期刊文献+
共找到105,775篇文章
< 1 2 250 >
每页显示 20 50 100
A Review of Machine Translation Techniques for Low-Resource Languages
1
作者 PENG Cheng-xi MA Zi-han 《Journal of Literature and Art Studies》 2025年第9期725-731,共7页
Machine translation of low-resource languages(LRLs)has long been hindered by limited corpora and linguistic complexity.This review summarizes key developments,from traditional methods to recent progress with large lan... Machine translation of low-resource languages(LRLs)has long been hindered by limited corpora and linguistic complexity.This review summarizes key developments,from traditional methods to recent progress with large language models(LLMs),while highlighting ongoing challenges such as data bottlenecks,biases,fairness,and computational costs.Finally,it discusses future directions,including efficient parameter fine-tuning,multimodal translation,and community-driven corpus construction,providing insights for advancing LRL translation research. 展开更多
关键词 low-resource languages(LRLs) machine translation large language models(LLMs)
在线阅读 下载PDF
Fine Tuning Language Models:A Tale of Two Low-Resource Languages 被引量:1
2
作者 Rosel Oida-Onesa Melvin A.Ballera 《Data Intelligence》 2024年第4期946-967,共22页
Creating a parallel corpus for machine translation is a challenging and time-consuming task,especially in a linguistically diverse country like the Philippines,with 185 languages.Although a wealth of text is available... Creating a parallel corpus for machine translation is a challenging and time-consuming task,especially in a linguistically diverse country like the Philippines,with 185 languages.Although a wealth of text is available,annotated data is scarce,particularly for languages like Bikol.Bikol is one of the major languages in the Philippines;however,its underrepresentation in the digital sphere is attributed to the absence of annotated data.This study outlines the development process of BFParCo,a proposed gold standard dataset for the Bikol and Filipino parallel corpus.The corpus underwent refinement through manual phrase alignment,translation,and evaluation.Subsequently,T5 and mT5 transformer models were fine-tuned with the parallel corpus and were evaluated using the BLEU metric.The results showed a notable improvement in Bilingual Evaluation Understudy(BLEU)score after fine-tuning,with an increase of 60.68 in BIK→FIL and 58.93 in FIL→BIK translations.Additionally,human evaluators comprehensively assessed the fine-tuned models'results using Multidimensional Quality Metrics and Scalar Quality Metrics error taxonomies.The fine-tuned models then were made publicly accessible through Hugging Face.This study represents a significant stride in advancing machine translation tools for Bikol and Filipino languages. 展开更多
关键词 Natural language processing language models Transfer learning Fine-tuning Low resource language Bikol FILIPINO
原文传递
Roles of Customs,Cultures,and Languages in Informed Consent
3
作者 Alfred P.Minei 《Psychology Research》 2025年第3期133-148,共16页
The work in this paper is based on primary research on how to obtain informed consent to medical treatment and or procedure among patients;this study was carried out in Papua New Guinea in both urban and rural health ... The work in this paper is based on primary research on how to obtain informed consent to medical treatment and or procedure among patients;this study was carried out in Papua New Guinea in both urban and rural health settings across customs,cultures,and languages in two provinces,on the basis of qualitative interviews with healthcare professionals including doctors,nurses,other healthcare workers,patients,and traditional healers.We emphasize the views of consent with participants of customs,cultural,and languages regarding informed consent.There are factors between peoples of differing circumstances which can greatly alter how they view consent.Some groups would involve people in the decision-making process that may not traditionally be involved in the decision making of a medical decision.Other groups may dislike certain medical procedures as in Papua New Guinea(PNG).And certain people have different views on what should be disclosed of the patient’s condition.Customs,cultures,and languages are common phenomena which continue to affect the daily lives of many thousands of people.It is unclear in PNG about the characteristics of customs,culture,and language on health care because there is no published information on informed consent and issues that affect the making of informed consent. 展开更多
