Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and...Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and time-lapse seismic surveillance of both conventional and unconventional reservoir and overburden performances.A Seismic Elastic Moduli Module has been developed,based on the forced-oscillations method,to experimentally investigate the frequency dependence of Young's modulus and Poisson's ratio,as well as the inferred attenuation,of cylindrical samples under different confining pressure conditions.Calibration with three standard samples showed that the measured elastic moduli were consistent with the published data,indicating that the new apparatus can operate reliably over a wide frequency range of f∈[1-2000,10^(6)]Hz.The Young's modulus and Poisson's ratio of the shale and the tight sandstone samples were measured under axial stress oscillations to assess the frequency-and pressure-dependent effects.Under dry condition,both samples appear to be nearly frequency independent,with weak pressure dependence for the shale and significant pressure dependence for the sandstone.In particular,it was found that the tight sandstone with complex pore microstructure exhibited apparent dispersion and attenuation under brine or glycerin saturation conditions,the levels of which were strongly influenced by the increased effective pressure.In addition,the measured Young's moduli results were compared with the theoretical predictions from a scaled poroelastic model with a reasonably good agreement,revealing that the combined fluid flow mechanisms at both mesoscopic and microscopic scales possibly responsible for the measured dispersion.展开更多
The plasma temperature (or the kinetic pressure) anisotropy is an intrinsic characteristic of a collisionless magnetized plasma. In this paper, based on the two-fluid model, a dispersion equation of low-frequency ...The plasma temperature (or the kinetic pressure) anisotropy is an intrinsic characteristic of a collisionless magnetized plasma. In this paper, based on the two-fluid model, a dispersion equation of low-frequency (ω〈〈ωci, ωci the ion gyrofrequency) waves, including the plasma temperature anisotropy effect, is presented. We investigate the properties of low-frequency waves when the parallel temperature exceeds the perpendicular temperature, and especially their dependence on the propagation angle, pressure anisotropy, and energy closures. The results show that both the instable Alfven and slow modes are purely growing. The growth rate of the Alfven wave is not affected by the propagation angle or energy closures, while that of the slow wave depends sensitively on the propagation angle and energy closures as well as pressure anisotropy. The fast wave is always stable. We also show how to elaborate the symbolic calculation of the dispersion equation performed using Mathematica Notebook.展开更多
In this paper, we analyze the effects of radiative cooling on the pure baroclinic low-frequency waves under the approximation of equatorial β-plane and semi-geostrophic condition. The results show that radiative cool...In this paper, we analyze the effects of radiative cooling on the pure baroclinic low-frequency waves under the approximation of equatorial β-plane and semi-geostrophic condition. The results show that radiative cooling does not, exclusively, provide the damping effects on the development of low-frequency waves.Under the delicate radiative-convective equilibrium, radiative effects will alter the phase speed and wave period,and bring about the broadband of phase velocity and wave period by adjusting the vertical profiles of diabaticheating. When the intensity of diabatic heating is moderate and appropriate, it is conductive to the de-velopment and sustaining of the low-frequency waves and their broadband phenomena, not the larger, the better. The radiative cooling cannot be neglected in order to reach the moderate and appropriate intensity of diabatic heating.展开更多
The dispersion relation and electromagnetic polarization of the plasma waves are comprehensively studied in cold electron, proton, and heavy charged particle plasmas. Three modes are classified as the fast, intermedia...The dispersion relation and electromagnetic polarization of the plasma waves are comprehensively studied in cold electron, proton, and heavy charged particle plasmas. Three modes are classified as the fast, intermediate, and slow mode waves according to different phase velocities. When plasmas contain positively-charged particles, the fast and intermediate modes can interact at the small propagating angles, whereas the two modes are separate at the large propagating angles. The near-parallel intermediate and slow waves experience the linear polarization, circular polarization, and linear polarization again, with the increasing wave number. The wave number regime corresponding to the above circular polarization shrinks as the propagating angle increases. Moreover, the fast and intermediate modes cause the reverse change of the electromagnetic polarization at the special wave number. While the heavy particles carry the negative charges, the dispersion relations of the fast and intermediate modes are always separate, being independent of the propagating angles. Furthermore, this study gives new expressions of the three resonance frequencies corresponding to the highly-oblique propagation waves in the general three-component plasmas, and shows the dependence of the resonance frequencies on the propagating angle, the concentration of the heavy particle, and the mass ratio among different kinds of particles.展开更多
The energy transfer between ions (protons) and low frequency waves (LFWs) in the frequency range f1 from 0.3 to 10 Hz is observed by Cluster crossing the high-altitude polar cusp. The energy transfer between low f...The energy transfer between ions (protons) and low frequency waves (LFWs) in the frequency range f1 from 0.3 to 10 Hz is observed by Cluster crossing the high-altitude polar cusp. The energy transfer between low frequency waves and ions has two means. One is that the energy is transferred from low frequency waves to ions and ions energy increases, The other is that the energy is transferred from ions to low frequency waves and the ion energy decreases. lon gyratory motion plays an important role in the energy transfer processes. The electromagnetic field of f1 LFWs can accelerate or decelerate protons along the direction of ambient magnetic field and warm or refrigerate protons in the parallel and perpendicular directions of ambient magnetic field, The peak values of proton number densities have the corresponding peak values of electromagnetic energy of low-frequency waves. This implies that the kinetic Alfven waves and solitary kinetic Alfven waves possibly exist in the high-altitude cusp region.展开更多
