Bone marrow-derived mesenchymal stem cells (BMSCs) have been shown to promote the regeneration of injured peripheral nerves. Pulsed electromagnetic field (PEMF) reportedly promotes the proliferation and neuronal diffe...Bone marrow-derived mesenchymal stem cells (BMSCs) have been shown to promote the regeneration of injured peripheral nerves. Pulsed electromagnetic field (PEMF) reportedly promotes the proliferation and neuronal differentiation of BMSCs. Low-frequency PEMF can induce the neuronal differentiation of BMSCs in the absence of nerve growth factors. This study was designed to investigate the effects of low-frequency PEMF pretreatment on the proliferation and function of BMSCs and the effects of low-frequency PEMF pre-treated BMSCs on the regeneration of injured peripheral nerve using in vitro and in vivo experiments.In in vitro experiments, quantitative DNA analysis was performed to determine the proliferation of BMSCs, and reverse transcription-polymerase chain reaction was performed to detect S100 (Schwann cell marker), glial fibrillary acidic protein (astrocyte marker), and brain-derived neurotrophic factor and nerve growth factor (neurotrophic factors) mRNA expression. In the in vivo experiments, rat models of crush-injured mental nerve established using clamp method were randomly injected with low-frequency PEMF pretreated BMSCs, unpretreated BMSCs or PBS at the injury site (1 × 106 cells). DiI-labeled BMSCs injected at the injury site were counted under the fluorescence microscope to determine cell survival. One or two weeks after cell injection, functional recovery of the injured nerve was assessed using the sensory test with von Frey filaments. Two weeks after cell injection, axonal regeneration was evaluated using histomorphometric analysis and retrograde labeling of trigeminal ganglion neurons. In vitro experiment results revealed that low-frequency PEMF pretreated BMSCs proliferated faster and had greater mRNA expression of growth factors than unpretreated BMSCs. In vivo experiment results revealed that compared with injection of unpretreated BMSCs, injection of low-frequency PEMF pretreated BMSCs led to higher myelinated axon count and axon density and more DiI-labeled neurons in the trigeminal ganglia, contributing to rapider functional recovery of injured mental nerve. These findings suggest that low-frequency PEMF pretreatment is a promising approach to enhance the efficacy of cell therapy for peripheral nerve injury repair.展开更多
BACKGROUND: The postoperative recovery of nerve function in patients with peripheral nerve injury is always an important problem to solve after treatment. The electric stimulation induced electromagnetic field can no...BACKGROUND: The postoperative recovery of nerve function in patients with peripheral nerve injury is always an important problem to solve after treatment. The electric stimulation induced electromagnetic field can nourish nerve, postpone muscular atrophy, and help the postoperative neuromuscular function. OBJECTIVE: To observe the effects of low-frequency pulse percutaneous electric stimulation on the functional recovery of postoperative patients with peripheral nerve injury, and quantitatively evaluate the results of electromyogram (EMG) examination before and after treatment. DESIGN : A retrospective case analysis SETTING: The Sixth People's Hospital affiliated to Shanghai Jiaotong University PARTICIPANTS: Nineteen postoperative inpatients with peripheral nerve injury were selected from the De- partment of Orthopaedics, the Sixth People's Hospital affiliated to Shanghai Jiaotong University from June 2005 to January 2006, including 13 males and 6 females aged 24-62 years with an average of 36 years old. There were 3 cases of brachial plexus nerve injury, 3 of median nerve injury, 7 of radial nerve injury, 3 of ul- nar nerve injury and 3 of common peroneal nerve injury, and all the patients received probing nerve fiber restoration. Their main preoperative manifestations were dennervation, pain in limbs, motor and sensory disturbances. All the 19 patients were informed with the therapeutic program and items for evaluation. METHODS: ① Low-frequency pulse percutaneous electric stimulation apparatus: The patients were given electric stimulation with the TERESA cantata instrument (TERESA-0, Shanghai Teresa Health Technology, Co., Ltd.). The patients were stimulated with symmetric square waves of 1-111 Hz, and the intensity was 1.2-5.0 mA, and it was gradually adjusted according to the recovered conditions of neural regeneration following the principle that the intensity was strong enough and the patients felt no obvious upset. They were treated for 4- 24 weeks, 10-30 minutes for each time, 1-3 times a day, and 6 weeks as a course. ② EMG examination was applied to evaluate the recoveries of recruitment, motor conduction velocity (MCV) and sensory conduction velocity (SCV) before and after treatment. The patients were examined with the EMG apparatus (DIS- A2000C, Danmark) before and after the treatment of percutaneous electric stimulation. ③Standards for evaluating the effects included cured (complete recovery of motor functions, muscle strength of grade 5, no abnormality in EMG examination), obviously effective [general recovery of motor function, muscle strength of grade 4, no or a few denervation potentials, motor conduction velocity (MCV) and sensory conduction velocity (SCV)], improved (partial recovery of motor function, muscle strength of grade 3, denervation potentials and reinneration potentials, slowed MCV and SCV, invalid (no obvious changes of motor function). MAIN OUTCOME MEASURES: ① Ameliorated degree of the nerve function of the postoperative patients with peripheral nerve injury treated with percutaneous electric stimulation; ② Changes of EMG examination before and after treatment. RESULTS: All the 19 postoperative patients with peripheral nerve injury were involved in the analysis of results. ① Comparison of nerve function before and after treatment in 19 patients with peripheral nerve injury of different sites: For the patients with radial nerve injury (n=7), the nerve functions all completely recovered after 8-week treatment, and the cured and obvious rate was 100% (7/7); For the patients with brachial plexus nerve injury (n=3), 1 case had no obvious improvement, and the cured and obvious rate was 67% (2/3); For the patients with common peroneal nerve injury (n=3), the extension of foot dorsum generally recovered in 1 case of nerve contusion after 4-week treatment, and the cured and obvious rate was 67% (2/3); For the patients with median nerve injury (n=3), muscle strength was obviously recovered, and the cured and obvious rate was 100% (3/3); For the patients with ulnar nerve injury (n=3), 1 case only had recovery of partial senses, and the cured and obvious rate was 67% (2/3). Totally 9 cases were cured, 7 were obviously effective, 1 was improved, and only 2 were invalid. After 4 courses, the cured rate of damaged nerve function after four courses was 47% (9/19), and effective rate was 89% (17/19).② Comparison of EMG examination before and after treatment: Before and after percutaneous electric stimulation, he effective rates of recruitment, MCV and SCV were 89% (17/19), 58% (11/19), 47% (9/19) respectively, and there were extremely obvious differences (P〈 0.01). CONCLUSION: ①Low-frequency pulse percutaneous electric stimulation can improve the nerve function of postoperative patients with peripheral nerve injury of different sites, especially that the injuries of radial nerve and median nerve recover more obviously. ②Percutaneous electric stimulation can ameliorate the indexes of EMG examination, especially the recruitment, in postoperative patients with peripheral nerve injury.展开更多
