Dear Editor,This letter addresses the impulse game problem for a general scope of deterministic,multi-player,nonzero-sum differential games wherein all participants adopt impulse controls.Our objective is to formulate...Dear Editor,This letter addresses the impulse game problem for a general scope of deterministic,multi-player,nonzero-sum differential games wherein all participants adopt impulse controls.Our objective is to formulate this impulse game problem with the modified objective function including interaction costs among the players in a discontinuous fashion,and subsequently,to derive a verification theorem for identifying the feedback Nash equilibrium strategy.展开更多
While the moisture content of soil affects significantly the blast impulse of shallow buried explosives,the role of surface-covering water(SCW)on soil in such blast impulse remains elusive.A combined experimental and ...While the moisture content of soil affects significantly the blast impulse of shallow buried explosives,the role of surface-covering water(SCW)on soil in such blast impulse remains elusive.A combined experimental and numerical study has been carried out to characterize the effect of SCW on transferred impulse and loading magnitude of shallow buried explosives.Firstly,blast tests of shallow buried explosives were conducted,with and without the SCW,to quantitatively assess the blast loading impulse.Subsequently,finite element(FE)simulations were performed and validated against experimental measurement,with good agreement achieved.The validated FE model was then employed to predict the dynamic response of a fully-clamped metallic circular target,subjected to the explosive impact of shallow buried explosives with SCW,and explore the corresponding physical mechanisms.It was demonstrated that shallow buried explosives in saturated soil generate a greater impulse transferred towards the target relative to those in dry soil.The deformation displacement of the target plate is doubled.Increasing the height of SCW results in enhanced center peak deflection of the loaded target,accompanied by subsequent fall,due to the variation of deformation pattern of the loaded target from concentrated load to uniform load.Meanwhile,the presence of SCW increases the blast impulse transferred towards the target by three times.In addition,there exists a threshold value of the burial depth that maximizes the impact impulse.This threshold exhibits a strong sensitivity to SCW height,decreasing with increasing SCW height.An empirical formula for predicting threshold has been provided.Similar conclusions can be drawn for different explosive masses.The results provide technical guidance on blast loading intensity and its spatial distribution considering shallow buried explosives in coast-land battlefields,which can ultimately contribute to better protective designs.展开更多
Nowadays,force sensors play an important role in industrial production,electronic information,medical health,and many other fields.Two-dimensional material-based filed effect transistor(2D-FET)sensors are competitive ...Nowadays,force sensors play an important role in industrial production,electronic information,medical health,and many other fields.Two-dimensional material-based filed effect transistor(2D-FET)sensors are competitive with nano-level size,lower power consumption,and accurate response.However,few of them has the capability of impulse detection which is a path function,expressing the cumulative effect of the force on the particle over a period of time.Herein we fabricated the flexible polymethyl methacrylate(PMMA)gate dielectric MoS_(2)-FET for force and impulse sensor application.We systematically investigated the responses of the sensor to constant force and varying forces,and achieved the conversion factors of the drain current signals(I_(ds))to the detected impulse(I).The applied force was detected and recorded by I_(ds)with a low power consumption of~30 nW.The sensitivity of the device can reach~8000%and the 4×1 sensor array is able to detect and locate the normal force applied on it.Moreover,there was almost no performance loss for the device as left in the air for two months.展开更多
The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making co...The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making collision avoidance significantly more challenging than that for space debris.Much existing research focuses on the continuous thrust model,whereas the impulsive maneuver model is more appropriate for long-duration and long-distance avoidance missions.Additionally,it is important to minimize the impact on the original mission while avoiding noncooperative targets.On the other hand,the existing avoidance algorithms are computationally complex and time-consuming especially with the limited computing capability of the on-board computer,posing challenges for practical engineering applications.To conquer these difficulties,this paper makes the following key contributions:(A)a turn-based(sequential decision-making)limited-area impulsive collision avoidance model considering the time delay of precision orbit determination is established for the first time;(B)a novel Selection Probability Learning Adaptive Search-depth Search Tree(SPL-ASST)algorithm is proposed for non-cooperative target avoidance,which improves the decision-making efficiency by introducing an adaptive-search-depth mechanism and a neural network into the traditional Monte Carlo Tree Search(MCTS).Numerical simulations confirm the effectiveness and efficiency of the proposed method.展开更多
A stochastic stage-structure predator-prey system with impulsive effect is investigated.First,we build the corresponding system without impulse in order to demonstrate the existence and uniqueness of the global positi...A stochastic stage-structure predator-prey system with impulsive effect is investigated.First,we build the corresponding system without impulse in order to demonstrate the existence and uniqueness of the global positive solution.Second,by selecting an appropriate Lyapunov function,we provide the sufficient condition for the existence of a positive T-periodic solution.Finally,numerical simulations illustrate our theoretical results,which show that the impulse or the white noises can result in the extinction of the predator in a certain condition.展开更多
The article studies the evolutionary dynamics of two-population two-strategy game models with and without impulses. First, the payment matrix is given and two evolutionary dynamics models are established by adding sto...The article studies the evolutionary dynamics of two-population two-strategy game models with and without impulses. First, the payment matrix is given and two evolutionary dynamics models are established by adding stochastic and impulse. For the stochastic model without impulses, the existence and uniqueness of solution, and the existence of positive periodic solutions are proved, and a sufficient condition for strategy extinction is given. For the stochastic model with impulses, the existence of positive periodic solutions is proved. Numerical results show that noise and impulses directly affect the model, but the periodicity of the model does not change.展开更多