Customizing the frequency range of electromagnetic wave(EMW)absorbing materials,especially for low-frequency,is a key research focus for 5G/6G and stealth applications.However,achieving precise low-frequency tuning re...Customizing the frequency range of electromagnetic wave(EMW)absorbing materials,especially for low-frequency,is a key research focus for 5G/6G and stealth applications.However,achieving precise low-frequency tuning remains challenging due to unpredictable parameter variations in practical design.Here,a constant-permeability-based electromagnetic parameter inversion method predicts the required complex permittivity range for multilayer MXene’s effective microwave absorption in the target low-frequency band.Since traditional modulation methods are plagued by electromagnetic parameter fluctuations,this study regulated the dielectric response by adjusting the embedding amount of small-sized iron nanoparticles(Fe NPs)with stable permeability.Under this guidance,multilayer MXene/Fe NPs(MTF)are prepared by embedding small-sized Fe NPs on the MXene surface via electrostatic self-assembly and in-situ reduction.The introduction of Fe NPs increased charge carriers’concentration and strengthened the interface effect,resulting in a significant increase in the real part of the complex permittivity(ε')compared with that of multi-layer MXene(7.13-8.89),reaching the predicted range of the real part of the low-frequency complex permittivity(13.12-15.16,14.34-16.81,and 15.29-18.12).Experimental results show that the MTF has a small error in the frequency of the minimum reflection loss(RLmin)compared to the predicted value(error percentage of 4.69%),along with an in-situ enhancement of the effective absorption bandwidth(EAB)(325.00%growth).Thus,MTF exhibits enhanced low-frequency absorption,with MTF-2 achieving−46.3 dB RLmin at 4.64 GHz(4.35 mm)and 2.24 GHz EAB at 3.8 mm.This work offers a strategy for accurate prediction and regulation of absorption bands over a wide range.展开更多
Two-dimensional carbon-based materials have shown promising electromagnetic wave absorption capabilities in mid-and high-frequency ranges,but face challenges in low-frequency absorption due to limited control over pol...Two-dimensional carbon-based materials have shown promising electromagnetic wave absorption capabilities in mid-and high-frequency ranges,but face challenges in low-frequency absorption due to limited control over polarization response mecha-nisms and ambiguous resonance behavior.In this study,we pro-pose a novel approach to enhance absorption efficiency in aligned three-dimensional(3D)MXene/CNF(cellulose nanofibers)cavities by modifying polarization properties and manipulating resonance response in the 3D MXene architecture.This controlled polarization mechanism results in a significant shift of the main absorption region from the X-band to the S-band,leading to a remarkable reflection loss value of-47.9 dB in the low-frequency range.Furthermore,our findings revealed the importance of the oriented electromagnetic coupling in influencing electromagnetic response and microwave absorption properties.The present study inspired us to develop a generic strategy for low-frequency tuned absorption in the absence of magnetic element participation,while orientation-induced polarization and the derived magnetic resonance coupling are the key controlling factors of the method.展开更多
As electromagnetic technology advances and demand for electronic devices grows,concerns about electromagnetic pollution intensify.This has spurred focused research on innovative electromagnetic absorbers,particularly ...As electromagnetic technology advances and demand for electronic devices grows,concerns about electromagnetic pollution intensify.This has spurred focused research on innovative electromagnetic absorbers,particularly chalcogenides,noted for their superior absorption capabilities.In this study,we successfully synthesize 3R–TaS_(2)nanosheets using a straightforward calcination method for the first time.These nanosheets exhibit significant absorption capabilities in both the C-band(4–8 GHz)and Ku-band(12–18 GHz)frequency ranges.By optimizing the calcination process,the complex permittivity of TaS_(2)is enhanced,specifically for those synthesized at 1000℃for 24 h.The nanosheets possess dual-band absorption properties,with a notable minimum reflection loss(RLmin)of41.4 dB in the C-band,and an average absorption intensity exceeding 10 dB in C-and Ku-bands,in the absorbers with a thickness of 5.6 mm.Additionally,the 3R–TaS_(2)nanosheets are demonstrated to have an effective absorption bandwidth of 5.04 GHz(3.84–8.88 GHz)in the absorbers with thicknesses of 3.5–5.5 mm.The results highlight the multiple reflection effects in 3R–TaS_(2)as caused by their stacked structures,which could be promising low-frequency absorbers.展开更多
In order to obtain a lower frequency band gap,this paper proposes a novel locally resonant meta-beam incorporating a softening nonlinear factor.An improved camroller structure is designed in this meta-beam to achieve ...In order to obtain a lower frequency band gap,this paper proposes a novel locally resonant meta-beam incorporating a softening nonlinear factor.An improved camroller structure is designed in this meta-beam to achieve the softening nonlinear stiffness of the local oscillators.Firstly,based on Hamilton's principle and the Galerkin method,the control equations for the coupled system are established.The theoretical band gap boundary is then derived with the modal analysis method.The theoretical results reveal that the band gap of the meta-beam shifts towards lower frequencies due to the presence of a softening nonlinear factor,distinguishing it from both linear metamaterials and those with hardening nonlinear characteristics.Then,the vibration attenuation characteristics of a finite size meta-beam are investigated through numerical calculation,and are verified by the theoretical results.Furthermore,parameter studies indicate that the reasonable design of the local oscillator parameters based on lightweight principles helps to achieve further broadband and efficient vibration reduction in the low-frequency region.Finally,a prototype of the meta-beam is fabricated and assembled,and the formations of the low-frequency band gap and the amplitude-induced band gap phenomenon are verified through experiments.展开更多