BACKGROUND: Electromagnetic radiation can influence dopamine (DA) synthesis in brain tissues or ceils, but electromagnetic frequencies, intensities, and radiation time can produce different effects. In addition, th...BACKGROUND: Electromagnetic radiation can influence dopamine (DA) synthesis in brain tissues or ceils, but electromagnetic frequencies, intensities, and radiation time can produce different effects. In addition, the signal pathway by which electromagnetic radiation influences DA synthesis remains controversial. OBJECTIVE: To determine tyrosine hydroxylase (TH) expression in PC12 cells and DA levels in cell culture media after different periods of low-frequency pulsed electric field (LF-PEF) stimulation, and to determine how LF-PEF signaling stimulates TH synthesis using inhibitors. DESIGN, TIME AND SETTING: A parallel, controlled, cell experiment was performed at the Laboratory of Cell Biology, School of Life Science, East China Normal University, between January and October 2006. MATERIALS: PC12 cells were purchased from the Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, China. Nerve growth factor was purchased from PeproTech, USA. The protein kinase A inhibitor, H-89, and mitogen-activated protein kinase kinase inhibitor, U0126, were purchased from Sigma, USA. METHODS: (1) Following routine culture in Dulbecco's modified eagle medium, primary PC12 cells were stimulated under LF-PEF (pulse frequency 50.Hz, pulse width 20 μs, peak field strength 1 V/m) for 5, 10, 15, 20, and 30 minutes. (2) Inhibitors (H-89 or U0126, 1 μmol/L) were added 30 minutes before LF-PEF stimulation for 10 minutes. MAIN OUTCOME MEASURES: (1) TH expression was determined by Western blot in PC12 cells at 0.5, 1,2, 3, and 4 days after LF-PEF stimulation. Similarly, DA was measured by high-performance liquid chromatography in media at 2, 3, 4, or 5 days after LF-PEE (2) TH expression was detected 1 day after H-89 or U0126 treatment and LF-PEE RESULTS: (1) Short-term LF-PEF stimulation (5 and 10 minutes) increased TH expression and media DA levels after short-term culture (2 days) (P 〈 0.01), but both parameters decreased with longer culture (3 4 days) (P 〈 0.01). Long-term LF-PEF stimulation (15, 20, or 30 minutes) decreased TH and DA synthesis, followed by a rapid increase (P 〈 0.01). (2) H89 could completely inhibit TH expression in PC12 cells stimulated by LF-PEF for 10 minutes, while the inhibition rate of U0126 was 53.2%. CONCLUSION: Short-term LF-PEF first promotes then inhibits, while long-term LF-PEF first inhibits then promotes, TH and DA synthesis. LF-PEF stimulation regulates TH expression primarily by activating protein kinase A to regulate DA synthesis.展开更多
We investigate high-order harmonic generations by controlling various quantum paths of harmonics in an infrared laser field which combines a low-frequency pulse. Both classical theory and the quantum wavelet transform...We investigate high-order harmonic generations by controlling various quantum paths of harmonics in an infrared laser field which combines a low-frequency pulse. Both classical theory and the quantum wavelet transform method are used to understand the physics of harmonics. By adjusting the carrier envelope phase of the fundamental field, the intensities of harmonic spectra increase and the harmonics in the plateau become regular. Attosecond pulses each with a duration of 58 as are obtained directly by compressing the harmonics, and with phase compensation an isolated attosecond pulse less than 30 as can be generated.展开更多
Low-density short-duration pulsed current-assisted aging treatment was applied to the Ti-6Al-4V-0.5Mo-0.5Zr alloy subjected to different solution treatments.The results show that numerous α_(p) phases redissolve into...Low-density short-duration pulsed current-assisted aging treatment was applied to the Ti-6Al-4V-0.5Mo-0.5Zr alloy subjected to different solution treatments.The results show that numerous α_(p) phases redissolve into the new β phase during the pulsed current-assisted aging process,and then the newly formed β phase is mainly transformed into the β_(t) phase,with occasional transition to new α_(p) phase,leading to a remarkable grain refinement,especially for the lamellarαs phases.In comparison to conventional aging treatment,the pulsed current-assisted aging approach achieves a significant enhancement in strength without degrading ductility,yielding an excellent mechanical property combination:a yield strength of 932 MPa,a tensile strength of 1042 MPa,and an elongation of 12.2%.It is primarily ascribed to the increased fraction of β_(t) phases,the obvious grain refinement effect,and the slip block effect induced by the multiple-variantαs colonies distributed within β_(t) phases.展开更多
Dissimilar AZ31B magnesium alloy and DC56D steel were welded via AA1060 aluminum alloy by magnetic pulse welding.The effects of primary and secondary welding processes on the welded interface were comparatively invest...Dissimilar AZ31B magnesium alloy and DC56D steel were welded via AA1060 aluminum alloy by magnetic pulse welding.The effects of primary and secondary welding processes on the welded interface were comparatively investigated.Macroscopic morphology,microstructure,and interfacial structure of the joints were analyzed using scanning electron microscope,energy dispersive spectrometer,and X-ray diffractometer(XRD).The results show that magnetic pulse welding of dissimilar Mg/Fe metals is achieved using an Al interlayer,which acts as a bridge for deformation and diffusion.Specifically,the AZ31B/AA1060 interface exhibits a typical wavy morphology,and a transition zone exists at the joint interface,which may result in an extremely complex microstructure.The microstructure of this transition zone differs from that of AZ31B magnesium and 1060 Al alloys,and it is identified as brittle intermetallic compounds(IMCs)Al_(3)Mg_(2) and Al_(12)Mg_(17).The transition zone is mainly distributed on the Al side,with the maximum thickness of Al-side transition layer reaching approximately 13.53μm.Incomplete melting layers with varying thicknesses are observed at the primary weld interface,while micron-sized hole defects appear in the transition zone of the secondary weld interface.The AA1060/DC56D interface is mainly straight,with only a small number of discontinuous transition zones distributed intermittently along the interface.These transition zones are characterized by the presence of the brittle IMC FeAl_(3),with a maximum thickness of about 4μm.展开更多
AIM:To study the relationships between amplitude of low-frequency fluctuations(ALFF)changes and clinical ophthalmic parameters in patients with primary open angle glaucoma(POAG)and analyze the diagnostic value of ALFF...AIM:To study the relationships between amplitude of low-frequency fluctuations(ALFF)changes and clinical ophthalmic parameters in patients with primary open angle glaucoma(POAG)and analyze the diagnostic value of ALFF.METHODS:Twenty-four POAG patients and 24 healthy controls(HCs)underwent resting-state functional magnetic resonance imaging(rs-fMRI).Nonparametric rank-sum tests were used to compare the ALFF values in the slow-4 and slow-5 bands,and Spearman or Pearson correlation analysis was used to assess the correlation between ALFF changes and clinical ophthalmic parameters in POAG patients.Receiver operating characteristic(ROC)curves were used to evaluate the diagnostic performance of the ALFF.RESULTS:There were 16 males in POAG patients(median age 48y)and 12 males in HCs(median age 39y).Compared with HCs,POAG patients presented increased or decreased ALFF values in different brain regions,and similar changes were observed in mild POAG patients.The ALFF values were correlated with retinal nerve fiber layer(RNFL)thickness,inner limiting membrane-retinal pigment epithelium thickness changes and the degree of visual field defects.Analysis of the diagnostic value of the ALFF via ROC curves revealed that the right medial frontal gyrus[area under the curve(AUC)=0.9063]and superior frontal gyrus(AUC=0.9097)had better diagnostic value than did the optic disc area(AUC=0.8019),visual field index(VFI%,AUC=0.8988)and macular parameters.CONCLUSION:POAG patients present altered cortical function that is significantly correlated with the optic nerve and retinal thickness and had good diagnostic value,which may reflect the underlying neuropathological mechanism of POAG.展开更多