Dear Editor,This letter studies finite-time stability (FTS) of impulsive and switched hybrid systems with delay-dependent impulses. Some conditions, based on Lyapunov method, are proposed for ensuring FTS and estimati...Dear Editor,This letter studies finite-time stability (FTS) of impulsive and switched hybrid systems with delay-dependent impulses. Some conditions, based on Lyapunov method, are proposed for ensuring FTS and estimating settling-time function (STF) of the hybrid systems.When switching dynamics are FTS and impulsive dynamics involve destabilizing delay-dependent impulses, the FTS is retained if the impulses occur infrequently.展开更多
Optimal impulse control and impulse games provide the cutting-edge frameworks for modeling systems where control actions occur at discrete time points,and optimizing objectives under discontinuous interventions.This r...Optimal impulse control and impulse games provide the cutting-edge frameworks for modeling systems where control actions occur at discrete time points,and optimizing objectives under discontinuous interventions.This review synthesizes the theoretical advancements,computational approaches,emerging challenges,and possible research directions in the field.Firstly,we briefly review the fundamental theory of continuous-time optimal control,including Pontryagin's maximum principle(PMP)and dynamic programming principle(DPP).Secondly,we present the foundational results in optimal impulse control,including necessary conditions and sufficient conditions.Thirdly,we systematize impulse game methodologies,from Nash equilibrium existence theory to the connection between Nash equilibrium and systems stability.Fourthly,we summarize the numerical algorithms including the intelligent computation approaches.Finally,we examine the new trends and challenges in theory and applications as well as computational considerations.展开更多
In order to obtain a lower frequency band gap,this paper proposes a novel locally resonant meta-beam incorporating a softening nonlinear factor.An improved camroller structure is designed in this meta-beam to achieve ...In order to obtain a lower frequency band gap,this paper proposes a novel locally resonant meta-beam incorporating a softening nonlinear factor.An improved camroller structure is designed in this meta-beam to achieve the softening nonlinear stiffness of the local oscillators.Firstly,based on Hamilton's principle and the Galerkin method,the control equations for the coupled system are established.The theoretical band gap boundary is then derived with the modal analysis method.The theoretical results reveal that the band gap of the meta-beam shifts towards lower frequencies due to the presence of a softening nonlinear factor,distinguishing it from both linear metamaterials and those with hardening nonlinear characteristics.Then,the vibration attenuation characteristics of a finite size meta-beam are investigated through numerical calculation,and are verified by the theoretical results.Furthermore,parameter studies indicate that the reasonable design of the local oscillator parameters based on lightweight principles helps to achieve further broadband and efficient vibration reduction in the low-frequency region.Finally,a prototype of the meta-beam is fabricated and assembled,and the formations of the low-frequency band gap and the amplitude-induced band gap phenomenon are verified through experiments.展开更多
Low-frequency vibroseis acquisition has become a routine operation in land seismic surveys,given the advantages of low-frequency signals in characterizing geological structures and enhancing the imaging of deep explor...Low-frequency vibroseis acquisition has become a routine operation in land seismic surveys,given the advantages of low-frequency signals in characterizing geological structures and enhancing the imaging of deep exploration targets.The two key points of low-frequency sweep design techniques include controlling the distortion and improving the output energy during the low-frequency stage.However,the vibrators are limited by the maximum fl ow provided by the hydraulic systems at the low-frequency stage,causing difficulty in satisfying exploration energy requirements.Initially,a theoretical analysis of the low-frequency acquisition performance of vibrators is conducted.A theoretical maximum output force below 10 Hz is obtained by guiding through theoretical formulas and combining actual vibrator parameters.Then,the signal is optimized according to the surface characteristics of the operation area.Finally,detailed application quality control and operational procedures are established.The new low-frequency sweep design method has overcome the maximum flow limitations of the hydraulic system,increased the low-frequency energy,and achieved broadband acquisition.The designed signal has been tested and applied on various types of ground surfaces in the Middle East desert region,yielding good performance.The proposed low-frequency sweep design method holds considerable value for the application of conventional vibroseis in low-frequency acquisition.展开更多
Controlling low-frequency noise presents a significant challenge for traditional sound absorption materials,such as foams and fibrous substances.Recently developed acoustic absorption metamaterials,which rely on local...Controlling low-frequency noise presents a significant challenge for traditional sound absorption materials,such as foams and fibrous substances.Recently developed acoustic absorption metamaterials,which rely on local resonance can effectively balance the volume occupation and low-frequency absorption performance.However,these materials often exhibit a very narrow and fixed absorption band.Inspired by Helmholtz resonators and bistable structures,we propose bistable reconfigurable acoustic metamaterials(BRAMs)that offer multiband low-frequency absorption.These BRAMs are fabricated using shape-memory polylactic acid(SM-PLA)via four-dimension(4D)printing technology.Consequently,the geometry and absorption performance of the BRAMs can be adjusted by applying thermal stimuli(at 55℃)to switch between two stable states.The BRAMs demonstrate excellent low-frequency absorption with multiband characteristics,achieving an absorption coefficient of 0.981 at 136 Hz and 0.998 at 230 Hz for stable state I,and coefficients of 0.984 at 156 Hz and 0.961 at 542 Hz for stable state II.It was found that the BRAMs with different inclined plate angles had linear recovery stages,and the recovery speeds range from 0.75 mm/s to 1.1 mm/s.By combining a rational structural design and 4D printing,the reported reconfigurable acoustic metamaterials will inspire further studies on the design of dynamic and broadband absorption devices.展开更多