关键词 CUSTOMS CULTURE languagE informed consent
暂未订购
Research on the Training Model of“Foreign Languages+Area Studies”Interdisciplinary Talent Development:A Case Study of China’s Talent Training for International Ocean Affairs
4
作者 GUO Rui 《Sino-US English Teaching》 2025年第1期22-27,共6页
This paper proposes an interdisciplinary talent training model that combines foreign language education with area studies.The model aims to cultivate international ocean affairs professionals with cross-cultural commu... This paper proposes an interdisciplinary talent training model that combines foreign language education with area studies.The model aims to cultivate international ocean affairs professionals with cross-cultural communication skills,in-depth regional and country knowledge,and practical expertise in ocean affairs.Additionally,the paper presents specific training pathways and policy recommendations for implementing this model. 展开更多
关键词 foreign languages area studies talent development for international ocean affairs educational reform
在线阅读 下载PDF
Sentiment Analysis of Low-Resource Language Literature Using Data Processing and Deep Learning
5
作者 Aizaz Ali Maqbool Khan +2 位作者 Khalil Khan Rehan Ullah Khan Abdulrahman Aloraini 《Computers, Materials & Continua》 SCIE EI 2024年第4期713-733,共21页
Sentiment analysis, a crucial task in discerning emotional tones within the text, plays a pivotal role in understandingpublic opinion and user sentiment across diverse languages.While numerous scholars conduct sentime... Sentiment analysis, a crucial task in discerning emotional tones within the text, plays a pivotal role in understandingpublic opinion and user sentiment across diverse languages.While numerous scholars conduct sentiment analysisin widely spoken languages such as English, Chinese, Arabic, Roman Arabic, and more, we come to grapplingwith resource-poor languages like Urdu literature which becomes a challenge. Urdu is a uniquely crafted language,characterized by a script that amalgamates elements from diverse languages, including Arabic, Parsi, Pashtu,Turkish, Punjabi, Saraiki, and more. As Urdu literature, characterized by distinct character sets and linguisticfeatures, presents an additional hurdle due to the lack of accessible datasets, rendering sentiment analysis aformidable undertaking. The limited availability of resources has fueled increased interest among researchers,prompting a deeper exploration into Urdu sentiment analysis. This research is dedicated to Urdu languagesentiment analysis, employing sophisticated deep learning models on an extensive dataset categorized into fivelabels: Positive, Negative, Neutral, Mixed, and Ambiguous. The primary objective is to discern sentiments andemotions within the Urdu language, despite the absence of well-curated datasets. To tackle this challenge, theinitial step involves the creation of a comprehensive Urdu dataset by aggregating data from various sources such asnewspapers, articles, and socialmedia comments. Subsequent to this data collection, a thorough process of cleaningand preprocessing is implemented to ensure the quality of the data. The study leverages two well-known deeplearningmodels, namely Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN), for bothtraining and evaluating sentiment analysis performance. Additionally, the study explores hyperparameter tuning tooptimize the models’ efficacy. Evaluation metrics such as precision, recall, and the F1-score are employed to assessthe effectiveness of the models. The research findings reveal that RNN surpasses CNN in Urdu sentiment analysis,gaining a significantly higher accuracy rate of 91%. This result accentuates the exceptional performance of RNN,solidifying its status as a compelling option for conducting sentiment analysis tasks in the Urdu language. 展开更多
关键词 Urdu sentiment analysis convolutional neural networks recurrent neural network deep learning natural language processing neural networks
在线阅读 下载PDF
Lexicon-based fine-tuning of multilingual language models for low-resource language sentiment analysis
6
作者 Vinura Dhananjaya Surangika Ranathunga Sanath Jayasena 《CAAI Transactions on Intelligence Technology》 2024年第5期1116-1125,共10页