Pulsed dynamic electrolysis(PDE),driven by renewable energy,has emerged as an innovative electrocatalytic conversion method,demonstrating significant potential in addressing global energy challenges and promoting sust...Pulsed dynamic electrolysis(PDE),driven by renewable energy,has emerged as an innovative electrocatalytic conversion method,demonstrating significant potential in addressing global energy challenges and promoting sustainable development.Despite significant progress in various electrochemical systems,the regulatory mechanisms of PDE in energy and mass transfer and the lifespan extension of electrolysis systems,particularly in water electrolysis(WE)for hydrogen production,remain insufficiently explored.Therefore,there is an urgent need for a deeper understanding of the unique contributions of PDE in mass transfer enhancement,microenvironment regulation,and hydrogen production optimization,aiming to achieve low-energy consumption,high catalytic activity,and long-term stability in the generation of target products.Here,this review critically examines the microenvironmental effects of PDE on energy and mass transfer,the electrode degradation mechanisms in the lifespan extension of electrolysis systems,and the key factors in enhancing WE for hydrogen production,providing a comprehensive summary of current research progress.The review focuses on the complex regulatory mechanisms of frequency,duty cycle,amplitude,and other factors in hydrogen evolution reaction(HER)performance within PDE strategies,revealing the interrelationships among them.Finally,the potential future directions and challenges for transitioning from laboratory studies to industrial applications are proposed.展开更多
Joining dissimilar materials encounters significant engineering challenges due to the contrast in material properties that makes conventional welding not feasible.Magnetic Pulse Welding(MPW)offers a solidstate joining...Joining dissimilar materials encounters significant engineering challenges due to the contrast in material properties that makes conventional welding not feasible.Magnetic Pulse Welding(MPW)offers a solidstate joining technique that overcomes these issues by using impact to create strong bonds without melting the substrate materials.This study investigates the weldability of aluminum alloy Al-5754 with Al-7075 and MARS 380 steel,used in armouring solutions of defense systems,by the use of MPW.In this work,weldability windows are investigated by varying standoff distances between the coating material and its substrate(0.25-4.5 mm)and discharge energies(5-13 kJ)with both O-shape and U-shape inductors.Mechanical strength of the welded joints were assessed through single lap shear tests,identifying optimal welding parameters.Then,the velocity profiles of the flyer plates were measured using heterodyne velocimetry to understand the dynamics of the impact.Then,substructures assembled with the optimal welding conditions were subjected to ballistic testing using 7.62 mm×51 mm NATO and 9 mm×19 mm Parabellum munitions to evaluate the resilience of the welds under ballistic impact.The outcomes demonstrate that MPW effectively joins Al-5754 with both Al-7075 and MARS 380,producing robust welds capable of withstanding ballistic impacts under certain conditions.This research advances the application of MPW in lightweight ballistic protection of defense systems,contributing to the development of more resilient and lighter protective structures.展开更多
Non-metallic inclusions in steel are a significant challenge,affecting material properties and leading to issues such as stress concentration,cracking,and accelerated corrosion.Current methods for removing inclusions,...Non-metallic inclusions in steel are a significant challenge,affecting material properties and leading to issues such as stress concentration,cracking,and accelerated corrosion.Current methods for removing inclusions,including bubble,electromagnetic stirring,filtration separation,fluid flow,and sedimentation,often struggle with the removal of fine inclusions.Apart from these known methods,pulsed electric current(PEC),as an emerging technology,has demonstrated immense potential and environmental advantages.PEC offers adjustable current parameters and simple equipment,making it an attractive alternative to traditional methods.Its green energy-saving features and excellent results in regulating inclusion morphology and migration,as well as inhibiting submerged entry nozzle(SEN)clogging,make it a promising technology.In comparison to continuous current technology,PEC has shown significant advantages in regulating inclusions,not only improving purification efficiency but also demonstrating outstanding performance in flow stability and energy consumption.The ability of PEC to efficiently reduce inclusion numbers enhances the purity and quality of molten steel,improving its mechanical properties.Currently,the theoretical basis for controlling the movement of inclusions by current is mainly composed of three major theories:the double electric layer theory,electromagnetic force reverse separation theory,and electric free energy drive theory.These theories together form an important framework for researchers to understand and optimize the behavior of impurity movement controlled by electric current.Looking ahead,PEC is expected to pave the way for new solutions in directional regulation of inclusion migration,efficient inclusion removal,SEN clogging prevention,and the purification of molten steel.展开更多
In a pulsed plasma thruster,the voltage distribution between the electrodes is a key factor that influences the ionization process.However,few researchers have conducted in-depth studies of this phenomenon in the past...In a pulsed plasma thruster,the voltage distribution between the electrodes is a key factor that influences the ionization process.However,few researchers have conducted in-depth studies of this phenomenon in the past.Reported here are measurements of the voltage distribution between the plates of a parallel-plate pulsed plasma thruster under different discharge voltages,based on which the variations in the total circuit inductance and resistance as well as those between the plates are calculated.The results show that the time-averaged voltage across the plates accounts for 28.7%-50.4%of the capacitor voltage.As the capacitor initial voltage increases from 1250 V to 2000 V,the voltage across the plates rises,but its proportion relative to the capacitor voltage decreases.For every 250 V increase in the capacitor initial voltage,the average voltage proportion across the plates decreases by approximately 2%-3%.Additionally,the voltage proportion decreases gradually from the end near the propellant outward.The voltage distribution ratio between the plates is correlated with the proportions of the resistance and inductance between the plates relative to the total circuit.展开更多
The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for...The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for hydrogen production.Despite remarkable advancements in this field,confronting the sluggish electrochemical kinetics and inherent high-energy consumption arising from deteriorated mass transport within PEMWE systems remains a formidable obstacle.This impediment stems primarily from the hindered protons mass transfer and the untimely hydrogen bubbles detachment.To address these challenges,we harness the inherent variability of electrical energy and introduce an innovative pulsed dynamic water electrolysis system.Compared to constant voltage electrolysis(hydrogen production rate:51.6 m L h^(-1),energy consumption:5.37 kWh Nm-^(3)H_(2)),this strategy(hydrogen production rate:66 m L h^(-1),energy consumption:3.83 kWh Nm-^(3)H_(2))increases the hydrogen production rate by approximately 27%and reduces the energy consumption by about 28%.Furthermore,we demonstrate the practicality of this system by integrating it with an off-grid photovoltaic(PV)system designed for outdoor operation,successfully driving a hydrogen production current of up to 500 mA under an average voltage of approximately 2 V.The combined results of in-situ characterization and finite element analysis reveal the performance enhancement mechanism:pulsed dynamic electrolysis(PDE)dramatically accelerates the enrichment of protons at the electrode/solution interface and facilitates the release of bubbles on the electrode surface.As such,PDE-enhanced PEMWE represents a synergistic advancement,concurrently enhancing both the hydrogen generation reaction and associated transport processes.This promising technology not only redefines the landscape of electrolysis-based hydrogen production but also holds immense potential for broadening its application across a diverse spectrum of electrocatalytic endeavors.展开更多