Metamaterials can control and manipulate acoustic/elastic waves on a subwavelength scale using cavities or additional components.However,the large cavity and weak stiffness components of traditional metamaterials may ...Metamaterials can control and manipulate acoustic/elastic waves on a subwavelength scale using cavities or additional components.However,the large cavity and weak stiffness components of traditional metamaterials may cause a conflict between vibroacoustic reduction and load-bearing capacity,and thus limit their application.Here,we propose a lightweight multifunctional metamaterial that can simultaneously achieve low-frequency sound insulation,broadband vibration reduction,and excellent load-bearing performance,named as vibroacoustic isolation and bearing metamaterial(VIBM).The advent of additive manufacturing technology provides a convenient and reliable method for the fabrication of VIBM samples.The results show that the compressive strength of the VIBM is as high as 9.71 MPa,which is nearly 87.81%higher than that of the conventional grid structure(CGS)under the same volume fraction.Moreover,the vibration and sound transmission are significantly reduced over a low and wide frequency range,which agrees well with the experimental data,and the reduction degree is obviously larger than that obtained by the CGS.The design strategy can effectively realize the key components of metamaterials and improve their application scenarios.展开更多
Customizing the frequency range of electromagnetic wave(EMW)absorbing materials,especially for low-frequency,is a key research focus for 5G/6G and stealth applications.However,achieving precise low-frequency tuning re...Customizing the frequency range of electromagnetic wave(EMW)absorbing materials,especially for low-frequency,is a key research focus for 5G/6G and stealth applications.However,achieving precise low-frequency tuning remains challenging due to unpredictable parameter variations in practical design.Here,a constant-permeability-based electromagnetic parameter inversion method predicts the required complex permittivity range for multilayer MXene’s effective microwave absorption in the target low-frequency band.Since traditional modulation methods are plagued by electromagnetic parameter fluctuations,this study regulated the dielectric response by adjusting the embedding amount of small-sized iron nanoparticles(Fe NPs)with stable permeability.Under this guidance,multilayer MXene/Fe NPs(MTF)are prepared by embedding small-sized Fe NPs on the MXene surface via electrostatic self-assembly and in-situ reduction.The introduction of Fe NPs increased charge carriers’concentration and strengthened the interface effect,resulting in a significant increase in the real part of the complex permittivity(ε')compared with that of multi-layer MXene(7.13-8.89),reaching the predicted range of the real part of the low-frequency complex permittivity(13.12-15.16,14.34-16.81,and 15.29-18.12).Experimental results show that the MTF has a small error in the frequency of the minimum reflection loss(RLmin)compared to the predicted value(error percentage of 4.69%),along with an in-situ enhancement of the effective absorption bandwidth(EAB)(325.00%growth).Thus,MTF exhibits enhanced low-frequency absorption,with MTF-2 achieving−46.3 dB RLmin at 4.64 GHz(4.35 mm)and 2.24 GHz EAB at 3.8 mm.This work offers a strategy for accurate prediction and regulation of absorption bands over a wide range.展开更多
Low-frequency structural vibrations caused by poor rigidity are one of the main obstacles limiting the machining efficiency of robotic milling.Existing vibration suppression strategies primarily focus on passive vibra...Low-frequency structural vibrations caused by poor rigidity are one of the main obstacles limiting the machining efficiency of robotic milling.Existing vibration suppression strategies primarily focus on passive vibration absorption at the robotic end and feedback control at the joint motor.Although these strategies have a certain vibration suppression effect,the limitations of robotic flexibility and the extremely limited applicable speed range remain to be overcome.In this study,a Magnetorheological Joint Damper(MRJD)is developed.The joint-mounted feature ensures machining flexibility of the robot,and the millisecond response time of the Magnetorheological Fluid(MRF)ensures a large effective spindle speed range.More importantly,the evolution law of the damping performance of MRJD was revealed based on a low-frequency chatter mechanism,which guarantees the application of MRJD in robotic milling machining.To analyze the influence of the robotic joint angle on the suppression effect of the MRJD,the joint braking coefficient and end braking coefficient were proposed.Parallel coordinate plots were used to visualize the joint range with the optimal vibration suppression effect.Finally,a combination of different postures and cutting parameters was used to verify the vibration suppression effect and feasibility of the joint angle optimization.The experimental results show that the MRJD,which directly improves the joint vibration resistance,can effectively suppress the low-frequency vibration of robotic milling under a variety of cutting conditions.展开更多
This paper proposes a novel impulsive thrust strategy guided by optimal continuous thrust strategy to address two-player orbital pursuit-evasion game under impulsive thrust control.The strategy seeks to enhance the in...This paper proposes a novel impulsive thrust strategy guided by optimal continuous thrust strategy to address two-player orbital pursuit-evasion game under impulsive thrust control.The strategy seeks to enhance the interpretability of impulsive thrust strategy by integrating it within the framework of differential game in traditional continuous systems.First,this paper introduces an impulse-like constraint,with periodical changes in thrust amplitude,to characterize the impulsive thrust control.Then,the game with the impulse-like constraint is converted into the two-point boundary value problem,which is solved by the combined shooting and deep learning method proposed in this paper.Deep learning and numerical optimization are employed to obtain the guesses for unknown terminal adjoint variables and the game terminal time.Subsequently,the accurate values are solved by the shooting method to yield the optimal continuous thrust strategy with the impulse-like constraint.Finally,the shooting method is iteratively employed at each impulse decision moment to derive the impulsive thrust strategy guided by the optimal continuous thrust strategy.Numerical examples demonstrate the convergence of the combined shooting and deep learning method,even if the strongly nonlinear impulse-like constraint is introduced.The effect of the impulsive thrust strategy guided by the optimal continuous thrust strategy is also discussed.展开更多
The concept of the spacecraft Reachable Domain(RD)has garnered significant scholarly attention due to its crucial role in space situational awareness and on-orbit service applications.While the existing research has l...The concept of the spacecraft Reachable Domain(RD)has garnered significant scholarly attention due to its crucial role in space situational awareness and on-orbit service applications.While the existing research has largely focused on single-impulse RD analysis,the challenge of Multi-Impulse RD(MIRD)remains a key area of interest.This study introduces a methodology for the precise calculation of spacecraft MIRD.The reachability constraints specific to MIRD are first formulated through coordinate transformations.Two restricted maneuvering strategies are examined.The derivation of two extremum conditions allows for determining the accessible orientation range and the nodes encompassing the MIRD.Subsequently,four nonlinear programming models are developed to address two types of MIRD by skillfully relaxing constraints using scale factors.Numerical results validate the robustness and effectiveness of the proposed approach,showing substantial agreement with Monte Carlo simulations and confirming its applicability to spacecraft on various elliptical orbits.展开更多