Pre-trained multilingual language models (PMLMs) such as mBERT and XLM-R have shown good cross-lingual transferability. However, they are not specifically trained to capture cross-lingual signals concerning sentiment ... Pre-trained multilingual language models (PMLMs) such as mBERT and XLM-R have shown good cross-lingual transferability. However, they are not specifically trained to capture cross-lingual signals concerning sentiment words. This poses a disadvantage for low-resource languages (LRLs) that are under-represented in these models. To better fine-tune these models for sentiment classification in LRLs, a novel intermediate task fine-tuning (ITFT) technique based on a sentiment lexicon of a high-resource language (HRL) is introduced. The authors experiment with LRLs Sinhala, Tamil and Bengali for a 3-class sentiment classification task and show that this method outperforms vanilla fine-tuning of the PMLM. It also outperforms or is on-par with basic ITFT that relies on an HRL sentiment classification dataset. 展开更多
关键词 deep learning natural languages natural language processing
在线阅读 下载PDF
Improving Low-Resource Machine Translation Using Reinforcement Learning from Human Feedback
7
作者 Liqing Wang Yiheng Xiao 《Intelligent Automation & Soft Computing》 2024年第4期619-631,共13页
Neural Machine Translation is one of the key research directions in Natural Language Processing.However,limited by the scale and quality of parallel corpus,the translation quality of low-resource Neural Machine Transl... Neural Machine Translation is one of the key research directions in Natural Language Processing.However,limited by the scale and quality of parallel corpus,the translation quality of low-resource Neural Machine Translation has always been unsatisfactory.When Reinforcement Learning from Human Feedback(RLHF)is applied to lowresource machine translation,commonly encountered issues of substandard preference data quality and the higher cost associated with manual feedback data.Therefore,a more cost-effective method for obtaining feedback data is proposed.At first,optimizing the quality of preference data through the prompt engineering of the Large Language Model(LLM),then combining human feedback to complete the evaluation.In this way,the reward model could acquire more semantic information and human preferences during the training phase,thereby enhancing feedback efficiency and the result’s quality.Experimental results demonstrate that compared with the traditional RLHF method,our method has been proven effective on multiple datasets and exhibits a notable improvement of 1.07 in BLUE.Meanwhile,it is also more favorably received in the assessments conducted by human evaluators and GPT-4o. 展开更多
关键词 low-resource neural machine translation RLHF prompt engineering LLM
在线阅读 下载PDF
Large language models for robotics:Opportunities,challenges,and perspectives 被引量:4
8
作者 Jiaqi Wang Enze Shi +7 位作者 Huawen Hu Chong Ma Yiheng Liu Xuhui Wang Yincheng Yao Xuan Liu Bao Ge Shu Zhang 《Journal of Automation and Intelligence》 2025年第1期52-64,共13页
Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and langua... Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions.However,for embodied tasks,where robots interact with complex environments,textonly LLMs often face challenges due to a lack of compatibility with robotic visual perception.This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks.Additionally,we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions.Our results,based on diverse datasets,indicate that GPT-4V effectively enhances robot performance in embodied tasks.This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights towards bridging the gap in Human-Robot-Environment interaction. 展开更多
关键词 Large language models ROBOTICS Generative AI Embodied intelligence
在线阅读 下载PDF
二语写作研究的现状、反思与展望——基于Journal of Second Language Writing近十年载文分析
9
作者 孙云帆 孙玲 《西部学刊》 2025年第5期164-168,共5页
二语写作是二语习得研究领域的重要组成部分。运用CiteSpace软件对近十年发表在Journal of Second Language Writing的231篇实证研究论文进行可视化分析,研究发现:二语写作研究整体呈波动性上升趋势,研究规模较为稳定,研究关注度逐渐提... 二语写作是二语习得研究领域的重要组成部分。运用CiteSpace软件对近十年发表在Journal of Second Language Writing的231篇实证研究论文进行可视化分析,研究发现:二语写作研究整体呈波动性上升趋势,研究规模较为稳定,研究关注度逐渐提升;二语写作研究领域暂未形成明显的核心作者和机构的合作网络;研究主题主要聚焦二语写作教学方法的多元化、二语写作反馈的多焦点、二语写作评估与测试的科学化,以及学习者个体差异的多维影响等方面。基于此,提出未来该领域发展需加强学者、机构之间的相互合作;关注个体学习者写作过程的认知特征与情感因素,尤其重视青少年二语学习过程的研究;扩大二语写作纵向研究规模,推动研究的深入发展。 展开更多
关键词 二语写作研究 Journal of Second language Writing 可视化分析 现状 反思与展望
在线阅读 下载PDF
Embracing different languages and local differences:Coconstructive patient simulation strengthens host countries’clinical training in psychiatry
10