Low-frequency vibroseis acquisition has become a routine operation in land seismic surveys,given the advantages of low-frequency signals in characterizing geological structures and enhancing the imaging of deep explor...Low-frequency vibroseis acquisition has become a routine operation in land seismic surveys,given the advantages of low-frequency signals in characterizing geological structures and enhancing the imaging of deep exploration targets.The two key points of low-frequency sweep design techniques include controlling the distortion and improving the output energy during the low-frequency stage.However,the vibrators are limited by the maximum fl ow provided by the hydraulic systems at the low-frequency stage,causing difficulty in satisfying exploration energy requirements.Initially,a theoretical analysis of the low-frequency acquisition performance of vibrators is conducted.A theoretical maximum output force below 10 Hz is obtained by guiding through theoretical formulas and combining actual vibrator parameters.Then,the signal is optimized according to the surface characteristics of the operation area.Finally,detailed application quality control and operational procedures are established.The new low-frequency sweep design method has overcome the maximum flow limitations of the hydraulic system,increased the low-frequency energy,and achieved broadband acquisition.The designed signal has been tested and applied on various types of ground surfaces in the Middle East desert region,yielding good performance.The proposed low-frequency sweep design method holds considerable value for the application of conventional vibroseis in low-frequency acquisition.展开更多
Controlling low-frequency noise presents a significant challenge for traditional sound absorption materials,such as foams and fibrous substances.Recently developed acoustic absorption metamaterials,which rely on local...Controlling low-frequency noise presents a significant challenge for traditional sound absorption materials,such as foams and fibrous substances.Recently developed acoustic absorption metamaterials,which rely on local resonance can effectively balance the volume occupation and low-frequency absorption performance.However,these materials often exhibit a very narrow and fixed absorption band.Inspired by Helmholtz resonators and bistable structures,we propose bistable reconfigurable acoustic metamaterials(BRAMs)that offer multiband low-frequency absorption.These BRAMs are fabricated using shape-memory polylactic acid(SM-PLA)via four-dimension(4D)printing technology.Consequently,the geometry and absorption performance of the BRAMs can be adjusted by applying thermal stimuli(at 55℃)to switch between two stable states.The BRAMs demonstrate excellent low-frequency absorption with multiband characteristics,achieving an absorption coefficient of 0.981 at 136 Hz and 0.998 at 230 Hz for stable state I,and coefficients of 0.984 at 156 Hz and 0.961 at 542 Hz for stable state II.It was found that the BRAMs with different inclined plate angles had linear recovery stages,and the recovery speeds range from 0.75 mm/s to 1.1 mm/s.By combining a rational structural design and 4D printing,the reported reconfigurable acoustic metamaterials will inspire further studies on the design of dynamic and broadband absorption devices.展开更多
Metamaterials can control and manipulate acoustic/elastic waves on a subwavelength scale using cavities or additional components.However,the large cavity and weak stiffness components of traditional metamaterials may ...Metamaterials can control and manipulate acoustic/elastic waves on a subwavelength scale using cavities or additional components.However,the large cavity and weak stiffness components of traditional metamaterials may cause a conflict between vibroacoustic reduction and load-bearing capacity,and thus limit their application.Here,we propose a lightweight multifunctional metamaterial that can simultaneously achieve low-frequency sound insulation,broadband vibration reduction,and excellent load-bearing performance,named as vibroacoustic isolation and bearing metamaterial(VIBM).The advent of additive manufacturing technology provides a convenient and reliable method for the fabrication of VIBM samples.The results show that the compressive strength of the VIBM is as high as 9.71 MPa,which is nearly 87.81%higher than that of the conventional grid structure(CGS)under the same volume fraction.Moreover,the vibration and sound transmission are significantly reduced over a low and wide frequency range,which agrees well with the experimental data,and the reduction degree is obviously larger than that obtained by the CGS.The design strategy can effectively realize the key components of metamaterials and improve their application scenarios.展开更多
Low-frequency structural vibrations caused by poor rigidity are one of the main obstacles limiting the machining efficiency of robotic milling.Existing vibration suppression strategies primarily focus on passive vibra...Low-frequency structural vibrations caused by poor rigidity are one of the main obstacles limiting the machining efficiency of robotic milling.Existing vibration suppression strategies primarily focus on passive vibration absorption at the robotic end and feedback control at the joint motor.Although these strategies have a certain vibration suppression effect,the limitations of robotic flexibility and the extremely limited applicable speed range remain to be overcome.In this study,a Magnetorheological Joint Damper(MRJD)is developed.The joint-mounted feature ensures machining flexibility of the robot,and the millisecond response time of the Magnetorheological Fluid(MRF)ensures a large effective spindle speed range.More importantly,the evolution law of the damping performance of MRJD was revealed based on a low-frequency chatter mechanism,which guarantees the application of MRJD in robotic milling machining.To analyze the influence of the robotic joint angle on the suppression effect of the MRJD,the joint braking coefficient and end braking coefficient were proposed.Parallel coordinate plots were used to visualize the joint range with the optimal vibration suppression effect.Finally,a combination of different postures and cutting parameters was used to verify the vibration suppression effect and feasibility of the joint angle optimization.The experimental results show that the MRJD,which directly improves the joint vibration resistance,can effectively suppress the low-frequency vibration of robotic milling under a variety of cutting conditions.展开更多
When tracking a unmanned aerial vehicle(UAV)in complex backgrounds,environmen-tal noise and clutter often obscure it.Traditional radar target tracking algorithms face multiple lim-itations when tracking a UAV,includin...When tracking a unmanned aerial vehicle(UAV)in complex backgrounds,environmen-tal noise and clutter often obscure it.Traditional radar target tracking algorithms face multiple lim-itations when tracking a UAV,including high vulnerability to target occlusion and shape variations,as well as pronounced false alarms and missed detections in low signal-to-noise ratio(SNR)envi-ronments.To address these issues,this paper proposes a UAV detection and tracking algorithm based on a low-frequency communication network.The accuracy and effectiveness of the algorithm are validated through simulation experiments using field-measured point cloud data.Additionally,the key parameters of the algorithm are optimized through a process of selection and comparison,thereby improving the algorithm's precision.The experimental results show that the improved algo-rithm can significantly enhance the detection and tracking performance of the UAV under high clutter density conditions,effectively reduce the false alarm rate and markedly improve overall tracking performance metrics.展开更多