When tracking a unmanned aerial vehicle(UAV)in complex backgrounds,environmen-tal noise and clutter often obscure it.Traditional radar target tracking algorithms face multiple lim-itations when tracking a UAV,includin...When tracking a unmanned aerial vehicle(UAV)in complex backgrounds,environmen-tal noise and clutter often obscure it.Traditional radar target tracking algorithms face multiple lim-itations when tracking a UAV,including high vulnerability to target occlusion and shape variations,as well as pronounced false alarms and missed detections in low signal-to-noise ratio(SNR)envi-ronments.To address these issues,this paper proposes a UAV detection and tracking algorithm based on a low-frequency communication network.The accuracy and effectiveness of the algorithm are validated through simulation experiments using field-measured point cloud data.Additionally,the key parameters of the algorithm are optimized through a process of selection and comparison,thereby improving the algorithm's precision.The experimental results show that the improved algo-rithm can significantly enhance the detection and tracking performance of the UAV under high clutter density conditions,effectively reduce the false alarm rate and markedly improve overall tracking performance metrics.展开更多
In this article,we study the approximate controllability of neutral partial differential equations with Hilfer fractional derivative and not instantaneous impulses effects.By using the Sadovskii's fixed point theo...In this article,we study the approximate controllability of neutral partial differential equations with Hilfer fractional derivative and not instantaneous impulses effects.By using the Sadovskii's fixed point theorem,fractional calculus and resolvent operator functions,we prove the approximate controllability of the considered system.展开更多
The behaviors of unsteady flow structures and corresponding hydrodynamics for a pitching hydrofoil are investigated numerically and theoretically in the present paper.The aims are to derive the total lift by finite-do...The behaviors of unsteady flow structures and corresponding hydrodynamics for a pitching hydrofoil are investigated numerically and theoretically in the present paper.The aims are to derive the total lift by finite-domain impulse theory for subcavitating flow(σ=8.0)and cavitating flow(σ=3.0),and to quantify the distinct impact of individual vortex structures on the transient lift to appreciate the interplay among cavitation,flow structures,and vortex dynamics.The motion of the hydrofoil is set to pitch up clockwise with an almost constant rate from 0°to 15°and then back to 0°,for the Reynolds number,7.5×105,and the frequency,0.2 Hz,respectively.The results reveal that the presence of cavities delays the migration of the laminar separation bubble(LSB)from the trailing edge(TE)to the leading edge(LE),consequently postponing the hysteresis in the inflection of lift coefficients.The eventual stall under the sub-cavitation regime is the result of LSB bursting.While the instabilities within the leading-edge LSB induce the convection of cavitation-dominated vortices under the cavitation regime instead.Having validated the lift coefficients on the hydrofoil through the finite-domain impulse theory using the standard force expression,the Lamb vector integral emerges as the main contribution to the generation of unsteady lift.Moreover,the typical vortices’contributions to the transient lift during dynamic stall are accurately quantified.The analysis indicates that the clockwise leading-edge vortex(−LEV)contributes positively,while the counterclockwise trailing-edge vortex(+TEV)contributes negatively.The negative influence becomes particularly pronounced after reaching the peak of total lift,as the shedding of the concentrated wake vortex precipitates a sharp decline due to a predominant negative lift contribution from the TEV region.Generally,the vortices’contribution is relatively modest in sub-cavitating flow,but it is notably more significant in the context of incipient cavitating flow.展开更多
Economically and effectively managing the risk of landslide-generated impulse waves(LGIWs)presents a significant challenge following the impoundment of newly constructed reservoirs in western China.To address this iss...Economically and effectively managing the risk of landslide-generated impulse waves(LGIWs)presents a significant challenge following the impoundment of newly constructed reservoirs in western China.To address this issue,we selected the Wangjiashan(WJS)landslide in the Baihetan Reservoir area as a case study to evaluate LGIW hazards and develop corresponding mitigation strategies.Using 2D physical model tests and 3D numerical simulations,we established a 3D hazard assessment method for LGIWs based on 2D experimental results.This method confirmed the effectiveness of slope-cutting engineering in mitigating LGIW hazards.Based on this assessment framework,we proposed a novel approach for LGIW risk reduction.The results showed that the maximum wave amplitude reached 19.64 m in the Jinsha River channel,and the maximum run-up was 11.5 m in the XiangBiLing(XBL)community,indicating a substantial LGIW threat to the area.By reducing the rear edge of the sliding mass to 920 m above sea level(asl),the LGIW risk to the XBL community could be lowered to a tolerable level.Compared with traditional landslide prevention and control measures,the proposed mitigation scheme can reduce excavation costs by approximately 37 million CNY,making it a more scientifically sound and economically feasible solution.We explored the concept and the implementation of LGIW risk mitigation in depth,offering new insights for global LGIW risk management.This case study enhances our understanding of LGIW hazard prevention and provides valuable guidance for policymaking and engineering practices in similar geological settings worldwide.展开更多
基金supported in part by the National Natural Science Foundation of China(62173051)the Fundamental Research Funds for the Central Universities(2024CDJCGJ012,2023CDJXY-010)+1 种基金the Chongqing Technology Innovation and Application Development Special Key Project(CSTB2022TIADCUX0015,CSTB2022TIAD-KPX0162)the China Postdoctoral Science Foundation(2024M763865)
文摘Dear Editor,This letter addresses the impulse game problem for a general scope of deterministic,multi-player,nonzero-sum differential games wherein all participants adopt impulse controls.Our objective is to formulate this impulse game problem with the modified objective function including interaction costs among the players in a discontinuous fashion,and subsequently,to derive a verification theorem for identifying the feedback Nash equilibrium strategy.