作者 Şafak ErayÇamlı Büşra Ece Yavuz +6 位作者 Meliha Feyza Gök Idil Yazgan Yanki Yazgan Ayelet Brand-Gothelf Doron Gothelf Doron Amsalem Andrés Martin 《World Journal of Psychiatry》 SCIE 2024年第1期111-118,共8页
BACKGROUND Global education in psychiatry is heavily influenced by knowledge from Western,high-income countries,which obscures local voices and expertise.AIM To adapt a human simulation model to psychiatric education ... BACKGROUND Global education in psychiatry is heavily influenced by knowledge from Western,high-income countries,which obscures local voices and expertise.AIM To adapt a human simulation model to psychiatric education in a context that is specific to local languages and cultures.METHODS We conducted an observational study consisting of six human simulation sessions with standardized patients from two host countries,speaking their native languages,and following an adaptation of the co-constructive patient simulation(CCPS)model.As local faculty became increasingly familiar with the CCPS approach,they took on the role of facilitators—in their country’s native language.RESULTS Fifty-three learners participated:19 child and adolescent psychiatry trainees and 3 faculty members in Türkiye(as a group that met online during 3 consecutive months);and 24 trainees and 7 faculty in Israel(divided into 3 groups,in parallel in-person sessions during a single training day).Each of the six cases reflected local realities and clinical challenges,and was associated with specific learning goals identified by each case-writing trainee.CONCLUSION Human simulation has not been fully incorporated into psychiatric education:The creation of immersive clinical experiences and the strengthening of reflective practice are two areas ripe for development.Our adaptations of CCPS can also strengthen local and regional networks and psychiatric communities of practice.Finally,the model can help question and press against hegemonies in psychiatric training that overshadow local expertise. 展开更多
关键词 Human simulation Standardized patients Medical education Psychiatric education Capacity building Local languages
暂未订购
Building sustainable capacity for better access to diabetes care in low-resource settings:A critical review of global efforts and integrated strategies
11
作者 Emmanuel Lamptey 《Health Care Science》 2024年第2期131-139,共9页
The alarming state of global insulin access in low-resource settings presents a major barrier to diabetes care.A comprehensive review of these challenges is lacking at the global level.To address this weakness,enhance... The alarming state of global insulin access in low-resource settings presents a major barrier to diabetes care.A comprehensive review of these challenges is lacking at the global level.To address this weakness,enhance affordability and build capacity for a more sustainable approach to scaling up access.This review analyzes the specific issue of inconsistent access to insulin in low-and middle-income countries.Using this analysis,we mapped the scope and intensity of issues such as the unaffordability and unavailability of insulin.We also identified six innovative and integrative strategies for increasing and securing accessibility in the areas of policy making,marketing,clinical practice,health education,domestication,and multisectoral approaches. 展开更多
关键词 SUSTAINABLE capacity ACCESS DIABETES low-resource settings CRITICAL
在线阅读 下载PDF
Tool learning with large language models:a survey 被引量:1
12
作者 Changle QU Sunhao DAI +5 位作者 Xiaochi WEI Hengyi CAI Shuaiqiang WANG Dawei YIN Jun XU Ji-rong WEN 《Frontiers of Computer Science》 2025年第8期63-83,共21页
Recently,tool learning with large language models(LLMs)has emerged as a promising paradigm for augmenting the capabilities of LLMs to tackle highly complex problems.Despite growing attention and rapid advancements in ... Recently,tool learning with large language models(LLMs)has emerged as a promising paradigm for augmenting the capabilities of LLMs to tackle highly complex problems.Despite growing attention and rapid advancements in this field,the existing literature remains fragmented and lacks systematic organization,posing barriers to entry for newcomers.This gap motivates us to conduct a comprehensive survey of existing works on tool learning with LLMs.In this survey,we focus on reviewing existing literature from the two primary aspects(1)why tool learning is beneficial and(2)how tool learning is implemented,enabling a comprehensive understanding of tool learning with LLMs.We first