In this paper, we have demonstrated an Er-doped ultrafast laser with a single mode fiber-gradient index multimode fiber-single mode fiber(SMF-GIMF-SMF, SMS) structure as saturable absorber(SA), which can generate not ...In this paper, we have demonstrated an Er-doped ultrafast laser with a single mode fiber-gradient index multimode fiber-single mode fiber(SMF-GIMF-SMF, SMS) structure as saturable absorber(SA), which can generate not only stable single-pulse state, but also special mode-locked pulses with the characteristics of high energy and noisy behaviors at proper pump power and cavity polarization state. In addition, we have deeply investigated the real-time spectral evolutions of the mode-locked pulses through the dispersive Fourier transformation(DFT) technique. It can be found that the pulse regime can actually consist of a lot of small noise pulses with randomly varying intensities. We believe that these results will further enrich the nonlinear dynamical processes in the ultrafast lasers.展开更多
The paper is an introduction to the front-end pulse acquisition and the back-end pulse biomimetic reproduction system.This system is capable of faithfully replicating the complete pulse waveform collected at the front...The paper is an introduction to the front-end pulse acquisition and the back-end pulse biomimetic reproduction system.This system is capable of faithfully replicating the complete pulse waveform collected at the front end.Traditional Chinese Medicine(TCM)practitioners analyze and diagnose the pulse patterns at the replication end.Meanwhile,the obtained pulse waveforms are analyzed and learnt by a neural network based on key diagnostic points in TCM pulse taking,which enables the determination of the corresponding relationships between different pulse waveforms and various pulse patterns in TCM pulse taking.With the support of clinical samples,an auxiliary diagnostic system for TCM pulse patterns ensures the accuracy of pulse pattern replication.展开更多
A mid-infrared femtosecond pulse laser with a single cycle and high intensity is an ideal driving light source for generating isolated attosecond pulses. Due to current experimental limitations, it is difficult to dir...A mid-infrared femtosecond pulse laser with a single cycle and high intensity is an ideal driving light source for generating isolated attosecond pulses. Due to current experimental limitations, it is difficult to directly achieve this type of laser light source in the laboratory. In this paper, we obtain such an ideal light source by adding a Ti sapphire pulse to the combined pulse laser consisting of two mid-infrared pulses. Specifically, by combining the synthesized pulse consisting of 8 fs/1200 nm/1.62 × 10^(14)W cm^(-2)and 12 fs/1800 nm/2.71 × 10^(14)W cm^(-2)with an additional 8 fs/800 nm/1.26 × 10^(14)W cm^(-2)Ti sapphire pulse, the resulting electric field waveform is very close to that of a 1170 nm femtosecond pulse with an intensity of 1.4 × 10^(15)W cm^(-2), a single-cycle pulse width, and a carrier-envelope phase of 0.25π. Numerical simulations show that both cases produce high-order harmonic emission spectra with broadband supercontinuum spectra, however, the bandwidth of the supercontinuum spectra and the harmonic intensities in the synthesized pulses are significantly better than those in the single1170 nm pulse. After inverse Fourier transform, we obtain 66 as a high-intensity isolated attosecond pulse, whose intensity is five orders of magnitude higher than that of a monochromatic field. Here, the phase differences between three combined pulse lasers have little effect on the numerical simulation results when they vary in the range of 0.3π.展开更多
Pulsed magnet technology is the only way to generate ultra-strong magnetic fields higher than 45 T so far.However,the inherently fast-changing field strength(typically on the order of 1000 T/s)poses significant challe...Pulsed magnet technology is the only way to generate ultra-strong magnetic fields higher than 45 T so far.However,the inherently fast-changing field strength(typically on the order of 1000 T/s)poses significant challenges for spectroscopic measurements which rely on time integration of signals to improve spectral qualities.In this work,we report high-sensitivity spectroscopic measurements under pulsed high magnetic fields employing the long flat-top pulsed magnetic field technique.By means of a multiple-capacitor power supply,we were able to generate pulsed high magnetic fields with controllable flat-top pulse width and field stabilities.By synchronizing spectroscopic measurements with the waveform of the flattop magnetic field,the integration time of each spectrum can be increased by up to 100 times compared with that of the conventional spectroscopic measurements under pulsed magnetic fields,thus enabling high-sensitivity spectroscopic measurements under ultra-strong pulsed magnetic fields.These findings promise an efficient way to significantly improve the performance and extend the application of optical measurements under pulsed high magnetic fields.展开更多
In order to obtain a lower frequency band gap,this paper proposes a novel locally resonant meta-beam incorporating a softening nonlinear factor.An improved camroller structure is designed in this meta-beam to achieve ...In order to obtain a lower frequency band gap,this paper proposes a novel locally resonant meta-beam incorporating a softening nonlinear factor.An improved camroller structure is designed in this meta-beam to achieve the softening nonlinear stiffness of the local oscillators.Firstly,based on Hamilton's principle and the Galerkin method,the control equations for the coupled system are established.The theoretical band gap boundary is then derived with the modal analysis method.The theoretical results reveal that the band gap of the meta-beam shifts towards lower frequencies due to the presence of a softening nonlinear factor,distinguishing it from both linear metamaterials and those with hardening nonlinear characteristics.Then,the vibration attenuation characteristics of a finite size meta-beam are investigated through numerical calculation,and are verified by the theoretical results.Furthermore,parameter studies indicate that the reasonable design of the local oscillator parameters based on lightweight principles helps to achieve further broadband and efficient vibration reduction in the low-frequency region.Finally,a prototype of the meta-beam is fabricated and assembled,and the formations of the low-frequency band gap and the amplitude-induced band gap phenomenon are verified through experiments.展开更多
Low-frequency vibroseis acquisition has become a routine operation in land seismic surveys,given the advantages of low-frequency signals in characterizing geological structures and enhancing the imaging of deep explor...Low-frequency vibroseis acquisition has become a routine operation in land seismic surveys,given the advantages of low-frequency signals in characterizing geological structures and enhancing the imaging of deep exploration targets.The two key points of low-frequency sweep design techniques include controlling the distortion and improving the output energy during the low-frequency stage.However,the vibrators are limited by the maximum fl ow provided by the hydraulic systems at the low-frequency stage,causing difficulty in satisfying exploration energy requirements.Initially,a theoretical analysis of the low-frequency acquisition performance of vibrators is conducted.A theoretical maximum output force below 10 Hz is obtained by guiding through theoretical formulas and combining actual vibrator parameters.Then,the signal is optimized according to the surface characteristics of the operation area.Finally,detailed application quality control and operational procedures are established.The new low-frequency sweep design method has overcome the maximum flow limitations of the hydraulic system,increased the low-frequency energy,and achieved broadband acquisition.The designed signal has been tested and applied on various types of ground surfaces in the Middle East desert region,yielding good performance.The proposed low-frequency sweep design method holds considerable value for the application of conventional vibroseis in low-frequency acquisition.展开更多