基金supported by the National Natural Science Foundation of China(Grant Nos.12002156,11972185,12372136)Research Fund of State Key Laboratory of Mechanics and Control for Aerospace Structures(Grant No.MCMS-I-0222K01)。
文摘While the moisture content of soil affects significantly the blast impulse of shallow buried explosives,the role of surface-covering water(SCW)on soil in such blast impulse remains elusive.A combined experimental and numerical study has been carried out to characterize the effect of SCW on transferred impulse and loading magnitude of shallow buried explosives.Firstly,blast tests of shallow buried explosives were conducted,with and without the SCW,to quantitatively assess the blast loading impulse.Subsequently,finite element(FE)simulations were performed and validated against experimental measurement,with good agreement achieved.The validated FE model was then employed to predict the dynamic response of a fully-clamped metallic circular target,subjected to the explosive impact of shallow buried explosives with SCW,and explore the corresponding physical mechanisms.It was demonstrated that shallow buried explosives in saturated soil generate a greater impulse transferred towards the target relative to those in dry soil.The deformation displacement of the target plate is doubled.Increasing the height of SCW results in enhanced center peak deflection of the loaded target,accompanied by subsequent fall,due to the variation of deformation pattern of the loaded target from concentrated load to uniform load.Meanwhile,the presence of SCW increases the blast impulse transferred towards the target by three times.In addition,there exists a threshold value of the burial depth that maximizes the impact impulse.This threshold exhibits a strong sensitivity to SCW height,decreasing with increasing SCW height.An empirical formula for predicting threshold has been provided.Similar conclusions can be drawn for different explosive masses.The results provide technical guidance on blast loading intensity and its spatial distribution considering shallow buried explosives in coast-land battlefields,which can ultimately contribute to better protective designs.
基金financially supported by the National Natural Science Foundation of China(Nos.52272160,U2330112,and 52002254)Sichuan Science and Technology Foundation(Nos.2020YJ0262,2021YFH0127,2022YFH0083,2022YFSY0045,and 2023YFSY0002)+1 种基金the Chunhui Plan of Ministry of Education,Fundamental Research Funds for the Central Universities,China(No.YJ201893)the Foundation of Key Laboratory of Lidar and Device,Sichuan Province,China(No.LLD2023-006)。
文摘Nowadays,force sensors play an important role in industrial production,electronic information,medical health,and many other fields.Two-dimensional material-based filed effect transistor(2D-FET)sensors are competitive with nano-level size,lower power consumption,and accurate response.However,few of them has the capability of impulse detection which is a path function,expressing the cumulative effect of the force on the particle over a period of time.Herein we fabricated the flexible polymethyl methacrylate(PMMA)gate dielectric MoS_(2)-FET for force and impulse sensor application.We systematically investigated the responses of the sensor to constant force and varying forces,and achieved the conversion factors of the drain current signals(I_(ds))to the detected impulse(I).The applied force was detected and recorded by I_(ds)with a low power consumption of~30 nW.The sensitivity of the device can reach~8000%and the 4×1 sensor array is able to detect and locate the normal force applied on it.Moreover,there was almost no performance loss for the device as left in the air for two months.
基金co-supported by the Foundation of Shanghai Astronautics Science and Technology Innovation,China(No.SAST2022-114)the National Natural Science Foundation of China(No.62303378),the National Natural Science Foundation of China(Nos.124B2031,12202281)the Foundation of China National Key Laboratory of Science and Technology on Test Physics&Numerical Mathematics,China(No.08-YY-2023-R11)。
文摘The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making collision avoidance significantly more challenging than that for space debris.Much existing research focuses on the continuous thrust model,whereas the impulsive maneuver model is more appropriate for long-duration and long-distance avoidance missions.Additionally,it is important to minimize the impact on the original mission while avoiding noncooperative targets.On the other hand,the existing avoidance algorithms are computationally complex and time-consuming especially with the limited computing capability of the on-board computer,posing challenges for practical engineering applications.To conquer these difficulties,this paper makes the following key contributions:(A)a turn-based(sequential decision-making)limited-area impulsive collision avoidance model considering the time delay of precision orbit determination is established for the first time;(B)a novel Selection Probability Learning Adaptive Search-depth Search Tree(SPL-ASST)algorithm is proposed for non-cooperative target avoidance,which improves the decision-making efficiency by introducing an adaptive-search-depth mechanism and a neural network into the traditional Monte Carlo Tree Search(MCTS).Numerical simulations confirm the effectiveness and efficiency of the proposed method.
基金Supported by NSFC(Nos.10671182,12061020)NSF of Guizhou Province(Nos.QKH[2019]1123,QKHKY[2021]088,QKHKY[2022]301,QKH-ZK[2021]331)the Ph.D.Project of Guizhou Education University(No.2021BS005)。
文摘A stochastic stage-structure predator-prey system with impulsive effect is investigated.First,we build the corresponding system without impulse in order to demonstrate the existence and uniqueness of the global positive solution.Second,by selecting an appropriate Lyapunov function,we provide the sufficient condition for the existence of a positive T-periodic solution.Finally,numerical simulations illustrate our theoretical results,which show that the impulse or the white noises can result in the extinction of the predator in a certain condition.
