes a fault detection algorithm based on sequential residual Chi-square test and applies to fault detection of an integrated navigation system.The simulation result shows that the algorithm can accurately detect the fault information of global positioning system(GPS),eliminate the influence of false alarm and missed detection on filter,and enhance fault tolerance of integrated navigation systems.展开更多
The IEEE Standard 1149.1 boundary scan (BS) implementation provides the internal access required for testing the digital printed circuit board (PCB). However, the integrity of the boundary scan test infrastructure sh...The IEEE Standard 1149.1 boundary scan (BS) implementation provides the internal access required for testing the digital printed circuit board (PCB). However, the integrity of the boundary scan test infrastructure should be tested first to guarantee the validation of the results of the rest functional test and diagnosis. This paper describes the fault models and test principles of the BS test access port (TAP) lines on PCBs. A test algorithm with high fault coverage and short time is then presented for the PCB on which all ICs are BS ones.展开更多
Both unit and integration testing are incredibly crucial for almost any software application because each of them operates a distinct process to examine the product.Due to resource constraints,when software is subject...Both unit and integration testing are incredibly crucial for almost any software application because each of them operates a distinct process to examine the product.Due to resource constraints,when software is subjected to modifications,the drastic increase in the count of test cases forces the testers to opt for a test optimization strategy.One such strategy is test case prioritization(TCP).Existing works have propounded various methodologies that re-order the system-level test cases intending to boost either the fault detection capabilities or the coverage efficacy at the earliest.Nonetheless,singularity in objective functions and the lack of dissimilitude among the re-ordered test sequences have degraded the cogency of their approaches.Considering such gaps and scenarios when the meteoric and continuous updations in the software make the intensive unit and integration testing process more fragile,this study has introduced a memetics-inspired methodology for TCP.The proposed structure is first embedded with diverse parameters,and then traditional steps of the shuffled-frog-leaping approach(SFLA)are followed to prioritize the test cases at unit and integration levels.On 5 standard test functions,a comparative analysis is conducted between the established algorithms and the proposed approach,where the latter enhances the coverage rate and fault detection of re-ordered test sets.Investigation results related to the mean average percentage of fault detection(APFD)confirmed that the proposed approach exceeds the memetic,basic multi-walk,PSO,and optimized multi-walk by 21.7%,13.99%,12.24%,and 11.51%,respectively.展开更多
In this paper, by means of effective testing practices, main strategies of integration testing for GUI software, including differentiating strategy for distinguished system, strategy of personnel organization, increme...In this paper, by means of effective testing practices, main strategies of integration testing for GUI software, including differentiating strategy for distinguished system, strategy of personnel organization, incremental testing strategy based on baseline version, testing strategy of circulating loop through the whole life, and the strategy of test suite construction, were briefly investigated. Moreover, for the code analysis, the FTA (Fault Tree analysis) is proposed to deal with the software change in regression testing. For test suite constructing, the constructing methods for baseline version and the incremental change are deeply discussed, in which main points focus on the testing strategy based on “Sheet/Form”, the “Grey-box approach” for integration testing process, and the application of the improved STD (State Transform Diagram) in state testing. At the same time, the suite construction of integration testing for two types, including small scale program and large scale software, is analyzed and discussed in detail. For testing execution, the specific method based on “Cross-testing” is investigated. Concurrently, by a lot of examples, all results of testing activity indicate that these strategies and methods are useful and fitted to integration testing for GUI software.展开更多
The use of multiple-choice(MC)question types has been one of the most contentious issues in language testing.Much has been said and written about the use of MC over the years.However,no attempt has ever been made to i...The use of multiple-choice(MC)question types has been one of the most contentious issues in language testing.Much has been said and written about the use of MC over the years.However,no attempt has ever been made to introduce any innovation in test item types.The researchers proposed a jumbled words test item(JW)based on cognitive science and deep learning principles,and addressed the feasibility of replacing the type of multiple-choice(MC)question with JW to meet the ongoing rapid development of language testing practice.Two research questions were proposed ad hoc,focusing on the co-relationship between JW and MC scores.RASCH-GZ was used to perform item analyses(Rasch,1960).The item difficulty parameters thus obtained were used to compare the two different test items.The sample data metric includes 40 Chinese participants.The findings revealed that correlation analysis revealed that the performance of the same group of subjects taking both JW and MC was not relevant(Pearson Corr=0).This is primarily due to the total elimination of guessing factors inherent in test-takers during JW test performance.Three factors were specified for the design of the JW test:compute program,test difficulty,and score acceptability.These all have three dimensions.Data collected through questionnaires were analyzed using EFA in SPSS V.24.0.KMOs(=0.867)were found to be approximately one and significance at 0.000(0.05),indicating that the construct of theuestionnaire thus designed has better validity for factor analysis.Three important conclusions were obtained,the implications of which could provide impetus for our testing counterparts to practice more precisely and correctly,potentially reshaping our overall language testing practice.Limitations and recommendations for future research were also discussed.展开更多