explore the“why”by reviewing both the benefits of tool integration and the inherent benefits of the tool learning paradigm from six specific aspects.In terms of“how”,we systematically review the literature according to a taxonomy of four key stages in the tool learning workflow:task planning,tool selection,tool calling,and response generation.Additionally,we provide a detailed summary of existing benchmarks and evaluation methods,categorizing them according to their relevance to different stages.Finally,we discuss current challenges and outline potential future directions,aiming to inspire both researchers and industrial developers to further explore this emerging and promising area. 展开更多
关键词 tool learning large language models AGENT
原文传递
Evaluating research quality with Large Language Models:An analysis of ChatGPT’s effectiveness with different settings and inputs 被引量:1
13
作者 Mike Thelwall 《Journal of Data and Information Science》 2025年第1期7-25,共19页
Purpose:Evaluating the quality of academic journal articles is a time consuming but critical task for national research evaluation exercises,appointments and promotion.It is therefore important to investigate whether ... Purpose:Evaluating the quality of academic journal articles is a time consuming but critical task for national research evaluation exercises,appointments and promotion.It is therefore important to investigate whether Large Language Models(LLMs)can play a role in this process.Design/methodology/approach:This article assesses which ChatGPT inputs(full text without tables,figures,and references;title and abstract;title only)produce better quality score estimates,and the extent to which scores are affected by ChatGPT models and system prompts.Findings:The optimal input is the article title and abstract,with average ChatGPT scores based on these(30 iterations on a dataset of 51 papers)correlating at 0.67 with human scores,the highest ever reported.ChatGPT 4o is slightly better than 3.5-turbo(0.66),and 4o-mini(0.66).Research limitations:The data is a convenience sample of the work of a single author,it only includes one field,and the scores are self-evaluations.Practical implications:The results suggest that article full texts might confuse LLM research quality evaluations,even though complex system instructions for the task are more effective than simple ones.Thus,whilst abstracts contain insufficient information for a thorough assessment of rigour,they may contain strong pointers about originality and significance.Finally,linear regression can be used to convert the model scores into the human scale scores,which is 31%more accurate than guessing.Originality/value:This is the first systematic comparison of the impact of different prompts,parameters and inputs for ChatGPT research quality evaluations. 展开更多
关键词 ChatGPT Large language Models LLMs SCIENTOMETRICS Research Assessment
在线阅读 下载PDF
On large language models safety,security,and privacy:A survey 被引量:1
14
作者 Ran Zhang Hong-Wei Li +2 位作者 Xin-Yuan Qian Wen-Bo Jiang Han-Xiao Chen 《Journal of Electronic Science and Technology》 2025年第1期1-21,共21页
The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation capabilities.De... The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation capabilities.Despite their transformative impact in fields such as machine translation and intelligent dialogue systems,LLMs face significant challenges.These challenges include safety,security,and privacy concerns that undermine their trustworthiness and effectiveness,such as hallucinations,backdoor attacks,and privacy leakage.Previous works often conflated safety issues with security concerns.In contrast,our study provides clearer and more reasonable definitions for safety,security,and privacy within the context of LLMs.Building on these definitions,we provide a comprehensive overview of the vulnerabilities and defense mechanisms related to safety,security,and privacy in LLMs.Additionally,we explore the unique research challenges posed by LLMs and suggest potential avenues for future research,aiming to enhance the robustness and reliability of LLMs in the face of emerging threats. 展开更多
关键词 Large language models Privacy issues Safety issues Security issues
在线阅读 下载PDF
Diffusion-based generative drug-like molecular editing with chemical natural language 被引量:1
15
作者 Jianmin Wang Peng Zhou +6 位作者 Zixu Wang Wei Long Yangyang Chen Kyoung Tai No Dongsheng Ouyang Jiashun Mao Xiangxiang Zeng 《Journal of Pharmaceutical Analysis》 2025年第6期1215-1225,共11页