基金Supported by the National Natural Science Foundation of China(10671182)。
文摘The article studies the evolutionary dynamics of two-population two-strategy game models with and without impulses. First, the payment matrix is given and two evolutionary dynamics models are established by adding stochastic and impulse. For the stochastic model without impulses, the existence and uniqueness of solution, and the existence of positive periodic solutions are proved, and a sufficient condition for strategy extinction is given. For the stochastic model with impulses, the existence of positive periodic solutions is proved. Numerical results show that noise and impulses directly affect the model, but the periodicity of the model does not change.
基金supported by the National Natural Science Foundation of China(61833005)
文摘Dear Editor,This letter studies finite-time stability (FTS) of impulsive and switched hybrid systems with delay-dependent impulses. Some conditions, based on Lyapunov method, are proposed for ensuring FTS and estimating settling-time function (STF) of the hybrid systems.When switching dynamics are FTS and impulsive dynamics involve destabilizing delay-dependent impulses, the FTS is retained if the impulses occur infrequently.
文摘Optimal impulse control and impulse games provide the cutting-edge frameworks for modeling systems where control actions occur at discrete time points,and optimizing objectives under discontinuous interventions.This review synthesizes the theoretical advancements,computational approaches,emerging challenges,and possible research directions in the field.Firstly,we briefly review the fundamental theory of continuous-time optimal control,including Pontryagin's maximum principle(PMP)and dynamic programming principle(DPP).Secondly,we present the foundational results in optimal impulse control,including necessary conditions and sufficient conditions.Thirdly,we systematize impulse game methodologies,from Nash equilibrium existence theory to the connection between Nash equilibrium and systems stability.Fourthly,we summarize the numerical algorithms including the intelligent computation approaches.Finally,we examine the new trends and challenges in theory and applications as well as computational considerations.
基金supported by the National Natural Science Foundation of China(Nos.12172014,U224126412332001)。
文摘In order to obtain a lower frequency band gap,this paper proposes a novel locally resonant meta-beam incorporating a softening nonlinear factor.An improved camroller structure is designed in this meta-beam to achieve the softening nonlinear stiffness of the local oscillators.Firstly,based on Hamilton's principle and the Galerkin method,the control equations for the coupled system are established.The theoretical band gap boundary is then derived with the modal analysis method.The theoretical results reveal that the band gap of the meta-beam shifts towards lower frequencies due to the presence of a softening nonlinear factor,distinguishing it from both linear metamaterials and those with hardening nonlinear characteristics.Then,the vibration attenuation characteristics of a finite size meta-beam are investigated through numerical calculation,and are verified by the theoretical results.Furthermore,parameter studies indicate that the reasonable design of the local oscillator parameters based on lightweight principles helps to achieve further broadband and efficient vibration reduction in the low-frequency region.Finally,a prototype of the meta-beam is fabricated and assembled,and the formations of the low-frequency band gap and the amplitude-induced band gap phenomenon are verified through experiments.
基金The authors would like to express their sincere appreciation to the research project of CNPC Geophysical Key Lab(2022DQ0604-4)National Natural Science Foundation of China(Grant No.42074141).
文摘Low-frequency vibroseis acquisition has become a routine operation in land seismic surveys,given the advantages of low-frequency signals in characterizing geological structures and enhancing the imaging of deep exploration targets.The two key points of low-frequency sweep design techniques include controlling the distortion and improving the output energy during the low-frequency stage.However,the vibrators are limited by the maximum fl ow provided by the hydraulic systems at the low-frequency stage,causing difficulty in satisfying exploration energy requirements.Initially,a theoretical analysis of the low-frequency acquisition performance of vibrators is conducted.A theoretical maximum output force below 10 Hz is obtained by guiding through theoretical formulas and combining actual vibrator parameters.Then,the signal is optimized according to the surface characteristics of the operation area.Finally,detailed application quality control and operational procedures are established.The new low-frequency sweep design method has overcome the maximum flow limitations of the hydraulic system,increased the low-frequency energy,and achieved broadband acquisition.The designed signal has been tested and applied on various types of ground surfaces in the Middle East desert region,yielding good performance.The proposed low-frequency sweep design method holds considerable value for the application of conventional vibroseis in low-frequency acquisition.
基金financially supported by National Key Research and Development Program of China(Grant No.2023YFB4604800)National Natural Science Foundation of China(Grant No.52275331)financial support from the Hong Kong Scholars Program(Grant No.XJ2022014).
文摘Controlling low-frequency noise presents a significant challenge for traditional sound absorption materials,such as foams and fibrous substances.Recently developed acoustic absorption metamaterials,which rely on local resonance can effectively balance the volume occupation and low-frequency absorption performance.However,these materials often exhibit a very narrow and fixed absorption band.Inspired by Helmholtz resonators and bistable structures,we propose bistable reconfigurable acoustic metamaterials(BRAMs)that offer multiband low-frequency absorption.These BRAMs are fabricated using shape-memory polylactic acid(SM-PLA)via four-dimension(4D)printing technology.Consequently,the geometry and absorption performance of the BRAMs can be adjusted by applying thermal stimuli(at 55℃)to switch between two stable states.The BRAMs demonstrate excellent low-frequency absorption with multiband characteristics,achieving an absorption coefficient of 0.981 at 136 Hz and 0.998 at 230 Hz for stable state I,and coefficients of 0.984 at 156 Hz and 0.961 at 542 Hz for stable state II.It was found that the BRAMs with different inclined plate angles had linear recovery stages,and the recovery speeds range from 0.75 mm/s to 1.1 mm/s.By combining a rational structural design and 4D printing,the reported reconfigurable acoustic metamaterials will inspire further studies on the design of dynamic and broadband absorption devices.