During large-scale hydraulic fracturing in shale gas horizontal wells,a cement sheath easily loses its integrity due to thefluctuation and continuous change of wellbore temperature and pressure and the cyclic loading ...During large-scale hydraulic fracturing in shale gas horizontal wells,a cement sheath easily loses its integrity due to thefluctuation and continuous change of wellbore temperature and pressure and the cyclic loading and unloading,which will threaten wellbore integrity.In order tofigure out the failure mechanism of cement sheath integrity under strong alternating thermal loads and prevent the failure of cement sheath barriers during large-scale hydraulic fracturing in shale gas horizontal wells,this paper adopted the independently developed experimental device to test and evaluate the sealing integrity and mechanical integrity of the full-scale combination of production casing,cement sheath and intermediate casing under strong alternating thermal loads.And the integrity experimental results of two kinds of full-scale cement sheaths(conventional and high-strength cement sheaths)under three kinds of strong alternating thermal loads(cycle number for the occurrence of discontinuous CO_(2) bubble:4 and 14;cycle number for the occurrence of continuous CO_(2) bubble:5 and 15;alternating thermal load:30-120℃ and 30-150℃)were obtained.And the following research results were obtained.First,alternating thermal load has a significant negative impact on the integrity of cement sheath,and with the increase of alternating temperature and temperature difference,the thermal cycle number characterizing the sealing integrity of cement sheath reduces sharply.Second,the interfacial mechanical property indicators that characterize the shearing force between cement sheath and casing and the axial and radial bonding strength decrease with the increase of the alternating temperature.Third,the micro annulus in cement sheath is mainly caused by discordant deformation between the casing and the cement sheath materials,and the mechanical degradation and deterioration of the set cement induced by the alternating thermal load aggravate the failure of the sealing integrity of cement sheath to a certain degree.In conclusion,the research results can provide a reference for the design of large-scale fracturing in deep shale gas horizontal wells.展开更多
Pulsed eddy current (PEC) non-destructive test- ing and evaluation (NDT&E) has been around for some time and it is still attracting extensive attention from researchers around the globe, which can be witnessed th...Pulsed eddy current (PEC) non-destructive test- ing and evaluation (NDT&E) has been around for some time and it is still attracting extensive attention from researchers around the globe, which can be witnessed through the reports reviewed in this paper. Thanks to its richness of spectral components, various applications of this technique have been proposed and reported in the lit- erature covering both structural integrity inspection and material characterization in various industrial sectors. To support its development and for better understanding of the phenomena around the transient induced eddy currents, attempts for its modelling both analytically and numeri- cally have been made by researchers around the world. This review is an attempt to capture the state-of-the-art development and applications of PEC, especially in the last 15 years and it is not intended to be exhaustive. Future challenges and opportunities for PEC NDT&E are also presented.展开更多
Testability virtual test is a new test method for testability verification, which has the advantages such as low cost, few restrictions and large sample of test data. It can be used to make up the deficiency of testab...Testability virtual test is a new test method for testability verification, which has the advantages such as low cost, few restrictions and large sample of test data. It can be used to make up the deficiency of testability physical test. In order to take the advantage of testability virtual test data effectively and to improve the accuracy of testability evaluation, a testability integrated eval- uation method is proposed in this paper based on testability virtual test data. Considering the char- acteristic of testability virtual test data, the credibility analysis method for testability virtual test data is studied firstly. Then the integrated calculation method is proposed fusing the testability vir- tual and physical test data. Finally, certain helicopter heading and attitude system is presented to demonstrate the proposed method. The results show that the testability integrated evaluation method is feasible and effective.展开更多
