期刊文献+
共找到252篇文章
< 1 2 13 >
每页显示 20 50 100
A Perturbation Analysis of Low-Rank Matrix Recovery by Schatten p-Minimization
1
作者 Zhaoying Sun Huimin Wang Zhihui Zhu 《Journal of Applied Mathematics and Physics》 2024年第2期475-487,共13页
A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with... A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with the recovery of fully perturbed low-rank matrices. By utilizing the p-null space property (p-NSP) and the p-restricted isometry property (p-RIP) of the matrix, sufficient conditions to ensure that the stable and accurate reconstruction for low-rank matrix in the case of full perturbation are derived, and two upper bound recovery error estimation ns are given. These estimations are characterized by two vital aspects, one involving the best r-approximation error and the other concerning the overall noise. Specifically, this paper obtains two new error upper bounds based on the fact that p-RIP and p-NSP are able to recover accurately and stably low-rank matrix, and to some extent improve the conditions corresponding to RIP. 展开更多
关键词 Nonconvex Schatten p-Norm low-rank matrix Recovery p-Null Space Property the Restricted Isometry Property
在线阅读 下载PDF
Proximity point algorithm for low-rank matrix recovery from sparse noise corrupted data
2
作者 朱玮 舒适 成礼智 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第2期259-268,共10页
The method of recovering a low-rank matrix with an unknown fraction whose entries are arbitrarily corrupted is known as the robust principal component analysis (RPCA). This RPCA problem, under some conditions, can b... The method of recovering a low-rank matrix with an unknown fraction whose entries are arbitrarily corrupted is known as the robust principal component analysis (RPCA). This RPCA problem, under some conditions, can be exactly solved via convex optimization by minimizing a combination of the nuclear norm and the 11 norm. In this paper, an algorithm based on the Douglas-Rachford splitting method is proposed for solving the RPCA problem. First, the convex optimization problem is solved by canceling the constraint of the variables, and ~hen the proximity operators of the objective function are computed alternately. The new algorithm can exactly recover the low-rank and sparse components simultaneously, and it is proved to be convergent. Numerical simulations demonstrate the practical utility of the proposed algorithm. 展开更多
关键词 low-rank matrix recovery sparse noise Douglas-Rachford splitting method proximity operator
在线阅读 下载PDF
Robust Principal Component Analysis Integrating Sparse and Low-Rank Priors 被引量:1
3
作者 Wei Zhai Fanlong Zhang 《Journal of Computer and Communications》 2024年第4期1-13,共13页
Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Anal... Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Analysis (RPCA) addresses these limitations by decomposing data into a low-rank matrix capturing the underlying structure and a sparse matrix identifying outliers, enhancing robustness against noise and outliers. This paper introduces a novel RPCA variant, Robust PCA Integrating Sparse and Low-rank Priors (RPCA-SL). Each prior targets a specific aspect of the data’s underlying structure and their combination allows for a more nuanced and accurate separation of the main data components from outliers and noise. Then RPCA-SL is solved by employing a proximal gradient algorithm for improved anomaly detection and data decomposition. Experimental results on simulation and real data demonstrate significant advancements. 展开更多
关键词 Robust Principal Component Analysis Sparse matrix low-rank matrix Hyperspectral Image
在线阅读 下载PDF
基于布尔矩阵的补背景概念获取
4
作者 石慧 钱婷 侯亚红 《纯粹数学与应用数学》 2025年第1期106-113,共8页
形式概念分析是知识表示和知识发现的一个重要方法,已被广泛应用到很多领域.本文将布尔逻辑运算引入形式概念分析之中,定义了向量间的反蕴含运算,构造出布尔形式背景中的补运算,分析其性质,并依据该运算定义布尔补背景概念.其次,给出布... 形式概念分析是知识表示和知识发现的一个重要方法,已被广泛应用到很多领域.本文将布尔逻辑运算引入形式概念分析之中,定义了向量间的反蕴含运算,构造出布尔形式背景中的补运算,分析其性质,并依据该运算定义布尔补背景概念.其次,给出布尔补背景概念获取的等价定理,即利用布尔矩阵中向量的交运算得到表示共同不具有语义的布尔补背景概念.最后,依据对象(属性)集与布尔列(行)向量间的等价关系得到全部补背景概念,进而构造出补背景概念格. 展开更多