基金Project supported by the National Natural Science Foundation of China(Nos.11991032 and 52241103)the Hunan Province Graduate Research Innovation Project of China(No.KY0409052440)。
文摘Metamaterials can control and manipulate acoustic/elastic waves on a subwavelength scale using cavities or additional components.However,the large cavity and weak stiffness components of traditional metamaterials may cause a conflict between vibroacoustic reduction and load-bearing capacity,and thus limit their application.Here,we propose a lightweight multifunctional metamaterial that can simultaneously achieve low-frequency sound insulation,broadband vibration reduction,and excellent load-bearing performance,named as vibroacoustic isolation and bearing metamaterial(VIBM).The advent of additive manufacturing technology provides a convenient and reliable method for the fabrication of VIBM samples.The results show that the compressive strength of the VIBM is as high as 9.71 MPa,which is nearly 87.81%higher than that of the conventional grid structure(CGS)under the same volume fraction.Moreover,the vibration and sound transmission are significantly reduced over a low and wide frequency range,which agrees well with the experimental data,and the reduction degree is obviously larger than that obtained by the CGS.The design strategy can effectively realize the key components of metamaterials and improve their application scenarios.
基金supported by the Chongqing New Youth Innovation Talent Program(No.CSTB2024NSCQ-QCXMX0086)Science and Technology Research Program of Chongqing Municipal Education Commission(No.KJZD-K202300606)+1 种基金National High-end Foreign Experts Introduction Plan(No.G2022035005L)Chongqing Talent Plan of Overall Rationing System Project(No.CQYC202203091156).
文摘Customizing the frequency range of electromagnetic wave(EMW)absorbing materials,especially for low-frequency,is a key research focus for 5G/6G and stealth applications.However,achieving precise low-frequency tuning remains challenging due to unpredictable parameter variations in practical design.Here,a constant-permeability-based electromagnetic parameter inversion method predicts the required complex permittivity range for multilayer MXene’s effective microwave absorption in the target low-frequency band.Since traditional modulation methods are plagued by electromagnetic parameter fluctuations,this study regulated the dielectric response by adjusting the embedding amount of small-sized iron nanoparticles(Fe NPs)with stable permeability.Under this guidance,multilayer MXene/Fe NPs(MTF)are prepared by embedding small-sized Fe NPs on the MXene surface via electrostatic self-assembly and in-situ reduction.The introduction of Fe NPs increased charge carriers’concentration and strengthened the interface effect,resulting in a significant increase in the real part of the complex permittivity(ε')compared with that of multi-layer MXene(7.13-8.89),reaching the predicted range of the real part of the low-frequency complex permittivity(13.12-15.16,14.34-16.81,and 15.29-18.12).Experimental results show that the MTF has a small error in the frequency of the minimum reflection loss(RLmin)compared to the predicted value(error percentage of 4.69%),along with an in-situ enhancement of the effective absorption bandwidth(EAB)(325.00%growth).Thus,MTF exhibits enhanced low-frequency absorption,with MTF-2 achieving−46.3 dB RLmin at 4.64 GHz(4.35 mm)and 2.24 GHz EAB at 3.8 mm.This work offers a strategy for accurate prediction and regulation of absorption bands over a wide range.
基金supported by the National Natural Science Foundation of China(No.U20A20294)the National Natural Science Foundation of China(No.52322511)the National Natural Science Foundation of China(No.52188102).
文摘Low-frequency structural vibrations caused by poor rigidity are one of the main obstacles limiting the machining efficiency of robotic milling.Existing vibration suppression strategies primarily focus on passive vibration absorption at the robotic end and feedback control at the joint motor.Although these strategies have a certain vibration suppression effect,the limitations of robotic flexibility and the extremely limited applicable speed range remain to be overcome.In this study,a Magnetorheological Joint Damper(MRJD)is developed.The joint-mounted feature ensures machining flexibility of the robot,and the millisecond response time of the Magnetorheological Fluid(MRF)ensures a large effective spindle speed range.More importantly,the evolution law of the damping performance of MRJD was revealed based on a low-frequency chatter mechanism,which guarantees the application of MRJD in robotic milling machining.To analyze the influence of the robotic joint angle on the suppression effect of the MRJD,the joint braking coefficient and end braking coefficient were proposed.Parallel coordinate plots were used to visualize the joint range with the optimal vibration suppression effect.Finally,a combination of different postures and cutting parameters was used to verify the vibration suppression effect and feasibility of the joint angle optimization.The experimental results show that the MRJD,which directly improves the joint vibration resistance,can effectively suppress the low-frequency vibration of robotic milling under a variety of cutting conditions.
基金funded by the National Natural Science Foundation of China(No.U21B6001)。
文摘This paper proposes a novel impulsive thrust strategy guided by optimal continuous thrust strategy to address two-player orbital pursuit-evasion game under impulsive thrust control.The strategy seeks to enhance the interpretability of impulsive thrust strategy by integrating it within the framework of differential game in traditional continuous systems.First,this paper introduces an impulse-like constraint,with periodical changes in thrust amplitude,to characterize the impulsive thrust control.Then,the game with the impulse-like constraint is converted into the two-point boundary value problem,which is solved by the combined shooting and deep learning method proposed in this paper.Deep learning and numerical optimization are employed to obtain the guesses for unknown terminal adjoint variables and the game terminal time.Subsequently,the accurate values are solved by the shooting method to yield the optimal continuous thrust strategy with the impulse-like constraint.Finally,the shooting method is iteratively employed at each impulse decision moment to derive the impulsive thrust strategy guided by the optimal continuous thrust strategy.Numerical examples demonstrate the convergence of the combined shooting and deep learning method,even if the strongly nonlinear impulse-like constraint is introduced.The effect of the impulsive thrust strategy guided by the optimal continuous thrust strategy is also discussed.