基金supported by a grant of the Korea Health Technology R & D Project through the Korea Health Industry Development Institute(KHIDI)funded by the Ministry of Health&Welfare,Republic of Korea(grant number:HI15C1535)
文摘Bone marrow-derived mesenchymal stem cells (BMSCs) have been shown to promote the regeneration of injured peripheral nerves. Pulsed electromagnetic field (PEMF) reportedly promotes the proliferation and neuronal differentiation of BMSCs. Low-frequency PEMF can induce the neuronal differentiation of BMSCs in the absence of nerve growth factors. This study was designed to investigate the effects of low-frequency PEMF pretreatment on the proliferation and function of BMSCs and the effects of low-frequency PEMF pre-treated BMSCs on the regeneration of injured peripheral nerve using in vitro and in vivo experiments.In in vitro experiments, quantitative DNA analysis was performed to determine the proliferation of BMSCs, and reverse transcription-polymerase chain reaction was performed to detect S100 (Schwann cell marker), glial fibrillary acidic protein (astrocyte marker), and brain-derived neurotrophic factor and nerve growth factor (neurotrophic factors) mRNA expression. In the in vivo experiments, rat models of crush-injured mental nerve established using clamp method were randomly injected with low-frequency PEMF pretreated BMSCs, unpretreated BMSCs or PBS at the injury site (1 × 106 cells). DiI-labeled BMSCs injected at the injury site were counted under the fluorescence microscope to determine cell survival. One or two weeks after cell injection, functional recovery of the injured nerve was assessed using the sensory test with von Frey filaments. Two weeks after cell injection, axonal regeneration was evaluated using histomorphometric analysis and retrograde labeling of trigeminal ganglion neurons. In vitro experiment results revealed that low-frequency PEMF pretreated BMSCs proliferated faster and had greater mRNA expression of growth factors than unpretreated BMSCs. In vivo experiment results revealed that compared with injection of unpretreated BMSCs, injection of low-frequency PEMF pretreated BMSCs led to higher myelinated axon count and axon density and more DiI-labeled neurons in the trigeminal ganglia, contributing to rapider functional recovery of injured mental nerve. These findings suggest that low-frequency PEMF pretreatment is a promising approach to enhance the efficacy of cell therapy for peripheral nerve injury repair.
基金grants from Sci-entific Research Fund of theMinistry of Health, No.20040801 Shanghai Ris-ing-Star Program of Technologi-cal Committee, No.05QMX1438
文摘BACKGROUND: The postoperative recovery of nerve function in patients with peripheral nerve injury is always an important problem to solve after treatment. The electric stimulation induced electromagnetic field can nourish nerve, postpone muscular atrophy, and help the postoperative neuromuscular function. OBJECTIVE: To observe the effects of low-frequency pulse percutaneous electric stimulation on the functional recovery of postoperative patients with peripheral nerve injury, and quantitatively evaluate the results of electromyogram (EMG) examination before and after treatment. DESIGN : A retrospective case analysis SETTING: The Sixth People's Hospital affiliated to Shanghai Jiaotong University PARTICIPANTS: Nineteen postoperative inpatients with peripheral nerve injury were selected from the De- partment of Orthopaedics, the Sixth People's Hospital affiliated to Shanghai Jiaotong University from June 2005 to January 2006, including 13 males and 6 females aged 24-62 years with an average of 36 years old. There were 3 cases of brachial plexus nerve injury, 3 of median nerve injury, 7 of radial nerve injury, 3 of ul- nar nerve injury and 3 of common peroneal nerve injury, and all the patients received probing nerve fiber restoration. Their main preoperative manifestations were dennervation, pain in limbs, motor and sensory disturbances. All the 19 patients were informed with the therapeutic program and items for evaluation. METHODS: ① Low-frequency pulse percutaneous electric stimulation apparatus: The patients were given electric stimulation with the TERESA cantata instrument (TERESA-0, Shanghai Teresa Health Technology, Co., Ltd.). The patients were stimulated with symmetric square waves of 1-111 Hz, and the intensity was 1.2-5.0 mA, and it was gradually adjusted according to the recovered conditions of neural regeneration following the principle that the intensity was strong enough and the patients felt no obvious upset. They were treated for 4- 24 weeks, 10-30 minutes for each time, 1-3 times a day, and 6 weeks as a course. ② EMG examination was applied to evaluate the recoveries of recruitment, motor conduction velocity (MCV) and sensory conduction velocity (SCV) before and after treatment. The patients were examined with the EMG apparatus (DIS- A2000C, Danmark) before and after the treatment of percutaneous electric stimulation. ③Standards for evaluating the effects included cured (complete recovery of motor functions, muscle strength of grade 5, no abnormality in EMG examination), obviously effective [general recovery of motor function, muscle strength of grade 4, no or a few denervation potentials, motor conduction velocity (MCV) and sensory conduction velocity (SCV)], improved (partial recovery of motor function, muscle strength of grade 3, denervation potentials and reinneration potentials, slowed MCV and SCV, invalid (no obvious changes of motor function). MAIN OUTCOME MEASURES: ① Ameliorated degree of the nerve function of the postoperative patients with peripheral nerve injury treated with percutaneous electric stimulation; ② Changes of EMG examination before and after treatment. RESULTS: All the 19 postoperative patients with peripheral nerve injury were involved in the analysis of results. ① Comparison of nerve function before and after treatment in 19 patients with peripheral nerve injury of different sites: For the patients with radial nerve injury (n=7), the nerve functions all completely recovered after 8-week treatment, and the cured and obvious rate was 100% (7/7); For the patients with brachial plexus nerve injury (n=3), 1 case had no obvious improvement, and the cured and obvious rate was 67% (2/3); For the patients with common peroneal nerve injury (n=3), the extension of foot dorsum generally recovered in 1 case of nerve contusion after 4-week treatment, and the cured and obvious rate was 67% (2/3); For the patients with median nerve injury (n=3), muscle strength was obviously recovered, and the cured and obvious rate was 100% (3/3); For the patients with ulnar nerve injury (n=3), 1 case only had recovery of partial senses, and the cured and obvious rate was 67% (2/3). Totally 9 cases were cured, 7 were obviously effective, 1 was improved, and only 2 were invalid. After 4 courses, the cured rate of damaged nerve function after four courses was 47% (9/19), and effective rate was 89% (17/19).② Comparison of EMG examination before and after treatment: Before and after percutaneous electric stimulation, he effective rates of recruitment, MCV and SCV were 89% (17/19), 58% (11/19), 47% (9/19) respectively, and there were extremely obvious differences (P〈 0.01). CONCLUSION: ①Low-frequency pulse percutaneous electric stimulation can improve the nerve function of postoperative patients with peripheral nerve injury of different sites, especially that the injuries of radial nerve and median nerve recover more obviously. ②Percutaneous electric stimulation can ameliorate the indexes of EMG examination, especially the recruitment, in postoperative patients with peripheral nerve injury.