The water Cherenkov detector array(WCDA) is an important part of the large high-altitude air shower observatory(LHAASO),which is in a research and development phase.The central scientific goal of LHAASO is to explore ...The water Cherenkov detector array(WCDA) is an important part of the large high-altitude air shower observatory(LHAASO),which is in a research and development phase.The central scientific goal of LHAASO is to explore the origin of high-energy cosmic rays of the universe and to push forward the frontier of new physics.To simplify the WCDA's readout electronics,a prototype of a front-end readout for an application-specific integrated circuit(ASIC) is designed based on the timeover-threshold method to achieve charge-to-time conversion.High-precision time measurement and charge measurement are necessary over a full dynamic range[1-4000photoelectrons(P.E.)].To evaluate the performance of this ASIC,a test system is designed that includes the front-end ASIC test module,digitization module,and test software.The first module needs to be customized for different ASIC versions,whereas the digitization module and test software are tested for general-purpose use.In the digitization module,a field programmable gate array-based time-todigital converter is designed with a bin size of 333 ps,which also integrates an inter-integrated circuit to configure the ASIC test module,and a universal serial bus interface is designed to transfer data to the remote computer.Test results indicate that the time resolution is better than 0.5 ns,and the charge resolution is better than 30%root mean square(RMS) at 1 P.E.and 3%RMS at 4000 P.E.,which are beyond the application requirements.展开更多
Selecting Chaoying small watershed with representative karst rocky desertification in the Bijie test area of Guizhou Province as an example, according to karst rocky desertiflcation degree and the existing eco-environ...Selecting Chaoying small watershed with representative karst rocky desertification in the Bijie test area of Guizhou Province as an example, according to karst rocky desertiflcation degree and the existing eco-environmental problems in the small watershed, we study developmental model and technique support system for integrated rehabilitation of rocky desertification in the small watershed, and bring forward the development model and technique integration for integrated rehabilitation of rocky desertification, which adapt to the karst areas of Bijie test area, Guizhou Province and even South China.展开更多
In order to solve the problem that the testing cost of the three-dimensional integrated circuit(3D IC)is too high,an optimal stacking order scheme is proposed to reduce the mid-bond test cost.A new testing model is bu...In order to solve the problem that the testing cost of the three-dimensional integrated circuit(3D IC)is too high,an optimal stacking order scheme is proposed to reduce the mid-bond test cost.A new testing model is built with the general consideration of both the test time for automatic test equipment(ATE)and manufacturing failure factors.An algorithm for testing cost and testing order optimization is proposed,and the minimum testing cost and optimized stacking order can be carried out by taking testing bandwidth and testing power as constraints.To prove the influence of the optimal stacking order on testing costs,two baselines stacked in sequential either in pyramid type or in inverted pyramid type are compared.Based on the benchmarks from ITC 02,experimental results show that for a 5-layer 3D IC,under different constraints,the optimal stacking order can reduce the test costs on average by 13%and 62%,respectively,compared to the pyramid type and inverted pyramid type.Furthermore,with the increase of the stack size,the test costs of the optimized stack order can be decreased.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52408407 and 52478373)the‘CUG Scholar’Scientific Research Funds at China University of Geosciences(Grant No.2023082).
文摘The torsional low strain integrity test(TLSIT),known for its advantages such as a smaller detection blind zone,improved identification of shallowly buried defects,stable phase velocity for signal interpretation,and better adaptability for existing pile testing.However,it lacks a comprehensive understanding of the authentic three-dimensional(3D)strain wave propagation mechanism,particularly wave reflection and transmission at defects.To address this gap,a novel 3D theoretical framework is introduced in this context to model the authentic 3D wave propagation during the TLSIT.The proposed approach is validated by comparing its results with those obtained from 3D finite element method(FEM)simulations and simplified 1D(one-dimensional)and 3D analytical solutions.Additionally,a parametric study is conducted to enhance insights into the formation mechanism of high-frequency interference observed during the TLSIT.Finally,a defect identification study is performed to provide guidance for interpreting the wave spectrum in terms of defect characteristics.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.50679017,50778063)the Science Foundation of Jiangsu Province(No.BK2008040).
文摘The three-dimensional effects of pile head and the applicability of plane-section assumption are main problems in low-strain dynamic tests on cast-in-situ concrete thin-wall pipe piles.The velocity and displacement responses were calculated by a theoretical formula deduced by the authors.The frequency and influencing factor of high-frequency interference were analyzed.A numerical method was established to calculate the peak value and arrival time of incoming waves on top of the piles.The regularity along circumferential and the influence of radius or impulse width were studied.The applicability of plane-section assumption was investigated by comparison of velocity responses at different points in the sections at different depths.The waveform of velocity response at different points forked after the first peak,indicating that the propagation of stress waves did not well meet the plane-section assumption.