Recently,diffusion models have emerged as a promising paradigm for molecular design and optimization.However,most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geom-etries,with limited ... Recently,diffusion models have emerged as a promising paradigm for molecular design and optimization.However,most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geom-etries,with limited research on molecular sequence diffusion models.The International Union of Pure and Applied Chemistry(IUPAC)names are more akin to chemical natural language than the simplified molecular input line entry system(SMILES)for organic compounds.In this work,we apply an IUPAC-guided conditional diffusion model to facilitate molecular editing from chemical natural language to chemical language(SMILES)and explore whether the pre-trained generative performance of diffusion models can be transferred to chemical natural language.We propose DiffIUPAC,a controllable molecular editing diffusion model that converts IUPAC names to SMILES strings.Evaluation results demonstrate that our model out-performs existing methods and successfully captures the semantic rules of both chemical languages.Chemical space and scaffold analysis show that the model can generate similar compounds with diverse scaffolds within the specified constraints.Additionally,to illustrate the model’s applicability in drug design,we conducted case studies in functional group editing,analogue design and linker design. 展开更多
关键词 Diffusion model IUPAC Molecular generative model Chemical natural language Transformer
在线阅读 下载PDF
Large Language Model Agent with VGI Data for Mapping 被引量:2
16
作者 SONG Jiayu ZHANG Yifan +1 位作者 WANG Zhiyun YU Wenhao 《Journal of Geodesy and Geoinformation Science》 2025年第2期57-73,共17页
In recent years,Volunteered Geographic Information(VGI)has emerged as a crucial source of mapping data,contributed by users through crowdsourcing platforms such as OpenStreetMap.This paper presents a novel approach th... In recent years,Volunteered Geographic Information(VGI)has emerged as a crucial source of mapping data,contributed by users through crowdsourcing platforms such as OpenStreetMap.This paper presents a novel approach that Integrates Large Language Models(LLMs)into a fully automated mapping workflow,utilizing VGI data.The process leverages Prompt Engineering,which involves designing and optimizing input instructions to ensure the LLM produces desired mapping outputs.By constructing precise and detailed prompts,LLM agents are able to accurately interpret mapping requirements,and autonomously extract,analyze,and process VGI geospatial data.They dynamically interact with mapping tools to automate the entire mapping process—from data acquisition to map generation.This approach significantly streamlines the creation of high-quality mapping outputs,reducing the time and resources typically required for such tasks.Moreover,the system lowers the barrier for non-expert users,enabling them to generate accurate maps without extensive technical expertise.Through various case studies,we demonstrate the LLM application across different mapping scenarios,highlighting its potential to enhance the efficiency,accuracy,and accessibility of map production.The results suggest that LLM-powered mapping systems can not only optimize VGI data processing but also expand the usability of ubiquitous mapping across diverse fields,including urban planning and infrastructure development. 展开更多
关键词 Volunteered Geographic Information(VGI) Geospatial Artificial Intelligence(GeoAI) AGENT large language model
在线阅读 下载PDF
When Software Security Meets Large Language Models:A Survey 被引量:1
17
作者 Xiaogang Zhu Wei Zhou +3 位作者 Qing-Long Han Wanlun Ma Sheng Wen Yang Xiang 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期317-334,共18页