Ultra-low-frequency(ULF) waves are ubiquitous in terrestrial and planetary environments, playing a crucial role in energy transfer and dissipation through wave–particle interactions within space plasmas. By performin...Ultra-low-frequency(ULF) waves are ubiquitous in terrestrial and planetary environments, playing a crucial role in energy transfer and dissipation through wave–particle interactions within space plasmas. By performing a detailed event study in terms of particle distribution maps and wave–particle variable correlation maps, we report that ULF waves observed by the Mars Atmosphere and Volatile EvolutioN(MAVEN) spacecraft in the Martian foreshock can effectively modulate the suprathermal electron fluxes by the magnetic field fluctuations. In particular, the variations in electron fluxes at energies of ~10–100 eV are significant in the perpendicular direction, showing good relationships with changes in the wave field strength characterized by a correlation coefficient ~0.8. These findings demonstrate the generality of interactions of ULF waves with electrons, even at these low energies, highlighting the importance of such processes throughout the heliosphere.展开更多
Incident particles in the Klein tunnel phenomenon in quantum mechanics can pass a very high potential barrier.Introducing the concept of tunneling into the analysis of phononic crystals can broaden the application pro...Incident particles in the Klein tunnel phenomenon in quantum mechanics can pass a very high potential barrier.Introducing the concept of tunneling into the analysis of phononic crystals can broaden the application prospects.In this study,the structure of the unit cell is designed,and the low frequency(<1 k Hz)valley locked waveguide is realized through the creation of a phononic crystal plate with a topological phase transition interface.The defect immunity of the topological waveguide is verified,that is,the wave can propagate along the original path in the cases of impurities and disorder.Then,the tunneling phenomenon is introduced into the topological valley-locked waveguide to analyze the wave propagation,and its potential applications(such as signal separators and logic gates)are further explored by designing phononic crystal plates.This research has broad application prospects in information processing and vibration control,and potential applications in other directions are also worth exploring.展开更多
A metamaterial vibration isolator,termed as wave-insulating isolator,is proposed,which preserves enough load-bearing capability and offers ultra-low and broad bandgaps for greatly enhanced wave insulation.It consists ...A metamaterial vibration isolator,termed as wave-insulating isolator,is proposed,which preserves enough load-bearing capability and offers ultra-low and broad bandgaps for greatly enhanced wave insulation.It consists of plate-shaped metacells,whose symmetric and antisymmetric local resonant modes offer several low and broad mode bandgaps although the complete bandgap remains high and narrow.The bandgap mechanisms,vibration isolation properties,effects of key parameters,and robustness to complex conditions are clarified.As experimentally demonstrated,the wave-insulating isolator can improve the vibration insulation in the ranges of[50 Hz,180 Hz]and[260 Hz,400 Hz]by 15 dB and 25 dB,respectively,in contrast to the conventional isolator with the same first resonant frequency.展开更多
Based on June to September 1981 ECMWF grid datasets analysis is done of the characteristics of the propagation and structure of low-frequency (quasi 40 day) oscillation over eastern Asia. Results show a separating (co...Based on June to September 1981 ECMWF grid datasets analysis is done of the characteristics of the propagation and structure of low-frequency (quasi 40 day) oscillation over eastern Asia. Results show a separating (confluence) belt for the meridional propagation of low-frequency zonal (meridional) winds at higher (lower) levels over subtropical latitudes at 120°E, revealing that the oscillation of the zonal winds is quasi- geostrophic in pature and in phase in the high- and low-level. It is also found that the eastward propagation of the high-level zonal winds around 35°N in East Asia is the result of eastward march of midlatitude low- frequency waves with 60--90 longitude wavelength and speed of 1.5--2.0 longitudes per day. In addition, such low-frequency vortices, when moving over the coastwise region, tend to develop, accompanied by sharp oscil- lation in the westerly jetstream over eastern Asia.展开更多
The wave rays and their seasonal variation of stationary and low-frequency Rossby waves are studied by using the Runge-Kutta scheme. The results show that for stationary waves the rays can reach lower latitudes in win...The wave rays and their seasonal variation of stationary and low-frequency Rossby waves are studied by using the Runge-Kutta scheme. The results show that for stationary waves the rays can reach lower latitudes in winter, and are limited in higher latitudes in summer. The main differences between the stationary and low-frequency wave rays are that low-frequency waves can propagate across the equator and the easterlies will not be an obstacle on their propagation. It explained to some extent the interaction of disturbances between the Northern and Southern Hemispheres. The lower wave frequencies and the stronger easterly flow are, the more difficult low-frequency waves will be to propagate across the equator. The waves with 20-day period are easier to propagate across the equator than that with 50-day period. The winter is the most favorable season for low-frequency waves to propagate into another hemisphere.展开更多
A barotropic model containing large-scale topography and zonal mean flow is established to discuss the effects of large-scale topography on the low-frequency waves. The results show that what affects low-frequency wav...A barotropic model containing large-scale topography and zonal mean flow is established to discuss the effects of large-scale topography on the low-frequency waves. The results show that what affects low-frequency waves mostly is maximal height of topography and topographic slope. The former makes frequency of topographic Rossby waves decrease, the latter makes Rossby waves instable. Moreover, when topographic slope is appropriate, it can also make Rossby waves turn into low-frequency waves.展开更多
基金The authors would like to acknowledge financial support from NSFC Basic Research Program on Deep Petroleum Resource Accumulation and Key Engineering Technologies(U19B6003-04-03)National Natural Science Foundation of China(41930425)+2 种基金Beijing Natural Science Foundation(8222073),R&D Department of China National Petroleum Corporation(Investigations on fundamental experiments and advanced theoretical methods in geophysical prospecting applications,2022DQ0604-01)Scientific Research and Technology Development Project of PetroChina(2021DJ1206)National Key Research and Development Program of China(2018YFA0702504).