文摘Based on the analysis and research of the airworthiness objective of integrated modular avionics system(IMA),and the characteristics of IMA system’s comprehensive and complex cross-linking with other airborne systems,the extraction strategy of IMA system’s compliance flight test subjects and the selection method of IMA system’s compliance flight test parameters are proposed.The data analysis method based on the abnormal probability matrix of the IMA system is proposed for the first time,and the abnormal state information of the IMA system can be quickly identified.The compliance flight test of the IMA system is completed with limited flight test resources,which achieves the purpose of saving flight test sorties and improving flight test efficiency.This research has been successfully applied to the airworthiness certification flight test of a certain civil transport aircraft in China,and can provide technical support for the subsequent type flight test.
基金the financial support given by EPSRC to the Grant LOFAMO(No.EP/X023281/1)the Basque Government for the financial support given from Elkartek Program to the Project FRONTIERS 2022—Superficies Multifuncionales en la Frontera del Conocimiento(No.KK2022/00109)。
文摘Machine Hammer Peening(MHP)is an emergent treatment that induces high compressive Residual Stresses(RS)which can enhance the in-service performance of components.This paper studies the use of small diameter MHP tools to improve the Surface Integrity(SI)of the nickel-based alloy Inconel 718 used in critical aero-engine components.Complementarily,the relaxation of RS is analyzed by in-situ annealing tests at in-service temperature combined with X-ray diffraction measurement.For this purpose,age hardened Inconel 718 discs were turned as reference condition,and then a pneumatic MHP tool was used under different conditions:two tool diameters(4 mm and 12 mm),feed rates(2.5 m/min and 5.0 m/min)and stepover distances(0.07 mm and 0.35 mm).Subsequently,surface topography characterization,RS measurements,nanoindentation tests,and microstructural observations were conducted.The in-situ annealing tests were done in the X-ray diffractometer at 550°C for exposure periods from 0 to 20 h.The results demonstrate that 4 mm diameter tools generate smooth surfaces and induce significant compressive RS within a0.5 mm thick layer.Residual stresses are relaxed,but they remain compressive even after a long thermal exposure.The microstructure of the surface layer(<10–15μm)was affected by the preceding turning operation,but importantly,MHP did not induce additional damage.
基金Project (No. 50478022) supported by the National Natural Science Foundation of China
文摘The principle and process of parallel seismic (PS) testing for the integrity testing of cemented soil columns are in- troduced in this paper. A three-dimensional (3D) finite element model (FEM) for the pile-soil system is established for impulse responses. Under saturated soil or unsaturated soil condition, several vibrating velocity-time histories at different depths in parallel hole are obtained based on the numerical simulation. It shows that the length of the pile and the one-dimensional (1D) P-wave velocity in the pile can be determined easily from the features of the mentioned velocity-time histories. By examining the slopes of the first arrival time plotted versus depth or the depth where the amplitude of the first arrival significantly decreases, the length of the pile can be determined. The effects of the 3D P-wave propagation through the saturated soil and the defect of the cemented soil column on the velocity-time histories are also investigated.
文摘This paper assessed the benefit of the in-situ pressure test to support steam generator tube integrity assessment and reviewed a conservatism of currently applied structural integrity assessment methodology against defected tubes. According to the steam generator program requirement, condition monitoring assessment was performed to the all detected flaws. For condition monitoring assessments, the limiting structural integrity requirement should be demonstrated for all detected degraded tubes at a probability of at least 0.95 at 50% confidence. Some flaws were slightly exceeded the structural integrity threshold values of the condition monitoring performance limits using analytical method. As a direct evaluation of tube integrity with degraded tubes, in-situ pressure testing performed on some selected flaws and passed all proof and leakage test criteria with no leakage. From this pressure testing, the authors have verified that degraded tubes met a specified value containing a defined safety margins. Also, the authors have confirmed that existing structural assessment methodology has enough margins to retain integrity of steam generator tubes.