基金supported by the National Natural Science Foundation of China(Nos.12372052,12125207)the Young Elite Scientists Sponsorship Program,China(No.2021JCJQ-QT-047)+1 种基金the Natural Science Foundation of Hunan Province,China(No.2023JJ20047)the Technology Innovation Team of Manned Space Engineering,China。
文摘The concept of the spacecraft Reachable Domain(RD)has garnered significant scholarly attention due to its crucial role in space situational awareness and on-orbit service applications.While the existing research has largely focused on single-impulse RD analysis,the challenge of Multi-Impulse RD(MIRD)remains a key area of interest.This study introduces a methodology for the precise calculation of spacecraft MIRD.The reachability constraints specific to MIRD are first formulated through coordinate transformations.Two restricted maneuvering strategies are examined.The derivation of two extremum conditions allows for determining the accessible orientation range and the nodes encompassing the MIRD.Subsequently,four nonlinear programming models are developed to address two types of MIRD by skillfully relaxing constraints using scale factors.Numerical results validate the robustness and effectiveness of the proposed approach,showing substantial agreement with Monte Carlo simulations and confirming its applicability to spacecraft on various elliptical orbits.
基金supported in part by National Natural Science Founda-tion of China(No.62372284)in part by Shanghai Nat-ural Science Foundation(No.24ZR1421800).
文摘When tracking a unmanned aerial vehicle(UAV)in complex backgrounds,environmen-tal noise and clutter often obscure it.Traditional radar target tracking algorithms face multiple lim-itations when tracking a UAV,including high vulnerability to target occlusion and shape variations,as well as pronounced false alarms and missed detections in low signal-to-noise ratio(SNR)envi-ronments.To address these issues,this paper proposes a UAV detection and tracking algorithm based on a low-frequency communication network.The accuracy and effectiveness of the algorithm are validated through simulation experiments using field-measured point cloud data.Additionally,the key parameters of the algorithm are optimized through a process of selection and comparison,thereby improving the algorithm's precision.The experimental results show that the improved algo-rithm can significantly enhance the detection and tracking performance of the UAV under high clutter density conditions,effectively reduce the false alarm rate and markedly improve overall tracking performance metrics.
基金Supported by Shandong University of Finance and Economics 2023 International Collaborative Projectsthe National Natural Science Foundation of China(Grant No.62073190)。
文摘In this article,we study the approximate controllability of neutral partial differential equations with Hilfer fractional derivative and not instantaneous impulses effects.By using the Sadovskii's fixed point theorem,fractional calculus and resolvent operator functions,we prove the approximate controllability of the considered system.
基金supported by the National Science Foundation of China (Grant Nos.52279081,and 51839001).
文摘The behaviors of unsteady flow structures and corresponding hydrodynamics for a pitching hydrofoil are investigated numerically and theoretically in the present paper.The aims are to derive the total lift by finite-domain impulse theory for subcavitating flow(σ=8.0)and cavitating flow(σ=3.0),and to quantify the distinct impact of individual vortex structures on the transient lift to appreciate the interplay among cavitation,flow structures,and vortex dynamics.The motion of the hydrofoil is set to pitch up clockwise with an almost constant rate from 0°to 15°and then back to 0°,for the Reynolds number,7.5×105,and the frequency,0.2 Hz,respectively.The results reveal that the presence of cavities delays the migration of the laminar separation bubble(LSB)from the trailing edge(TE)to the leading edge(LE),consequently postponing the hysteresis in the inflection of lift coefficients.The eventual stall under the sub-cavitation regime is the result of LSB bursting.While the instabilities within the leading-edge LSB induce the convection of cavitation-dominated vortices under the cavitation regime instead.Having validated the lift coefficients on the hydrofoil through the finite-domain impulse theory using the standard force expression,the Lamb vector integral emerges as the main contribution to the generation of unsteady lift.Moreover,the typical vortices’contributions to the transient lift during dynamic stall are accurately quantified.The analysis indicates that the clockwise leading-edge vortex(−LEV)contributes positively,while the counterclockwise trailing-edge vortex(+TEV)contributes negatively.The negative influence becomes particularly pronounced after reaching the peak of total lift,as the shedding of the concentrated wake vortex precipitates a sharp decline due to a predominant negative lift contribution from the TEV region.Generally,the vortices’contribution is relatively modest in sub-cavitating flow,but it is notably more significant in the context of incipient cavitating flow.
基金supported by the National Natural Science Foundation of China(No.U23A2045)the China Three Gorges Corporation(YM(BHT)/(22)022).
文摘Economically and effectively managing the risk of landslide-generated impulse waves(LGIWs)presents a significant challenge following the impoundment of newly constructed reservoirs in western China.To address this issue,we selected the Wangjiashan(WJS)landslide in the Baihetan Reservoir area as a case study to evaluate LGIW hazards and develop corresponding mitigation strategies.Using 2D physical model tests and 3D numerical simulations,we established a 3D hazard assessment method for LGIWs based on 2D experimental results.This method confirmed the effectiveness of slope-cutting engineering in mitigating LGIW hazards.Based on this assessment framework,we proposed a novel approach for LGIW risk reduction.The results showed that the maximum wave amplitude reached 19.64 m in the Jinsha River channel,and the maximum run-up was 11.5 m in the XiangBiLing(XBL)community,indicating a substantial LGIW threat to the area.By reducing the rear edge of the sliding mass to 920 m above sea level(asl),the LGIW risk to the XBL community could be lowered to a tolerable level.Compared with traditional landslide prevention and control measures,the proposed mitigation scheme can reduce excavation costs by approximately 37 million CNY,making it a more scientifically sound and economically feasible solution.We explored the concept and the implementation of LGIW risk mitigation in depth,offering new insights for global LGIW risk management.This case study enhances our understanding of LGIW hazard prevention and provides valuable guidance for policymaking and engineering practices in similar geological settings worldwide.