关键词 布尔向量 布尔矩阵 形式背景 补背景概念格
在线阅读 下载PDF
两类补图的D^(Q)-谱半径的极图刻画
5
作者 何若凡 刘月 《宁德师范学院学报(自然科学版)》 2025年第2期120-127,共8页
设G是简单连通图,D^(Q)(G)=Tr(G)+D(G)为图G的距离无符号拉普拉斯矩阵。令D_(n,3)为直径大于等于3的n阶连通图的集合,D_(n,3)^((2))为直径大于等于3且恰有两个悬挂点的n阶连通图的集合。确定了在D_(n,3)内图的补图集合中具有最大距离无... 设G是简单连通图,D^(Q)(G)=Tr(G)+D(G)为图G的距离无符号拉普拉斯矩阵。令D_(n,3)为直径大于等于3的n阶连通图的集合,D_(n,3)^((2))为直径大于等于3且恰有两个悬挂点的n阶连通图的集合。确定了在D_(n,3)内图的补图集合中具有最大距离无符号拉普拉斯谱半径的图,以及确定了在D_(n,3)^((2))内图的补图集合中距离无符号拉普拉斯谱半径达到最大的图落在两个图中。 展开更多
关键词 谱半径 直径 补图 距离无符号拉普拉斯矩阵
在线阅读 下载PDF
k阶复合伴随矩阵的性质及其应用
6
作者 钱志祥 《高等数学研究》 2025年第4期108-113,共6页
首先定义了矩阵的两种特殊运算,并给出了这两种运算的若干性质;然后,基于矩阵的这两种运算的性质研究了k阶复合伴随矩阵,简洁明了地得到了k阶复合伴随矩阵的若干性质定理;最后,利用这些性质定理研究了一些特殊矩阵的k阶复合伴随矩阵,得... 首先定义了矩阵的两种特殊运算,并给出了这两种运算的若干性质;然后,基于矩阵的这两种运算的性质研究了k阶复合伴随矩阵,简洁明了地得到了k阶复合伴随矩阵的若干性质定理;最后,利用这些性质定理研究了一些特殊矩阵的k阶复合伴随矩阵,得到了许多重要的结论,该方法推广和改进了关于k阶复合伴随矩阵的已有结论,丰富和完善了k阶复合伴随矩阵的理论,从而进一步提高了我们对k阶复合矩阵的实践与认识. 展开更多
关键词 复合矩阵 复合伴随矩阵 子式 代数余子式
在线阅读 下载PDF
Electrical Data Matrix Decomposition in Smart Grid 被引量:1
7
作者 Qian Dang Huafeng Zhang +3 位作者 Bo Zhao Yanwen He Shiming He Hye-Jin Kim 《Journal on Internet of Things》 2019年第1期1-7,共7页
As the development of smart grid and energy internet, this leads to a significantincrease in the amount of data transmitted in real time. Due to the mismatch withcommunication networks that were not designed to carry ... As the development of smart grid and energy internet, this leads to a significantincrease in the amount of data transmitted in real time. Due to the mismatch withcommunication networks that were not designed to carry high-speed and real time data,data losses and data quality degradation may happen constantly. For this problem,according to the strong spatial and temporal correlation of electricity data which isgenerated by human’s actions and feelings, we build a low-rank electricity data matrixwhere the row is time and the column is user. Inspired by matrix decomposition, we dividethe low-rank electricity data matrix into the multiply of two small matrices and use theknown data to approximate the low-rank electricity data matrix and recover the missedelectrical data. Based on the real electricity data, we analyze the low-rankness of theelectricity data matrix and perform the Matrix Decomposition-based method on the realdata. The experimental results verify the efficiency and efficiency of the proposed scheme. 展开更多
关键词 Electrical data recovery matrix decomposition low-rankness smart grid
在线阅读 下载PDF
Preconditioning Schur Complement Systems of Highly-Indefinite Linear Systems for a Parallel Hybrid Solver
8
作者 I.Yamazaki E.G.Ng 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2010年第3期352-366,共15页
A parallel hybrid linear solver based on the Schur complement method has the potential to balance the robustness of direct solvers with the efficiency of preconditioned iterative solvers.However,when solving large-sca... A parallel hybrid linear solver based on the Schur complement method has the potential to balance the robustness of direct solvers with the efficiency of preconditioned iterative solvers.However,when solving large-scale highly-indefinite linear systems,this hybrid solver often suffers from either slow convergence or large memory requirements to solve the Schur complement systems.To overcome this challenge,we in this paper discuss techniques to preprocess the Schur complement systems in parallel. Numerical results of solving large-scale highly-indefinite linear systems from various applications demonstrate that these techniques improve the reliability and performance of the hybrid solver and enable efficient solutions of these linear systems on hundreds of processors,which was previously infeasible using existing state-of-the-art solvers. 展开更多
关键词 Schur complement method PRECONDITIONING matrix preprocessing.