基金supported financially by the National Natural Science Foundation of China(Nos.52275148 and U21B2077)Natural Science Foundation of Shanghai(20ZR1415300)+1 种基金Innovation Program of Shanghai Municipal Education Commission(2019-01-07-00-02-E00068)Innovation Program Phase II of AECC Commercial Aircraft Engine Co.Ltd.(Grant No.HT-3RJC1053-2020)。
文摘Submerged abrasive waterjet peening(SAWJP)is an effective anti-fatigue manufacturing technology that is widely used to strengthen aeroengine components.This study investigated the correlation of SAWJP process parameters on surface integrity and fatigue life of titanium alloy TA19.SAWJP with different water pressures and standoff distances(SoDs)was conducted on the TA19 specimens.The surface integrity of the specimens before and after SAWJP with different process parameters was experimentally studied,including microstructure,surface roughness,microhardness,and compressive residual stress(CRS).Finally,fatigue tests of the specimens before and after SAWJP treatment with different process parameters were carried out at room temperature.The results highlighted that the fatigue life of the TA19 specimen can be increased by 5.46,5.98,and 6.28 times under relatively optimal process parameters,which is mainly due to the improved surface integrity of the specimen after SAWJP treatment.However,the fatigue life of specimens treated with improper process parameters is decreased by 0.55 to 0.69 times owing to the terrible surface roughness caused by the material erosion.This work verifies that SAWJP can effectively improve the surface integrity and fatigue life of workpieces,and reveals the relationship between process parameters,surface integrity,and fatigue life,which provides support for the promotion of SAWJP in the manufacturing fields.
基金supported by the Implementation Programs for Marine Renewable Energy Special Funds (GHME2012ZC02)
文摘Actual sea condition testing and inspection and evaluation method research are carried out for tidal energy devices to provide scientific and effective technical support for the ocean high-tech achievement transformation and marine renewable energy development. By analyzing three core indicators, including the power output characteristics of the tidal current device, the generating capacity, energy conversion efficiency, proposed the test contents and evaluation methods of indicators are proposed in this paper; and based on the research of wind farms, power quality testing and assessment methods of offshore tidal energy device are proposed; given the security access to the test contents of tidal current energy device, tidal current energy device running conditions in the testing ground are comprehensively assessed.
基金supported by the National Natural Science Foundation of China(6063403060702066)+1 种基金the Aerospace Science Foundation(20090853013)Fundmental Research Foundation of NWPU(JC201015),Soaring Star of NWPU
文摘In detecting system fault algorithms,the false alarm rate and undectect rate generated by residual Chi-square test can affect the stability of filters.The paper proposes a fault detection algorithm based on sequential residual Chi-square test and applies to fault detection of an integrated navigation system.The simulation result shows that the algorithm can accurately detect the fault information of global positioning system(GPS),eliminate the influence of false alarm and missed detection on filter,and enhance fault tolerance of integrated navigation systems.
文摘The IEEE Standard 1149.1 boundary scan (BS) implementation provides the internal access required for testing the digital printed circuit board (PCB). However, the integrity of the boundary scan test infrastructure should be tested first to guarantee the validation of the results of the rest functional test and diagnosis. This paper describes the fault models and test principles of the BS test access port (TAP) lines on PCBs. A test algorithm with high fault coverage and short time is then presented for the PCB on which all ICs are BS ones.
文摘Both unit and integration testing are incredibly crucial for almost any software application because each of them operates a distinct process to examine the product.Due to resource constraints,when software is subjected to modifications,the drastic increase in the count of test cases forces the testers to opt for a test optimization strategy.One such strategy is test case prioritization(TCP).Existing works have propounded various methodologies that re-order the system-level test cases intending to boost either the fault detection capabilities or the coverage efficacy at the earliest.Nonetheless,singularity in objective functions and the lack of dissimilitude among the re-ordered test sequences have degraded the cogency of their approaches.Considering such gaps and scenarios when the meteoric and continuous updations in the software make the intensive unit and integration testing process more fragile,this study has introduced a memetics-inspired methodology for TCP.The proposed structure is first embedded with diverse parameters,and then traditional steps of the shuffled-frog-leaping approach(SFLA)are followed to prioritize the test cases at unit and integration levels.On 5 standard test functions,a comparative analysis is conducted between the established algorithms and the proposed approach,where the latter enhances the coverage rate and fault detection of re-ordered test sets.Investigation results related to the mean average percentage of fault detection(APFD)confirmed that the proposed approach exceeds the memetic,basic multi-walk,PSO,and optimized multi-walk by 21.7%,13.99%,12.24%,and 11.51%,respectively.