基金the National Natural Science Foundation of China,No.50677022
文摘BACKGROUND: Electromagnetic radiation can influence dopamine (DA) synthesis in brain tissues or ceils, but electromagnetic frequencies, intensities, and radiation time can produce different effects. In addition, the signal pathway by which electromagnetic radiation influences DA synthesis remains controversial. OBJECTIVE: To determine tyrosine hydroxylase (TH) expression in PC12 cells and DA levels in cell culture media after different periods of low-frequency pulsed electric field (LF-PEF) stimulation, and to determine how LF-PEF signaling stimulates TH synthesis using inhibitors. DESIGN, TIME AND SETTING: A parallel, controlled, cell experiment was performed at the Laboratory of Cell Biology, School of Life Science, East China Normal University, between January and October 2006. MATERIALS: PC12 cells were purchased from the Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, China. Nerve growth factor was purchased from PeproTech, USA. The protein kinase A inhibitor, H-89, and mitogen-activated protein kinase kinase inhibitor, U0126, were purchased from Sigma, USA. METHODS: (1) Following routine culture in Dulbecco's modified eagle medium, primary PC12 cells were stimulated under LF-PEF (pulse frequency 50.Hz, pulse width 20 μs, peak field strength 1 V/m) for 5, 10, 15, 20, and 30 minutes. (2) Inhibitors (H-89 or U0126, 1 μmol/L) were added 30 minutes before LF-PEF stimulation for 10 minutes. MAIN OUTCOME MEASURES: (1) TH expression was determined by Western blot in PC12 cells at 0.5, 1,2, 3, and 4 days after LF-PEF stimulation. Similarly, DA was measured by high-performance liquid chromatography in media at 2, 3, 4, or 5 days after LF-PEE (2) TH expression was detected 1 day after H-89 or U0126 treatment and LF-PEE RESULTS: (1) Short-term LF-PEF stimulation (5 and 10 minutes) increased TH expression and media DA levels after short-term culture (2 days) (P 〈 0.01), but both parameters decreased with longer culture (3 4 days) (P 〈 0.01). Long-term LF-PEF stimulation (15, 20, or 30 minutes) decreased TH and DA synthesis, followed by a rapid increase (P 〈 0.01). (2) H89 could completely inhibit TH expression in PC12 cells stimulated by LF-PEF for 10 minutes, while the inhibition rate of U0126 was 53.2%. CONCLUSION: Short-term LF-PEF first promotes then inhibits, while long-term LF-PEF first inhibits then promotes, TH and DA synthesis. LF-PEF stimulation regulates TH expression primarily by activating protein kinase A to regulate DA synthesis.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10974198)
文摘We investigate high-order harmonic generations by controlling various quantum paths of harmonics in an infrared laser field which combines a low-frequency pulse. Both classical theory and the quantum wavelet transform method are used to understand the physics of harmonics. By adjusting the carrier envelope phase of the fundamental field, the intensities of harmonic spectra increase and the harmonics in the plateau become regular. Attosecond pulses each with a duration of 58 as are obtained directly by compressing the harmonics, and with phase compensation an isolated attosecond pulse less than 30 as can be generated.
基金National Key Research and Development Program of China(2021YFB3700801)。
文摘Low-density short-duration pulsed current-assisted aging treatment was applied to the Ti-6Al-4V-0.5Mo-0.5Zr alloy subjected to different solution treatments.The results show that numerous α_(p) phases redissolve into the new β phase during the pulsed current-assisted aging process,and then the newly formed β phase is mainly transformed into the β_(t) phase,with occasional transition to new α_(p) phase,leading to a remarkable grain refinement,especially for the lamellarαs phases.In comparison to conventional aging treatment,the pulsed current-assisted aging approach achieves a significant enhancement in strength without degrading ductility,yielding an excellent mechanical property combination:a yield strength of 932 MPa,a tensile strength of 1042 MPa,and an elongation of 12.2%.It is primarily ascribed to the increased fraction of β_(t) phases,the obvious grain refinement effect,and the slip block effect induced by the multiple-variantαs colonies distributed within β_(t) phases.
文摘Dissimilar AZ31B magnesium alloy and DC56D steel were welded via AA1060 aluminum alloy by magnetic pulse welding.The effects of primary and secondary welding processes on the welded interface were comparatively investigated.Macroscopic morphology,microstructure,and interfacial structure of the joints were analyzed using scanning electron microscope,energy dispersive spectrometer,and X-ray diffractometer(XRD).The results show that magnetic pulse welding of dissimilar Mg/Fe metals is achieved using an Al interlayer,which acts as a bridge for deformation and diffusion.Specifically,the AZ31B/AA1060 interface exhibits a typical wavy morphology,and a transition zone exists at the joint interface,which may result in an extremely complex microstructure.The microstructure of this transition zone differs from that of AZ31B magnesium and 1060 Al alloys,and it is identified as brittle intermetallic compounds(IMCs)Al_(3)Mg_(2) and Al_(12)Mg_(17).The transition zone is mainly distributed on the Al side,with the maximum thickness of Al-side transition layer reaching approximately 13.53μm.Incomplete melting layers with varying thicknesses are observed at the primary weld interface,while micron-sized hole defects appear in the transition zone of the secondary weld interface.The AA1060/DC56D interface is mainly straight,with only a small number of discontinuous transition zones distributed intermittently along the interface.These transition zones are characterized by the presence of the brittle IMC FeAl_(3),with a maximum thickness of about 4μm.
基金Supported by National Natural Science Foundation of China(No.82260203).
文摘AIM:To study the relationships between amplitude of low-frequency fluctuations(ALFF)changes and clinical ophthalmic parameters in patients with primary open angle glaucoma(POAG)and analyze the diagnostic value of ALFF.METHODS:Twenty-four POAG patients and 24 healthy controls(HCs)underwent resting-state functional magnetic resonance imaging(rs-fMRI).Nonparametric rank-sum tests were used to compare the ALFF values in the slow-4 and slow-5 bands,and Spearman or Pearson correlation analysis was used to assess the correlation between ALFF changes and clinical ophthalmic parameters in POAG patients.Receiver operating characteristic(ROC)curves were used to evaluate the diagnostic performance of the ALFF.RESULTS:There were 16 males in POAG patients(median age 48y)and 12 males in HCs(median age 39y).Compared with HCs,POAG patients presented increased or decreased ALFF values in different brain regions,and similar changes were observed in mild POAG patients.The ALFF values were correlated with retinal nerve fiber layer(RNFL)thickness,inner limiting membrane-retinal pigment epithelium thickness changes and the degree of visual field defects.Analysis of the diagnostic value of the ALFF via ROC curves revealed that the right medial frontal gyrus[area under the curve(AUC)=0.9063]and superior frontal gyrus(AUC=0.9097)had better diagnostic value than did the optic disc area(AUC=0.8019),visual field index(VFI%,AUC=0.8988)and macular parameters.CONCLUSION:POAG patients present altered cortical function that is significantly correlated with the optic nerve and retinal thickness and had good diagnostic value,which may reflect the underlying neuropathological mechanism of POAG.