文摘Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and time-lapse seismic surveillance of both conventional and unconventional reservoir and overburden performances.A Seismic Elastic Moduli Module has been developed,based on the forced-oscillations method,to experimentally investigate the frequency dependence of Young's modulus and Poisson's ratio,as well as the inferred attenuation,of cylindrical samples under different confining pressure conditions.Calibration with three standard samples showed that the measured elastic moduli were consistent with the published data,indicating that the new apparatus can operate reliably over a wide frequency range of f∈[1-2000,10^(6)]Hz.The Young's modulus and Poisson's ratio of the shale and the tight sandstone samples were measured under axial stress oscillations to assess the frequency-and pressure-dependent effects.Under dry condition,both samples appear to be nearly frequency independent,with weak pressure dependence for the shale and significant pressure dependence for the sandstone.In particular,it was found that the tight sandstone with complex pore microstructure exhibited apparent dispersion and attenuation under brine or glycerin saturation conditions,the levels of which were strongly influenced by the increased effective pressure.In addition,the measured Young's moduli results were compared with the theoretical predictions from a scaled poroelastic model with a reasonably good agreement,revealing that the combined fluid flow mechanisms at both mesoscopic and microscopic scales possibly responsible for the measured dispersion.
基金supported by National Natural Science Foundation of China(Nos.10973043,41074107)Ministry of Science and Technology of China(No.2011CB811402)
文摘The plasma temperature (or the kinetic pressure) anisotropy is an intrinsic characteristic of a collisionless magnetized plasma. In this paper, based on the two-fluid model, a dispersion equation of low-frequency (ω〈〈ωci, ωci the ion gyrofrequency) waves, including the plasma temperature anisotropy effect, is presented. We investigate the properties of low-frequency waves when the parallel temperature exceeds the perpendicular temperature, and especially their dependence on the propagation angle, pressure anisotropy, and energy closures. The results show that both the instable Alfven and slow modes are purely growing. The growth rate of the Alfven wave is not affected by the propagation angle or energy closures, while that of the slow wave depends sensitively on the propagation angle and energy closures as well as pressure anisotropy. The fast wave is always stable. We also show how to elaborate the symbolic calculation of the dispersion equation performed using Mathematica Notebook.
基金Key project in the 9^(th) five economic development plan-"research on short-term climate prediction system in China"
文摘In this paper, we analyze the effects of radiative cooling on the pure baroclinic low-frequency waves under the approximation of equatorial β-plane and semi-geostrophic condition. The results show that radiative cooling does not, exclusively, provide the damping effects on the development of low-frequency waves.Under the delicate radiative-convective equilibrium, radiative effects will alter the phase speed and wave period,and bring about the broadband of phase velocity and wave period by adjusting the vertical profiles of diabaticheating. When the intensity of diabatic heating is moderate and appropriate, it is conductive to the de-velopment and sustaining of the low-frequency waves and their broadband phenomena, not the larger, the better. The radiative cooling cannot be neglected in order to reach the moderate and appropriate intensity of diabatic heating.
基金supported by National Natural Science Foundation of China(Nos.11303099,41531071 and 41574158)the Youth Innovation Promotion Association CAS
文摘The dispersion relation and electromagnetic polarization of the plasma waves are comprehensively studied in cold electron, proton, and heavy charged particle plasmas. Three modes are classified as the fast, intermediate, and slow mode waves according to different phase velocities. When plasmas contain positively-charged particles, the fast and intermediate modes can interact at the small propagating angles, whereas the two modes are separate at the large propagating angles. The near-parallel intermediate and slow waves experience the linear polarization, circular polarization, and linear polarization again, with the increasing wave number. The wave number regime corresponding to the above circular polarization shrinks as the propagating angle increases. Moreover, the fast and intermediate modes cause the reverse change of the electromagnetic polarization at the special wave number. While the heavy particles carry the negative charges, the dispersion relations of the fast and intermediate modes are always separate, being independent of the propagating angles. Furthermore, this study gives new expressions of the three resonance frequencies corresponding to the highly-oblique propagation waves in the general three-component plasmas, and shows the dependence of the resonance frequencies on the propagating angle, the concentration of the heavy particle, and the mass ratio among different kinds of particles.
基金Supported by the National Natural Science Foundation of China under Grant No 40390150, and the Postdoctoral Science Foundation of High Education of China.
文摘The energy transfer between ions (protons) and low frequency waves (LFWs) in the frequency range f1 from 0.3 to 10 Hz is observed by Cluster crossing the high-altitude polar cusp. The energy transfer between low frequency waves and ions has two means. One is that the energy is transferred from low frequency waves to ions and ions energy increases, The other is that the energy is transferred from ions to low frequency waves and the ion energy decreases. lon gyratory motion plays an important role in the energy transfer processes. The electromagnetic field of f1 LFWs can accelerate or decelerate protons along the direction of ambient magnetic field and warm or refrigerate protons in the parallel and perpendicular directions of ambient magnetic field, The peak values of proton number densities have the corresponding peak values of electromagnetic energy of low-frequency waves. This implies that the kinetic Alfven waves and solitary kinetic Alfven waves possibly exist in the high-altitude cusp region.