文摘In this paper, by means of effective testing practices, main strategies of integration testing for GUI software, including differentiating strategy for distinguished system, strategy of personnel organization, incremental testing strategy based on baseline version, testing strategy of circulating loop through the whole life, and the strategy of test suite construction, were briefly investigated. Moreover, for the code analysis, the FTA (Fault Tree analysis) is proposed to deal with the software change in regression testing. For test suite constructing, the constructing methods for baseline version and the incremental change are deeply discussed, in which main points focus on the testing strategy based on “Sheet/Form”, the “Grey-box approach” for integration testing process, and the application of the improved STD (State Transform Diagram) in state testing. At the same time, the suite construction of integration testing for two types, including small scale program and large scale software, is analyzed and discussed in detail. For testing execution, the specific method based on “Cross-testing” is investigated. Concurrently, by a lot of examples, all results of testing activity indicate that these strategies and methods are useful and fitted to integration testing for GUI software.
文摘The use of multiple-choice(MC)question types has been one of the most contentious issues in language testing.Much has been said and written about the use of MC over the years.However,no attempt has ever been made to introduce any innovation in test item types.The researchers proposed a jumbled words test item(JW)based on cognitive science and deep learning principles,and addressed the feasibility of replacing the type of multiple-choice(MC)question with JW to meet the ongoing rapid development of language testing practice.Two research questions were proposed ad hoc,focusing on the co-relationship between JW and MC scores.RASCH-GZ was used to perform item analyses(Rasch,1960).The item difficulty parameters thus obtained were used to compare the two different test items.The sample data metric includes 40 Chinese participants.The findings revealed that correlation analysis revealed that the performance of the same group of subjects taking both JW and MC was not relevant(Pearson Corr=0).This is primarily due to the total elimination of guessing factors inherent in test-takers during JW test performance.Three factors were specified for the design of the JW test:compute program,test difficulty,and score acceptability.These all have three dimensions.Data collected through questionnaires were analyzed using EFA in SPSS V.24.0.KMOs(=0.867)were found to be approximately one and significance at 0.000(0.05),indicating that the construct of theuestionnaire thus designed has better validity for factor analysis.Three important conclusions were obtained,the implications of which could provide impetus for our testing counterparts to practice more precisely and correctly,potentially reshaping our overall language testing practice.Limitations and recommendations for future research were also discussed.
基金Project supported by the National Natural Science Foundation of China“Study on Casing-Cement Sheath-Formation Integrity under Alternating Temperature,Pressure and Their Coupling Effects”(No.:51904261)China Postdoctoral Science Foundation(No.:2019M653478)。
文摘During large-scale hydraulic fracturing in shale gas horizontal wells,a cement sheath easily loses its integrity due to thefluctuation and continuous change of wellbore temperature and pressure and the cyclic loading and unloading,which will threaten wellbore integrity.In order tofigure out the failure mechanism of cement sheath integrity under strong alternating thermal loads and prevent the failure of cement sheath barriers during large-scale hydraulic fracturing in shale gas horizontal wells,this paper adopted the independently developed experimental device to test and evaluate the sealing integrity and mechanical integrity of the full-scale combination of production casing,cement sheath and intermediate casing under strong alternating thermal loads.And the integrity experimental results of two kinds of full-scale cement sheaths(conventional and high-strength cement sheaths)under three kinds of strong alternating thermal loads(cycle number for the occurrence of discontinuous CO_(2) bubble:4 and 14;cycle number for the occurrence of continuous CO_(2) bubble:5 and 15;alternating thermal load:30-120℃ and 30-150℃)were obtained.And the following research results were obtained.First,alternating thermal load has a significant negative impact on the integrity of cement sheath,and with the increase of alternating temperature and temperature difference,the thermal cycle number characterizing the sealing integrity of cement sheath reduces sharply.Second,the interfacial mechanical property indicators that characterize the shearing force between cement sheath and casing and the axial and radial bonding strength decrease with the increase of the alternating temperature.Third,the micro annulus in cement sheath is mainly caused by discordant deformation between the casing and the cement sheath materials,and the mechanical degradation and deterioration of the set cement induced by the alternating thermal load aggravate the failure of the sealing integrity of cement sheath to a certain degree.In conclusion,the research results can provide a reference for the design of large-scale fracturing in deep shale gas horizontal wells.