基金financially supported by the Key Research and Development Program of Heilongjiang Province(No.2024ZXJ03C06)National Natural Science Foundation of China(No.52476192,No.52106237)+1 种基金Natural Science Foundation of Heilongjiang Province(No.YQ2022E027)Technology Project of China Datang Technology Innovation Co.,Ltd(No.DTKC-2024-20610).
文摘Pulsed dynamic electrolysis(PDE),driven by renewable energy,has emerged as an innovative electrocatalytic conversion method,demonstrating significant potential in addressing global energy challenges and promoting sustainable development.Despite significant progress in various electrochemical systems,the regulatory mechanisms of PDE in energy and mass transfer and the lifespan extension of electrolysis systems,particularly in water electrolysis(WE)for hydrogen production,remain insufficiently explored.Therefore,there is an urgent need for a deeper understanding of the unique contributions of PDE in mass transfer enhancement,microenvironment regulation,and hydrogen production optimization,aiming to achieve low-energy consumption,high catalytic activity,and long-term stability in the generation of target products.Here,this review critically examines the microenvironmental effects of PDE on energy and mass transfer,the electrode degradation mechanisms in the lifespan extension of electrolysis systems,and the key factors in enhancing WE for hydrogen production,providing a comprehensive summary of current research progress.The review focuses on the complex regulatory mechanisms of frequency,duty cycle,amplitude,and other factors in hydrogen evolution reaction(HER)performance within PDE strategies,revealing the interrelationships among them.Finally,the potential future directions and challenges for transitioning from laboratory studies to industrial applications are proposed.
基金funded on the one hand by Agence de l'Innovation de Défense(AID)grant reference number 2021650044on the other hand by Ecole Centrale de Nantes。
文摘Joining dissimilar materials encounters significant engineering challenges due to the contrast in material properties that makes conventional welding not feasible.Magnetic Pulse Welding(MPW)offers a solidstate joining technique that overcomes these issues by using impact to create strong bonds without melting the substrate materials.This study investigates the weldability of aluminum alloy Al-5754 with Al-7075 and MARS 380 steel,used in armouring solutions of defense systems,by the use of MPW.In this work,weldability windows are investigated by varying standoff distances between the coating material and its substrate(0.25-4.5 mm)and discharge energies(5-13 kJ)with both O-shape and U-shape inductors.Mechanical strength of the welded joints were assessed through single lap shear tests,identifying optimal welding parameters.Then,the velocity profiles of the flyer plates were measured using heterodyne velocimetry to understand the dynamics of the impact.Then,substructures assembled with the optimal welding conditions were subjected to ballistic testing using 7.62 mm×51 mm NATO and 9 mm×19 mm Parabellum munitions to evaluate the resilience of the welds under ballistic impact.The outcomes demonstrate that MPW effectively joins Al-5754 with both Al-7075 and MARS 380,producing robust welds capable of withstanding ballistic impacts under certain conditions.This research advances the application of MPW in lightweight ballistic protection of defense systems,contributing to the development of more resilient and lighter protective structures.
基金supported by the Fundamental Research Funds for the Central Universities(No.FRF-BD-23-01).
文摘Non-metallic inclusions in steel are a significant challenge,affecting material properties and leading to issues such as stress concentration,cracking,and accelerated corrosion.Current methods for removing inclusions,including bubble,electromagnetic stirring,filtration separation,fluid flow,and sedimentation,often struggle with the removal of fine inclusions.Apart from these known methods,pulsed electric current(PEC),as an emerging technology,has demonstrated immense potential and environmental advantages.PEC offers adjustable current parameters and simple equipment,making it an attractive alternative to traditional methods.Its green energy-saving features and excellent results in regulating inclusion morphology and migration,as well as inhibiting submerged entry nozzle(SEN)clogging,make it a promising technology.In comparison to continuous current technology,PEC has shown significant advantages in regulating inclusions,not only improving purification efficiency but also demonstrating outstanding performance in flow stability and energy consumption.The ability of PEC to efficiently reduce inclusion numbers enhances the purity and quality of molten steel,improving its mechanical properties.Currently,the theoretical basis for controlling the movement of inclusions by current is mainly composed of three major theories:the double electric layer theory,electromagnetic force reverse separation theory,and electric free energy drive theory.These theories together form an important framework for researchers to understand and optimize the behavior of impurity movement controlled by electric current.Looking ahead,PEC is expected to pave the way for new solutions in directional regulation of inclusion migration,efficient inclusion removal,SEN clogging prevention,and the purification of molten steel.
基金supported by the Beijing Natural Science Foundation(No.QY24166).
文摘In a pulsed plasma thruster,the voltage distribution between the electrodes is a key factor that influences the ionization process.However,few researchers have conducted in-depth studies of this phenomenon in the past.Reported here are measurements of the voltage distribution between the plates of a parallel-plate pulsed plasma thruster under different discharge voltages,based on which the variations in the total circuit inductance and resistance as well as those between the plates are calculated.The results show that the time-averaged voltage across the plates accounts for 28.7%-50.4%of the capacitor voltage.As the capacitor initial voltage increases from 1250 V to 2000 V,the voltage across the plates rises,but its proportion relative to the capacitor voltage decreases.For every 250 V increase in the capacitor initial voltage,the average voltage proportion across the plates decreases by approximately 2%-3%.Additionally,the voltage proportion decreases gradually from the end near the propellant outward.The voltage distribution ratio between the plates is correlated with the proportions of the resistance and inductance between the plates relative to the total circuit.
基金National Natural Science Foundation of China(No.52476192,No.52106237)Natural Science Foundation of Heilongjiang Province(No.YQ2022E027)。
文摘The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for hydrogen production.Despite remarkable advancements in this field,confronting the sluggish electrochemical kinetics and inherent high-energy consumption arising from deteriorated mass transport within PEMWE systems remains a formidable obstacle.This impediment stems primarily from the hindered protons mass transfer and the untimely hydrogen bubbles detachment.To address these challenges,we harness the inherent variability of electrical energy and introduce an innovative pulsed dynamic water electrolysis system.Compared to constant voltage electrolysis(hydrogen production rate:51.6 m L h^(-1),energy consumption:5.37 kWh Nm-^(3)H_(2)),this strategy(hydrogen production rate:66 m L h^(-1),energy consumption:3.83 kWh Nm-^(3)H_(2))increases the hydrogen production rate by approximately 27%and reduces the energy consumption by about 28%.Furthermore,we demonstrate the practicality of this system by integrating it with an off-grid photovoltaic(PV)system designed for outdoor operation,successfully driving a hydrogen production current of up to 500 mA under an average voltage of approximately 2 V.The combined results of in-situ characterization and finite element analysis reveal the performance enhancement mechanism:pulsed dynamic electrolysis(PDE)dramatically accelerates the enrichment of protons at the electrode/solution interface and facilitates the release of bubbles on the electrode surface.As such,PDE-enhanced PEMWE represents a synergistic advancement,concurrently enhancing both the hydrogen generation reaction and associated transport processes.This promising technology not only redefines the landscape of electrolysis-based hydrogen production but also holds immense potential for broadening its application across a diverse spectrum of electrocatalytic endeavors.