在线阅读 下载PDF
Low-Rank Positive Approximants of Symmetric Matrices
9
作者 Achiya Dax 《Advances in Linear Algebra & Matrix Theory》 2014年第3期172-185,共14页
Given a symmetric matrix X, we consider the problem of finding a low-rank positive approximant of X. That is, a symmetric positive semidefinite matrix, S, whose rank is smaller than a given positive integer, , which i... Given a symmetric matrix X, we consider the problem of finding a low-rank positive approximant of X. That is, a symmetric positive semidefinite matrix, S, whose rank is smaller than a given positive integer, , which is nearest to X in a certain matrix norm. The problem is first solved with regard to four common norms: The Frobenius norm, the Schatten p-norm, the trace norm, and the spectral norm. Then the solution is extended to any unitarily invariant matrix norm. The proof is based on a subtle combination of Ky Fan dominance theorem, a modified pinching principle, and Mirsky minimum-norm theorem. 展开更多
关键词 low-rank POSITIVE APPROXIMANTS Unitarily INVARIANT matrix Norms
在线阅读 下载PDF
A Matrix Inequality for the Inversions of the Restrictions of a Positive Definite Hermitian Matrix
10
作者 Weixiong Mai Mo Yan +2 位作者 Tao Qian Matteo Dalla Riva Saburou Saitoh 《Advances in Linear Algebra & Matrix Theory》 2013年第4期55-58,共4页
We exploit the theory of reproducing kernels to deduce a matrix inequality for the inverse of the restriction of a positive definite Hermitian matrix.
关键词 Reproducing Kernel POSITIVE Definite HERMITIAN matrix Quadratic Inequality Inversion of POSITIVE Definite HERMITIAN matrix Restriction of POSITIVE Definite HERMITIAN matrix SCHUR complement Block matrix
在线阅读 下载PDF
一种跨区域跨评分协同过滤推荐算法 被引量:1
11
作者 于旭 彭庆龙 +6 位作者 詹定佳 杜军威 刘金环 林俊宇 巩敦卫 张子迎 于婕 《计算机研究与发展》 EI CSCD 北大核心 2024年第12期3134-3153,共20页
传统跨评分协同过滤范式忽视了目标域中评分密度对用户和项目隐向量精度的影响,导致评分稀疏区域评分预测不够准确.为克服区域评分密度对评分预测的影响,基于迁移学习思想提出一种跨区域跨评分协同过滤推荐算法(cross-rating collaborat... 传统跨评分协同过滤范式忽视了目标域中评分密度对用户和项目隐向量精度的影响,导致评分稀疏区域评分预测不够准确.为克服区域评分密度对评分预测的影响,基于迁移学习思想提出一种跨区域跨评分协同过滤推荐算法(cross-rating collaborative filtering recommendation algorithm,CRCRCF),相对于传统跨评分协同过滤范式,该算法不仅能有效挖掘辅助域重要知识,而且可以挖掘目标域中评分密集区域的重要知识,进一步提升目标域整体,尤其是评分稀疏区域的评分预测精度.首先,针对用户和项目,分别进行活跃用户和非活跃用户、热门项目和非热门项目的划分.利用图卷积矩阵补全算法提取目标域活跃用户和热门项目、辅助域中全体用户和项目的隐向量.其次,对活跃用户和热门项目分别构建基于自教学习的深度回归网络学习目标域和辅助域中隐向量的映射关系.然后,将映射关系泛化到全局,利用非活跃用户和非热门项目在辅助域上相对较准确的隐向量推导其目标域上的隐向量,依次实现了跨区域映射关系迁移和跨评分的隐向量信息迁移.最后,以求得的非活跃用户和非热门项目在目标域上的隐向量为约束,提出受限图卷积矩阵补全模型,并给出相应推荐结果.在MovieLens和Netflix数据集上的仿真实验显示CRCRCF算法较其他最先进算法具有明显优势. 展开更多
关键词 协同过滤 跨区域跨评分推荐 图卷积矩阵补全 自教学习 深度回归网络 受限图卷积矩阵补全
在线阅读 下载PDF
一种求解低秩矩阵补全的修正加速近端梯度算法 被引量:1