基金supported by the Chongqing New Youth Innovation Talent Program(No.CSTB2024NSCQ-QCXMX0086)Science and Technology Research Program of Chongqing Municipal Education Commission(No.KJZD-K202300606)+1 种基金National High-end Foreign Experts Introduction Plan(No.G2022035005L)Chongqing Talent Plan of Overall Rationing System Project(No.CQYC202203091156).
文摘Customizing the frequency range of electromagnetic wave(EMW)absorbing materials,especially for low-frequency,is a key research focus for 5G/6G and stealth applications.However,achieving precise low-frequency tuning remains challenging due to unpredictable parameter variations in practical design.Here,a constant-permeability-based electromagnetic parameter inversion method predicts the required complex permittivity range for multilayer MXene’s effective microwave absorption in the target low-frequency band.Since traditional modulation methods are plagued by electromagnetic parameter fluctuations,this study regulated the dielectric response by adjusting the embedding amount of small-sized iron nanoparticles(Fe NPs)with stable permeability.Under this guidance,multilayer MXene/Fe NPs(MTF)are prepared by embedding small-sized Fe NPs on the MXene surface via electrostatic self-assembly and in-situ reduction.The introduction of Fe NPs increased charge carriers’concentration and strengthened the interface effect,resulting in a significant increase in the real part of the complex permittivity(ε')compared with that of multi-layer MXene(7.13-8.89),reaching the predicted range of the real part of the low-frequency complex permittivity(13.12-15.16,14.34-16.81,and 15.29-18.12).Experimental results show that the MTF has a small error in the frequency of the minimum reflection loss(RLmin)compared to the predicted value(error percentage of 4.69%),along with an in-situ enhancement of the effective absorption bandwidth(EAB)(325.00%growth).Thus,MTF exhibits enhanced low-frequency absorption,with MTF-2 achieving−46.3 dB RLmin at 4.64 GHz(4.35 mm)and 2.24 GHz EAB at 3.8 mm.This work offers a strategy for accurate prediction and regulation of absorption bands over a wide range.
基金financial support from National Key R&D Program of China(MoST,2020YFA0711500)the National Natural Science Foundation of China(NSFC,21875114),(NSFC,52303348)+1 种基金111 Project(B18030)“The Fundamental Research Funds for the Central Universities”,Nankai University.
文摘Two-dimensional carbon-based materials have shown promising electromagnetic wave absorption capabilities in mid-and high-frequency ranges,but face challenges in low-frequency absorption due to limited control over polarization response mecha-nisms and ambiguous resonance behavior.In this study,we pro-pose a novel approach to enhance absorption efficiency in aligned three-dimensional(3D)MXene/CNF(cellulose nanofibers)cavities by modifying polarization properties and manipulating resonance response in the 3D MXene architecture.This controlled polarization mechanism results in a significant shift of the main absorption region from the X-band to the S-band,leading to a remarkable reflection loss value of-47.9 dB in the low-frequency range.Furthermore,our findings revealed the importance of the oriented electromagnetic coupling in influencing electromagnetic response and microwave absorption properties.The present study inspired us to develop a generic strategy for low-frequency tuned absorption in the absence of magnetic element participation,while orientation-induced polarization and the derived magnetic resonance coupling are the key controlling factors of the method.
基金supported by the National Natural Science Foundation of China(52372289,52102368,52072192 and 51977009)Regional Joint Fund for Basic Research and Applied Basic Research of Guangdong Province(No.2020A1515110905)+1 种基金Guangdong Special Fund for key Areas(20237DZX3042)Shenzhen Stable Support Project.
文摘As electromagnetic technology advances and demand for electronic devices grows,concerns about electromagnetic pollution intensify.This has spurred focused research on innovative electromagnetic absorbers,particularly chalcogenides,noted for their superior absorption capabilities.In this study,we successfully synthesize 3R–TaS_(2)nanosheets using a straightforward calcination method for the first time.These nanosheets exhibit significant absorption capabilities in both the C-band(4–8 GHz)and Ku-band(12–18 GHz)frequency ranges.By optimizing the calcination process,the complex permittivity of TaS_(2)is enhanced,specifically for those synthesized at 1000℃for 24 h.The nanosheets possess dual-band absorption properties,with a notable minimum reflection loss(RLmin)of41.4 dB in the C-band,and an average absorption intensity exceeding 10 dB in C-and Ku-bands,in the absorbers with a thickness of 5.6 mm.Additionally,the 3R–TaS_(2)nanosheets are demonstrated to have an effective absorption bandwidth of 5.04 GHz(3.84–8.88 GHz)in the absorbers with thicknesses of 3.5–5.5 mm.The results highlight the multiple reflection effects in 3R–TaS_(2)as caused by their stacked structures,which could be promising low-frequency absorbers.
基金supported by the National Natural Science Foundation of China(Nos.12172014,U224126412332001)。
文摘In order to obtain a lower frequency band gap,this paper proposes a novel locally resonant meta-beam incorporating a softening nonlinear factor.An improved camroller structure is designed in this meta-beam to achieve the softening nonlinear stiffness of the local oscillators.Firstly,based on Hamilton's principle and the Galerkin method,the control equations for the coupled system are established.The theoretical band gap boundary is then derived with the modal analysis method.The theoretical results reveal that the band gap of the meta-beam shifts towards lower frequencies due to the presence of a softening nonlinear factor,distinguishing it from both linear metamaterials and those with hardening nonlinear characteristics.Then,the vibration attenuation characteristics of a finite size meta-beam are investigated through numerical calculation,and are verified by the theoretical results.Furthermore,parameter studies indicate that the reasonable design of the local oscillator parameters based on lightweight principles helps to achieve further broadband and efficient vibration reduction in the low-frequency region.Finally,a prototype of the meta-beam is fabricated and assembled,and the formations of the low-frequency band gap and the amplitude-induced band gap phenomenon are verified through experiments.