基金supported by the Guangdong Basic and Applied Basic Research Foundation (No.2023A1515010093)the Shenzhen Fundamental Research Program (Stable Support Plan Program)(Nos.JCYJ20220809170611004, 20231121110828001 and 20231121113641002)the National Taipei University of Technology-Shenzhen University Joint Research Program (No.2024001)。
文摘In this paper, we have demonstrated an Er-doped ultrafast laser with a single mode fiber-gradient index multimode fiber-single mode fiber(SMF-GIMF-SMF, SMS) structure as saturable absorber(SA), which can generate not only stable single-pulse state, but also special mode-locked pulses with the characteristics of high energy and noisy behaviors at proper pump power and cavity polarization state. In addition, we have deeply investigated the real-time spectral evolutions of the mode-locked pulses through the dispersive Fourier transformation(DFT) technique. It can be found that the pulse regime can actually consist of a lot of small noise pulses with randomly varying intensities. We believe that these results will further enrich the nonlinear dynamical processes in the ultrafast lasers.
基金Key R&D Plan of Liaoning Province(No.202000357-JH13/103):Construction of Liaoning Traditional Chinese Medicine Industry Technology Innovation Research InstituteNational Key Research and Development Plan Special Project(No.2019JH2/10300040)。
文摘The paper is an introduction to the front-end pulse acquisition and the back-end pulse biomimetic reproduction system.This system is capable of faithfully replicating the complete pulse waveform collected at the front end.Traditional Chinese Medicine(TCM)practitioners analyze and diagnose the pulse patterns at the replication end.Meanwhile,the obtained pulse waveforms are analyzed and learnt by a neural network based on key diagnostic points in TCM pulse taking,which enables the determination of the corresponding relationships between different pulse waveforms and various pulse patterns in TCM pulse taking.With the support of clinical samples,an auxiliary diagnostic system for TCM pulse patterns ensures the accuracy of pulse pattern replication.
基金supported by the Natural Science Foundation of Jilin Province under Grant No. 20220101028JC。
文摘A mid-infrared femtosecond pulse laser with a single cycle and high intensity is an ideal driving light source for generating isolated attosecond pulses. Due to current experimental limitations, it is difficult to directly achieve this type of laser light source in the laboratory. In this paper, we obtain such an ideal light source by adding a Ti sapphire pulse to the combined pulse laser consisting of two mid-infrared pulses. Specifically, by combining the synthesized pulse consisting of 8 fs/1200 nm/1.62 × 10^(14)W cm^(-2)and 12 fs/1800 nm/2.71 × 10^(14)W cm^(-2)with an additional 8 fs/800 nm/1.26 × 10^(14)W cm^(-2)Ti sapphire pulse, the resulting electric field waveform is very close to that of a 1170 nm femtosecond pulse with an intensity of 1.4 × 10^(15)W cm^(-2), a single-cycle pulse width, and a carrier-envelope phase of 0.25π. Numerical simulations show that both cases produce high-order harmonic emission spectra with broadband supercontinuum spectra, however, the bandwidth of the supercontinuum spectra and the harmonic intensities in the synthesized pulses are significantly better than those in the single1170 nm pulse. After inverse Fourier transform, we obtain 66 as a high-intensity isolated attosecond pulse, whose intensity is five orders of magnitude higher than that of a monochromatic field. Here, the phase differences between three combined pulse lasers have little effect on the numerical simulation results when they vary in the range of 0.3π.
基金financially supported by the National Key Research and Development Program of China(Grant No.2022YFA1602700)the National Natural Science Foundation of China(Grant No.12274159)。
文摘Pulsed magnet technology is the only way to generate ultra-strong magnetic fields higher than 45 T so far.However,the inherently fast-changing field strength(typically on the order of 1000 T/s)poses significant challenges for spectroscopic measurements which rely on time integration of signals to improve spectral qualities.In this work,we report high-sensitivity spectroscopic measurements under pulsed high magnetic fields employing the long flat-top pulsed magnetic field technique.By means of a multiple-capacitor power supply,we were able to generate pulsed high magnetic fields with controllable flat-top pulse width and field stabilities.By synchronizing spectroscopic measurements with the waveform of the flattop magnetic field,the integration time of each spectrum can be increased by up to 100 times compared with that of the conventional spectroscopic measurements under pulsed magnetic fields,thus enabling high-sensitivity spectroscopic measurements under ultra-strong pulsed magnetic fields.These findings promise an efficient way to significantly improve the performance and extend the application of optical measurements under pulsed high magnetic fields.
基金supported by the National Natural Science Foundation of China(Nos.12172014,U224126412332001)。
文摘In order to obtain a lower frequency band gap,this paper proposes a novel locally resonant meta-beam incorporating a softening nonlinear factor.An improved camroller structure is designed in this meta-beam to achieve the softening nonlinear stiffness of the local oscillators.Firstly,based on Hamilton's principle and the Galerkin method,the control equations for the coupled system are established.The theoretical band gap boundary is then derived with the modal analysis method.The theoretical results reveal that the band gap of the meta-beam shifts towards lower frequencies due to the presence of a softening nonlinear factor,distinguishing it from both linear metamaterials and those with hardening nonlinear characteristics.Then,the vibration attenuation characteristics of a finite size meta-beam are investigated through numerical calculation,and are verified by the theoretical results.Furthermore,parameter studies indicate that the reasonable design of the local oscillator parameters based on lightweight principles helps to achieve further broadband and efficient vibration reduction in the low-frequency region.Finally,a prototype of the meta-beam is fabricated and assembled,and the formations of the low-frequency band gap and the amplitude-induced band gap phenomenon are verified through experiments.
基金The authors would like to express their sincere appreciation to the research project of CNPC Geophysical Key Lab(2022DQ0604-4)National Natural Science Foundation of China(Grant No.42074141).
文摘Low-frequency vibroseis acquisition has become a routine operation in land seismic surveys,given the advantages of low-frequency signals in characterizing geological structures and enhancing the imaging of deep exploration targets.The two key points of low-frequency sweep design techniques include controlling the distortion and improving the output energy during the low-frequency stage.However,the vibrators are limited by the maximum fl ow provided by the hydraulic systems at the low-frequency stage,causing difficulty in satisfying exploration energy requirements.Initially,a theoretical analysis of the low-frequency acquisition performance of vibrators is conducted.A theoretical maximum output force below 10 Hz is obtained by guiding through theoretical formulas and combining actual vibrator parameters.Then,the signal is optimized according to the surface characteristics of the operation area.Finally,detailed application quality control and operational procedures are established.The new low-frequency sweep design method has overcome the maximum flow limitations of the hydraulic system,increased the low-frequency energy,and achieved broadband acquisition.The designed signal has been tested and applied on various types of ground surfaces in the Middle East desert region,yielding good performance.The proposed low-frequency sweep design method holds considerable value for the application of conventional vibroseis in low-frequency acquisition.