基金Ministry of Higher Education of Malaysia for funding the project on PEC NDT at IIUM through the research grant FRGS16-059-0558supported by the National Natural Science Foundation of China under research grants 51677187 and 51307172
文摘Pulsed eddy current (PEC) non-destructive test- ing and evaluation (NDT&E) has been around for some time and it is still attracting extensive attention from researchers around the globe, which can be witnessed through the reports reviewed in this paper. Thanks to its richness of spectral components, various applications of this technique have been proposed and reported in the lit- erature covering both structural integrity inspection and material characterization in various industrial sectors. To support its development and for better understanding of the phenomena around the transient induced eddy currents, attempts for its modelling both analytically and numeri- cally have been made by researchers around the world. This review is an attempt to capture the state-of-the-art development and applications of PEC, especially in the last 15 years and it is not intended to be exhaustive. Future challenges and opportunities for PEC NDT&E are also presented.
基金supported by National Natural Science Foundation of China (No.51105369)
文摘Testability virtual test is a new test method for testability verification, which has the advantages such as low cost, few restrictions and large sample of test data. It can be used to make up the deficiency of testability physical test. In order to take the advantage of testability virtual test data effectively and to improve the accuracy of testability evaluation, a testability integrated eval- uation method is proposed in this paper based on testability virtual test data. Considering the char- acteristic of testability virtual test data, the credibility analysis method for testability virtual test data is studied firstly. Then the integrated calculation method is proposed fusing the testability vir- tual and physical test data. Finally, certain helicopter heading and attitude system is presented to demonstrate the proposed method. The results show that the testability integrated evaluation method is feasible and effective.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(KJCX2-YW-N27)the CAS Center for Excellence in Particle Physics(CCEPP)
文摘The water Cherenkov detector array(WCDA) is an important part of the large high-altitude air shower observatory(LHAASO),which is in a research and development phase.The central scientific goal of LHAASO is to explore the origin of high-energy cosmic rays of the universe and to push forward the frontier of new physics.To simplify the WCDA's readout electronics,a prototype of a front-end readout for an application-specific integrated circuit(ASIC) is designed based on the timeover-threshold method to achieve charge-to-time conversion.High-precision time measurement and charge measurement are necessary over a full dynamic range[1-4000photoelectrons(P.E.)].To evaluate the performance of this ASIC,a test system is designed that includes the front-end ASIC test module,digitization module,and test software.The first module needs to be customized for different ASIC versions,whereas the digitization module and test software are tested for general-purpose use.In the digitization module,a field programmable gate array-based time-todigital converter is designed with a bin size of 333 ps,which also integrates an inter-integrated circuit to configure the ASIC test module,and a universal serial bus interface is designed to transfer data to the remote computer.Test results indicate that the time resolution is better than 0.5 ns,and the charge resolution is better than 30%root mean square(RMS) at 1 P.E.and 3%RMS at 4000 P.E.,which are beyond the application requirements.
基金Supported by Major Issue of National "12~(th) Five-year Plan"Science and Technology Support Plan,China(2011BAC09B01)
文摘Selecting Chaoying small watershed with representative karst rocky desertification in the Bijie test area of Guizhou Province as an example, according to karst rocky desertiflcation degree and the existing eco-environmental problems in the small watershed, we study developmental model and technique support system for integrated rehabilitation of rocky desertification in the small watershed, and bring forward the development model and technique integration for integrated rehabilitation of rocky desertification, which adapt to the karst areas of Bijie test area, Guizhou Province and even South China.
基金The National Natural Science Foundation of China(No.61674048,61574052,61474036,61371025)the Project of Anhui Institute of Economics and Management(No.YJKT1417T01)
文摘In order to solve the problem that the testing cost of the three-dimensional integrated circuit(3D IC)is too high,an optimal stacking order scheme is proposed to reduce the mid-bond test cost.A new testing model is built with the general consideration of both the test time for automatic test equipment(ATE)and manufacturing failure factors.An algorithm for testing cost and testing order optimization is proposed,and the minimum testing cost and optimized stacking order can be carried out by taking testing bandwidth and testing power as constraints.To prove the influence of the optimal stacking order on testing costs,two baselines stacked in sequential either in pyramid type or in inverted pyramid type are compared.Based on the benchmarks from ITC 02,experimental results show that for a 5-layer 3D IC,under different constraints,the optimal stacking order can reduce the test costs on average by 13%and 62%,respectively,compared to the pyramid type and inverted pyramid type.Furthermore,with the increase of the stack size,the test costs of the optimized stack order can be decreased.