基金The authors would like to express their sincere appreciation to the research project of CNPC Geophysical Key Lab(2022DQ0604-4)National Natural Science Foundation of China(Grant No.42074141).
文摘Low-frequency vibroseis acquisition has become a routine operation in land seismic surveys,given the advantages of low-frequency signals in characterizing geological structures and enhancing the imaging of deep exploration targets.The two key points of low-frequency sweep design techniques include controlling the distortion and improving the output energy during the low-frequency stage.However,the vibrators are limited by the maximum fl ow provided by the hydraulic systems at the low-frequency stage,causing difficulty in satisfying exploration energy requirements.Initially,a theoretical analysis of the low-frequency acquisition performance of vibrators is conducted.A theoretical maximum output force below 10 Hz is obtained by guiding through theoretical formulas and combining actual vibrator parameters.Then,the signal is optimized according to the surface characteristics of the operation area.Finally,detailed application quality control and operational procedures are established.The new low-frequency sweep design method has overcome the maximum flow limitations of the hydraulic system,increased the low-frequency energy,and achieved broadband acquisition.The designed signal has been tested and applied on various types of ground surfaces in the Middle East desert region,yielding good performance.The proposed low-frequency sweep design method holds considerable value for the application of conventional vibroseis in low-frequency acquisition.
基金financially supported by National Key Research and Development Program of China(Grant No.2023YFB4604800)National Natural Science Foundation of China(Grant No.52275331)financial support from the Hong Kong Scholars Program(Grant No.XJ2022014).
文摘Controlling low-frequency noise presents a significant challenge for traditional sound absorption materials,such as foams and fibrous substances.Recently developed acoustic absorption metamaterials,which rely on local resonance can effectively balance the volume occupation and low-frequency absorption performance.However,these materials often exhibit a very narrow and fixed absorption band.Inspired by Helmholtz resonators and bistable structures,we propose bistable reconfigurable acoustic metamaterials(BRAMs)that offer multiband low-frequency absorption.These BRAMs are fabricated using shape-memory polylactic acid(SM-PLA)via four-dimension(4D)printing technology.Consequently,the geometry and absorption performance of the BRAMs can be adjusted by applying thermal stimuli(at 55℃)to switch between two stable states.The BRAMs demonstrate excellent low-frequency absorption with multiband characteristics,achieving an absorption coefficient of 0.981 at 136 Hz and 0.998 at 230 Hz for stable state I,and coefficients of 0.984 at 156 Hz and 0.961 at 542 Hz for stable state II.It was found that the BRAMs with different inclined plate angles had linear recovery stages,and the recovery speeds range from 0.75 mm/s to 1.1 mm/s.By combining a rational structural design and 4D printing,the reported reconfigurable acoustic metamaterials will inspire further studies on the design of dynamic and broadband absorption devices.
基金Project supported by the National Natural Science Foundation of China(Nos.11991032 and 52241103)the Hunan Province Graduate Research Innovation Project of China(No.KY0409052440)。
文摘Metamaterials can control and manipulate acoustic/elastic waves on a subwavelength scale using cavities or additional components.However,the large cavity and weak stiffness components of traditional metamaterials may cause a conflict between vibroacoustic reduction and load-bearing capacity,and thus limit their application.Here,we propose a lightweight multifunctional metamaterial that can simultaneously achieve low-frequency sound insulation,broadband vibration reduction,and excellent load-bearing performance,named as vibroacoustic isolation and bearing metamaterial(VIBM).The advent of additive manufacturing technology provides a convenient and reliable method for the fabrication of VIBM samples.The results show that the compressive strength of the VIBM is as high as 9.71 MPa,which is nearly 87.81%higher than that of the conventional grid structure(CGS)under the same volume fraction.Moreover,the vibration and sound transmission are significantly reduced over a low and wide frequency range,which agrees well with the experimental data,and the reduction degree is obviously larger than that obtained by the CGS.The design strategy can effectively realize the key components of metamaterials and improve their application scenarios.
基金supported by the National Natural Science Foundation of China(No.U20A20294)the National Natural Science Foundation of China(No.52322511)the National Natural Science Foundation of China(No.52188102).
文摘Low-frequency structural vibrations caused by poor rigidity are one of the main obstacles limiting the machining efficiency of robotic milling.Existing vibration suppression strategies primarily focus on passive vibration absorption at the robotic end and feedback control at the joint motor.Although these strategies have a certain vibration suppression effect,the limitations of robotic flexibility and the extremely limited applicable speed range remain to be overcome.In this study,a Magnetorheological Joint Damper(MRJD)is developed.The joint-mounted feature ensures machining flexibility of the robot,and the millisecond response time of the Magnetorheological Fluid(MRF)ensures a large effective spindle speed range.More importantly,the evolution law of the damping performance of MRJD was revealed based on a low-frequency chatter mechanism,which guarantees the application of MRJD in robotic milling machining.To analyze the influence of the robotic joint angle on the suppression effect of the MRJD,the joint braking coefficient and end braking coefficient were proposed.Parallel coordinate plots were used to visualize the joint range with the optimal vibration suppression effect.Finally,a combination of different postures and cutting parameters was used to verify the vibration suppression effect and feasibility of the joint angle optimization.The experimental results show that the MRJD,which directly improves the joint vibration resistance,can effectively suppress the low-frequency vibration of robotic milling under a variety of cutting conditions.
基金supported in part by National Natural Science Founda-tion of China(No.62372284)in part by Shanghai Nat-ural Science Foundation(No.24ZR1421800).