12
作者 王川龙 张璐璇 《忻州师范学院学报》 2024年第2期1-4,共4页
设计适应大规模数据的快速算法是求解低秩矩阵补全的重点。文章改变了加速近端梯度算法的步长,对近似函数的近端最优点和上一迭代点增加了一个仿射组合。通过控制仿射系数,能够使得到的新迭代点有靠近原函数的趋势,进而能在保持算法精... 设计适应大规模数据的快速算法是求解低秩矩阵补全的重点。文章改变了加速近端梯度算法的步长,对近似函数的近端最优点和上一迭代点增加了一个仿射组合。通过控制仿射系数,能够使得到的新迭代点有靠近原函数的趋势,进而能在保持算法精度的同时提高算法效率。最后通过相应的数值实验证明了算法的有效性和稳定性。 展开更多
关键词 低秩矩阵补全 核范数正则化 最小二乘法 近端梯度算法 仿射组合
在线阅读 下载PDF
给定点连通度的图的补图的谱半径 被引量:1
13
作者 杨小波 邱欢 王国平 《伊犁师范大学学报(自然科学版)》 2024年第2期31-34,共4页
在给定点连通度的直径不小于3的连通图的所有补图中,确定了谱半径达到最小时的极图,并证明它是唯一的.
关键词 邻接矩阵 谱半径 补图 点连通度
在线阅读 下载PDF
关于树补图的A_(α)-谱半径的一些极值结论
14
作者 彭家荣 朱艳丽 张蓝 《高校应用数学学报(A辑)》 北大核心 2024年第4期493-500,共8页
设A(G)和D(G)分别表示图G的邻接矩阵和度对角矩阵,称A_(α)(G)=αD(G)+(1-α)A(G)为图G的A_(α)-矩阵,并称A_(α)(G)的最大特征值为图G的A_(α)-谱半径,其中α∈[0,1).图G的A_(α)-矩阵是图G的邻接矩阵和无符号Laplacian矩阵的共同推广... 设A(G)和D(G)分别表示图G的邻接矩阵和度对角矩阵,称A_(α)(G)=αD(G)+(1-α)A(G)为图G的A_(α)-矩阵,并称A_(α)(G)的最大特征值为图G的A_(α)-谱半径,其中α∈[0,1).图G的A_(α)-矩阵是图G的邻接矩阵和无符号Laplacian矩阵的共同推广.该文研究了树的补图中谱半径的排序问题,分别确定了最大度为△的n阶树的补图中A_(α)-谱半径的唯一极大和唯一极小图,还确定了n阶树的补图中唯一的A_(α)-谱半径极小图.在此基础上,得到了n阶树的补图中邻接谱半径的标尺定理(The Scalar Theorem). 展开更多
关键词 A_(α)-矩阵 谱半径 补图 标尺定理(The Scalar Theorem)
在线阅读 下载PDF
给定点连通度的图的补图的无符号拉普拉斯谱半径
15
作者 李铿 邱欢 +1 位作者 张维娟 王国平 《新疆师范大学学报(自然科学版)》 2024年第3期64-68,共5页
假设G是一个具有点集V(G)={v_(1),v_(2),…,v_(n)}和边集E(G)的连通简单图,矩阵Q(G)=D(G)+A(G)被称为图G的无符号拉普拉斯矩阵,其中D(G)和A(G)分别是图G的度对角矩阵和邻接矩阵。称矩阵Q(G)的最大特征值为图G的无符号拉普拉斯谱半径。图... 假设G是一个具有点集V(G)={v_(1),v_(2),…,v_(n)}和边集E(G)的连通简单图,矩阵Q(G)=D(G)+A(G)被称为图G的无符号拉普拉斯矩阵,其中D(G)和A(G)分别是图G的度对角矩阵和邻接矩阵。称矩阵Q(G)的最大特征值为图G的无符号拉普拉斯谱半径。图G的补图记为G^(c)=(V(G^(c))),E(G^(c)),这里V(G^(c))=V(G)和E(G^(c))={xy|x,y∈V(G),xy∉E(G)}.文章在给定点连通度且直径大于3的图的所有补图中,确定了无符号拉普拉斯谱半径达到最小时的唯一图。 展开更多
关键词 无符号拉普拉斯矩阵 无符号拉普拉斯谱半径 补图 点连通度
在线阅读 下载PDF
Multidomain Correlation-Based Multidimensional CSI Tensor Generation for Device-FreeWi-Fi Sensing
16
作者 Liufeng Du Shaoru Shang +3 位作者 Linghua Zhang Chong Li JianingYang Xiyan Tian 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1749-1767,共19页
Due to the fine-grained communication scenarios characterization and stability,Wi-Fi channel state information(CSI)has been increasingly applied to indoor sensing tasks recently.Although spatial variations are explici... Due to the fine-grained communication scenarios characterization and stability,Wi-Fi channel state information(CSI)has been increasingly applied to indoor sensing tasks recently.Although spatial variations are explicitlyreflected in CSI measurements,the representation differences caused by small contextual changes are easilysubmerged in the fluctuations of multipath effects,especially in device-free Wi-Fi sensing.Most existing datasolutions cannot fully exploit