Software security poses substantial risks to our society because software has become part of our life. Numerous techniques have been proposed to resolve or mitigate the impact of software security issues. Among them, ... Software security poses substantial risks to our society because software has become part of our life. Numerous techniques have been proposed to resolve or mitigate the impact of software security issues. Among them, software testing and analysis are two of the critical methods, which significantly benefit from the advancements in deep learning technologies. Due to the successful use of deep learning in software security, recently,researchers have explored the potential of using large language models(LLMs) in this area. In this paper, we systematically review the results focusing on LLMs in software security. We analyze the topics of fuzzing, unit test, program repair, bug reproduction, data-driven bug detection, and bug triage. We deconstruct these techniques into several stages and analyze how LLMs can be used in the stages. We also discuss the future directions of using LLMs in software security, including the future directions for the existing use of LLMs and extensions from conventional deep learning research. 展开更多
关键词 Large language models(LLMs) software analysis software security software testing
在线阅读 下载PDF
The Security of Using Large Language Models:A Survey With Emphasis on ChatGPT 被引量:1
18
作者 Wei Zhou Xiaogang Zhu +4 位作者 Qing-Long Han Lin Li Xiao Chen Sheng Wen Yang Xiang 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期1-26,共26页
ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential sec... ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential security risks that need to be carefully evaluated and addressed. In this survey, we provide an overview of the current state of research on security of using ChatGPT, with aspects of bias, disinformation, ethics, misuse,attacks and privacy. We review and discuss the literature on these topics and highlight open research questions and future directions.Through this survey, we aim to contribute to the academic discourse on AI security, enriching the understanding of potential risks and mitigations. We anticipate that this survey will be valuable for various stakeholders involved in AI development and usage, including AI researchers, developers, policy makers, and end-users. 展开更多
关键词 Artificial intelligence(AI) ChatGPT large language models(LLMs) SECURITY
在线阅读 下载PDF
Evaluating large language models as patient education tools for inflammatory bowel disease:A comparative study 被引量:1
19
作者 Yan Zhang Xiao-Han Wan +6 位作者 Qing-Zhou Kong Han Liu Jun Liu Jing Guo Xiao-Yun Yang Xiu-Li Zuo Yan-Qing Li 《World Journal of Gastroenterology》 2025年第6期34-43,共10页
BACKGROUND Inflammatory bowel disease(IBD)is a global health burden that affects millions of individuals worldwide,necessitating extensive patient education.Large language models(LLMs)hold promise for addressing patie... BACKGROUND Inflammatory bowel disease(IBD)is a global health burden that affects millions of individuals worldwide,necessitating extensive patient education.Large language models(LLMs)hold promise for addressing patient information needs.However,LLM use to deliver accurate and comprehensible IBD-related medical information has yet to be thoroughly investigated.AIM To assess the utility of three LLMs(ChatGPT-4.0,Claude-3-Opus,and Gemini-1.5-Pro)as a reference point for patients with IBD.METHODS In this comparative study,two gastroenterology experts generated 15 IBD-related questions that reflected common patient concerns.These questions were used to evaluate the performance of the three LLMs.The answers provided by each model were independently assessed by three IBD-related medical experts using a Likert scale focusing on accuracy,comprehensibility,and correlation.Simultaneously,three patients were invited to evaluate the comprehensibility of their answers.Finally,a readability assessment was performed.RESULTS Overall,each of the LLMs achieved satisfactory levels of accuracy,comprehensibility,and completeness when answering IBD-related questions,although their performance varies.All of the investigated models demonstrated strengths in providing basic disease information such as IBD definition as well as its common symptoms and diagnostic methods.Nevertheless,when dealing with more complex medical advice,such as medication side effects,dietary adjustments,and complication risks,the quality of answers was inconsistent between the LLMs.Notably,Claude-3-Opus generated answers with better readability than the other two models.CONCLUSION LLMs have the potential as educational tools for patients with IBD;however,there are discrepancies between the models.Further optimization and the development of specialized models are necessary to ensure the accuracy and safety of the information provided. 展开更多
关键词 Inflammatory bowel disease Large language models Patient education Medical information accuracy Readability assessment
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部