文摘When tracking a unmanned aerial vehicle(UAV)in complex backgrounds,environmen-tal noise and clutter often obscure it.Traditional radar target tracking algorithms face multiple lim-itations when tracking a UAV,including high vulnerability to target occlusion and shape variations,as well as pronounced false alarms and missed detections in low signal-to-noise ratio(SNR)envi-ronments.To address these issues,this paper proposes a UAV detection and tracking algorithm based on a low-frequency communication network.The accuracy and effectiveness of the algorithm are validated through simulation experiments using field-measured point cloud data.Additionally,the key parameters of the algorithm are optimized through a process of selection and comparison,thereby improving the algorithm's precision.The experimental results show that the improved algo-rithm can significantly enhance the detection and tracking performance of the UAV under high clutter density conditions,effectively reduce the false alarm rate and markedly improve overall tracking performance metrics.
基金supported by the National Natural Science Foundation of China (Grant Nos. 42188101, 42174188, 42474217, 42330207, 42374193, 42241143, and 42025404)the National Key R&D Program of China (Grant Nos. 2022YFF0503700 and 2022YFF0503900)。
文摘Ultra-low-frequency(ULF) waves are ubiquitous in terrestrial and planetary environments, playing a crucial role in energy transfer and dissipation through wave–particle interactions within space plasmas. By performing a detailed event study in terms of particle distribution maps and wave–particle variable correlation maps, we report that ULF waves observed by the Mars Atmosphere and Volatile EvolutioN(MAVEN) spacecraft in the Martian foreshock can effectively modulate the suprathermal electron fluxes by the magnetic field fluctuations. In particular, the variations in electron fluxes at energies of ~10–100 eV are significant in the perpendicular direction, showing good relationships with changes in the wave field strength characterized by a correlation coefficient ~0.8. These findings demonstrate the generality of interactions of ULF waves with electrons, even at these low energies, highlighting the importance of such processes throughout the heliosphere.
基金supported by the National Natural Science Foundation of China(No.12172297)the Open Foundation of State Key Laboratory of Structural Analysis for Industrial Equipment of China(No.GZ22106)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University of China(No.CX2023055)。
文摘Incident particles in the Klein tunnel phenomenon in quantum mechanics can pass a very high potential barrier.Introducing the concept of tunneling into the analysis of phononic crystals can broaden the application prospects.In this study,the structure of the unit cell is designed,and the low frequency(<1 k Hz)valley locked waveguide is realized through the creation of a phononic crystal plate with a topological phase transition interface.The defect immunity of the topological waveguide is verified,that is,the wave can propagate along the original path in the cases of impurities and disorder.Then,the tunneling phenomenon is introduced into the topological valley-locked waveguide to analyze the wave propagation,and its potential applications(such as signal separators and logic gates)are further explored by designing phononic crystal plates.This research has broad application prospects in information processing and vibration control,and potential applications in other directions are also worth exploring.
基金supported by the National Natural Science Foundation of China(Nos.52241103 and 52322505)the Natural Science Fund for Distinguished Young Scholars of Hunan Province of China(No.2023JJ10055)。
文摘A metamaterial vibration isolator,termed as wave-insulating isolator,is proposed,which preserves enough load-bearing capability and offers ultra-low and broad bandgaps for greatly enhanced wave insulation.It consists of plate-shaped metacells,whose symmetric and antisymmetric local resonant modes offer several low and broad mode bandgaps although the complete bandgap remains high and narrow.The bandgap mechanisms,vibration isolation properties,effects of key parameters,and robustness to complex conditions are clarified.As experimentally demonstrated,the wave-insulating isolator can improve the vibration insulation in the ranges of[50 Hz,180 Hz]and[260 Hz,400 Hz]by 15 dB and 25 dB,respectively,in contrast to the conventional isolator with the same first resonant frequency.
基金This study is supported partially by National Natural Science Foundation of Chinapartially by the State Meteorological Administration Monsoon Research Funds.
文摘Based on June to September 1981 ECMWF grid datasets analysis is done of the characteristics of the propagation and structure of low-frequency (quasi 40 day) oscillation over eastern Asia. Results show a separating (confluence) belt for the meridional propagation of low-frequency zonal (meridional) winds at higher (lower) levels over subtropical latitudes at 120°E, revealing that the oscillation of the zonal winds is quasi- geostrophic in pature and in phase in the high- and low-level. It is also found that the eastward propagation of the high-level zonal winds around 35°N in East Asia is the result of eastward march of midlatitude low- frequency waves with 60--90 longitude wavelength and speed of 1.5--2.0 longitudes per day. In addition, such low-frequency vortices, when moving over the coastwise region, tend to develop, accompanied by sharp oscil- lation in the westerly jetstream over eastern Asia.
文摘The wave rays and their seasonal variation of stationary and low-frequency Rossby waves are studied by using the Runge-Kutta scheme. The results show that for stationary waves the rays can reach lower latitudes in winter, and are limited in higher latitudes in summer. The main differences between the stationary and low-frequency wave rays are that low-frequency waves can propagate across the equator and the easterlies will not be an obstacle on their propagation. It explained to some extent the interaction of disturbances between the Northern and Southern Hemispheres. The lower wave frequencies and the stronger easterly flow are, the more difficult low-frequency waves will be to propagate across the equator. The waves with 20-day period are easier to propagate across the equator than that with 50-day period. The winter is the most favorable season for low-frequency waves to propagate into another hemisphere.
文摘A barotropic model containing large-scale topography and zonal mean flow is established to discuss the effects of large-scale topography on the low-frequency waves. The results show that what affects low-frequency waves mostly is maximal height of topography and topographic slope. The former makes frequency of topographic Rossby waves decrease, the latter makes Rossby waves instable. Moreover, when topographic slope is appropriate, it can also make Rossby waves turn into low-frequency waves.