the temporal,spatial,and frequency information carried by CSI,which results ininsufficient sensing resolution for indoor scenario changes.As a result,the well-liked machine learning(ML)-based CSI sensing models still struggling with stable performance.This paper formulates a time-frequency matrixon the premise of demonstrating that the CSI has low-rank potential and then proposes a distributed factorizationalgorithm to effectively separate the stable structured information and context fluctuations in the CSI matrix.Finally,a multidimensional tensor is generated by combining the time-frequency gradients of CSI,which containsrich and fine-grained real-time contextual information.Extensive evaluations and case studies highlight thesuperiority of the proposal. 展开更多
关键词 Wi-Fi sensing device-free CSI low-rank matrix factorization
在线阅读 下载PDF
LOW-RANK MATRIX COMPLETION WITH POISSON OBSERVATIONS VIA NUCLEAR NORM AND TOTAL VARIATION CONSTRAINTS
17
作者 Duo Qiu Michael K.Ng Xiongjun Zhang 《Journal of Computational Mathematics》 SCIE CSCD 2024年第6期1427-1451,共25页
In this paper,we study the low-rank matrix completion problem with Poisson observations,where only partial entries are available and the observations are in the presence of Poisson noise.We propose a novel model compo... In this paper,we study the low-rank matrix completion problem with Poisson observations,where only partial entries are available and the observations are in the presence of Poisson noise.We propose a novel model composed of the Kullback-Leibler(KL)divergence by using the maximum likelihood estimation of Poisson noise,and total variation(TV)and nuclear norm constraints.Here the nuclear norm and TV constraints are utilized to explore the approximate low-rankness and piecewise smoothness of the underlying matrix,respectively.The advantage of these two constraints in the proposed model is that the low-rankness and piecewise smoothness of the underlying matrix can be exploited simultaneously,and they can be regularized for many real-world image data.An upper error bound of the estimator of the proposed model is established with high probability,which is not larger than that of only TV or nuclear norm constraint.To the best of our knowledge,this is the first work to utilize both low-rank and TV constraints with theoretical error bounds for matrix completion under Poisson observations.Extensive numerical examples on both synthetic data and real-world images are reported to corroborate the superiority of the proposed approach. 展开更多
关键词 low-rank matrix completion Nuclear norm Total variation Poisson observations
原文传递
Low-rank matrix recovery with total generalized variation for defending adversarial examples
18
作者 Wen LI Hengyou WANG +4 位作者 Lianzhi HUO Qiang HE Linlin CHEN Zhiquan HE Wing W.Y.Ng 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2024年第3期432-445,共14页
Low-rank matrix decomposition with first-order total variation(TV)regularization exhibits excellent performance in exploration of image structure.Taking advantage of its excellent performance in image denoising,we app... Low-rank matrix decomposition with first-order total variation(TV)regularization exhibits excellent performance in exploration of image structure.Taking advantage of its excellent performance in image denoising,we apply it to improve the robustness of deep neural networks.However,although TV regularization can improve the robustness of the model,it reduces the accuracy of normal samples due to its over-smoothing.In our work,we develop a new low-rank matrix recovery model,called LRTGV,which incorporates total generalized variation(TGV)regularization into the reweighted low-rank matrix recovery model.In the proposed model,TGV is used to better reconstruct texture information without over-smoothing.The reweighted nuclear norm and Li-norm can enhance the global structure information.Thus,the proposed LRTGV can destroy the structure of adversarial noise while re-enhancing the global structure and local texture of the image.To solve the challenging optimal model issue,we propose an algorithm based on the alternating direction method of multipliers.Experimental results show that the proposed algorithm has a certain defense capability against black-box attacks,and outperforms state-of-the-art low-rank matrix recovery methods in image restoration. 展开更多
关键词 Total generalized variation low-rank matrix Alternating direction method of multipliers Adversarial example
原文传递
广义不确定时滞系统的鲁棒性能分析
19
作者 冀晓霞 《惠州学院学报》 2024年第3期73-78,共6页
分析了一类广义不确定时滞系统一些具体的鲁棒性能。针对既存在状态滞后,又存在时变参数不确定性的系统,通过构造Lyapunov泛函,根据Lyapunov稳定性理论并结合线性矩阵不等式方法,给出了既能使系统鲁棒稳定又能满足二次型性能指标的条件... 分析了一类广义不确定时滞系统一些具体的鲁棒性能。针对既存在状态滞后,又存在时变参数不确定性的系统,通过构造Lyapunov泛函,根据Lyapunov稳定性理论并结合线性矩阵不等式方法,给出了既能使系统鲁棒稳定又能满足二次型性能指标的条件,并且将该条件转化成等价的线性矩阵不等式可行性问题,还给出了系统最小性能上界的求解方法,最后通过数值例子验证了该条件的可行性。 展开更多
关键词 时滞系统 广义不确定性 鲁棒性能 线性矩阵不等式 Schur补引理
在线阅读 下载PDF
伴随矩阵性质证明的一种新方法
20
作者 蒋志荣 《河南财政金融学院学报(自然科学版)》 2024年第2期7-11,共5页
定义了矩阵的旋转运算和矩阵的加符号因子运算,证明这两种运算的若干性质。利用这些性质定理研究了伴随矩阵,得到了伴随矩阵的一些重要性质。推广和改进了关于伴随矩阵的已有结论,丰富和完善了伴随矩阵的相关理论。
关键词 伴随矩阵 n-1阶复合矩阵 k阶子式 代数余子式
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部