BACKGROUND Diabetes mellitus is a metabolic disorder characterized by prolonged elevation of blood glucose due to various causes.Currently,the relationship between diabetic retinopathy(DR)and altered connectivity of b...BACKGROUND Diabetes mellitus is a metabolic disorder characterized by prolonged elevation of blood glucose due to various causes.Currently,the relationship between diabetic retinopathy(DR)and altered connectivity of brain function is unclear.AIM To investigate the relationship between this brain activity and clinical manifestations and behaviors of DR patients by using the amplitude of low-frequency fluctuation(ALFF)technique.METHODS Twenty-four DR patients and 24 healthy controls(HCs)matched for age and gender were enrolled.We measured and recorded average ALFF values of DR patients and HCs and then classified them using receiver operating characteristic(ROC)curves.RESULTS ALFF values of both left and right posterior cerebellar lobe and right anterior cingulate gyrus were remarkably higher in the DR patients than in the HCs;however,DR patients had lower values in the bilateral calcarine area.ROC curve analysis of different brain regions demonstrated high accuracy in the area under the curve analysis.There was no significant relationship between mean ALFF values for different regions and clinical presentations in DR patients.Neuronal synchronization abnormalities in some brain regions of DR patients were associated with cognitive and visual disorders.CONCLUSION Abnormal spontaneous brain activity was observed in many areas of DR patients’brains,which may suggest a possible link between clinical manifestations and behaviors in DR patients.展开更多
Objective Behavioral studies have suggested a low-frequency(0.05 Hz) fluctuation of sustained attention on the basis of the intra-individual variability of reaction-time.Conventional task designs for functional magn...Objective Behavioral studies have suggested a low-frequency(0.05 Hz) fluctuation of sustained attention on the basis of the intra-individual variability of reaction-time.Conventional task designs for functional magnetic resonance imaging(fMRI) studies are not appropriate for frequency analysis.The present study aimed to propose a new paradigm,real-time finger force feedback(RT-FFF),to study the brain mechanisms of sustained attention and neurofeedback.Methods We compared the low-frequency fluctuations in both behavioral and fMRI data from 38 healthy adults(19 males;mean age,22.3 years).Two fMRI sessions,in RT-FFF and sham finger force feedback(S-FFF) states,were acquired(TR 2 s,Siemens Trio 3-Tesla scanner,8 min each,counter-balanced).Behavioral data of finger force were obtained simultaneously at a sampling rate of 250 Hz.Results Frequency analysis of the behavioral data showed lower amplitude in the lowfrequency band(0.004-0.104 Hz) but higher amplitude in the high-frequency band(27.02-125 Hz) in the RT-FFF than the S-FFF states.The mean finger force was not significantly different between the two states.fMRI data analysis showed higher fractional amplitude of low-frequency fluctuation(fALFF) in the S-FFF than in the RT-FFF state in the visual cortex,but higher fALFF in RT-FFF than S-FFF in the middle frontal gyrus,the superior frontal gyrus,and the default mode network.Conclusion The behavioral results suggest that the proposed paradigm may provide a new approach to studies of sustained attention.The fMRI results suggest that a distributed network including visual,motor,attentional,and default mode networks may be involved in sustained attention and/or real-time feedback.This paradigm may be helpful for future studies on deficits of attention,such as attention deficit hyperactivity disorder and mild traumatic brain injury.展开更多
BACKGROUND Major depressive disorder(MDD)tends to have a high incidence and high suicide risk.Electroconvulsive therapy(ECT)is currently a relatively effective treatment for MDD.However,the mechanism of efficacy of EC...BACKGROUND Major depressive disorder(MDD)tends to have a high incidence and high suicide risk.Electroconvulsive therapy(ECT)is currently a relatively effective treatment for MDD.However,the mechanism of efficacy of ECT is still unclear.AIM To investigate the changes in the amplitude of low-frequency fluctuations in specific frequency bands in patients with MDD after ECT.METHODS Twenty-two MDD patients and fifteen healthy controls(HCs)were recruited to this study.MDD patients received 8 ECT sessions with bitemporal placement.Resting-state functional magnetic resonance imaging was adopted to examine regional cerebellar blood flow in both the MDD patients and HCs.The MDD patients were scanned twice(before the first ECT session and after the eighth ECT session)to acquire data.Then,the amplitude of low-frequency fluctuations(ALFF)was computed to characterize the intrinsic neural oscillations in different bands(typical frequency,slow-5,and slow-4 bands).RESULTS Compared to before ECT(pre-ECT),we found that MDD patients after the eighth ECT(post-ECT)session had a higher ALFF in the typical band in the right middle frontal gyrus,posterior cingulate,right supramarginal gyrus,left superior frontal gyrus,and left angular gyrus.There was a lower ALFF in the right superior temporal gyrus.Compared to pre-ECT values,the ALFF in the slow-5 band was significantly increased in the right limbic lobe,cerebellum posterior lobe,right middle orbitofrontal gyrus,and frontal lobe in post-ECT patients,whereas the ALFF in the slow-5 band in the left sublobar region,right angular gyrus,and right frontal lobe was lower.In contrast,significantly higher ALFF in the slow-4 band was observed in the frontal lobe,superior frontal gyrus,parietal lobe,right inferior parietal lobule,and left angular gyrus.CONCLUSION Our results suggest that the abnormal ALFF in pre-and post-ECT MDD patients may be associated with specific frequency bands.展开更多
In order to investigate the conversion of kinetic energy from a synoptic scale disturbance (SSD; period≤seven days) to a low-frequency fluctuation (LFF; period〉seven days), the budget equation of the LFF kinetic...In order to investigate the conversion of kinetic energy from a synoptic scale disturbance (SSD; period≤seven days) to a low-frequency fluctuation (LFF; period〉seven days), the budget equation of the LFF kinetic energy is derived. The energy conversion is then calculated and analyzed for the summers of 1997 and 1999. The results show that the energy conversion from the SSD to the LFF is obviously enhanced in the middle and lower troposphere during the heavy rainfall, suggesting this to be one of mechanisms inducing the heavy rainfall, although the local LFF kinetic energy may not be enhanced.展开更多
AIM:To study functional brain abnormalities in patients with hypertensive retinopathy(HR)and to discuss the pathophysiological mechanisms of HR by fractional amplitude of low-frequency fluctuations(fALFFs)method.METHO...AIM:To study functional brain abnormalities in patients with hypertensive retinopathy(HR)and to discuss the pathophysiological mechanisms of HR by fractional amplitude of low-frequency fluctuations(fALFFs)method.METHODS:Twenty HR patients and 20 healthy controls(HCs)were respectively recruited.The age,gender,and educational background characteristics of the two groups were similar.After functional magnetic resonance imaging(fMRI)scanning,the subjects’spontaneous brain activity was evaluated with the fALFF method.Receiver operating characteristic(ROC)curve analysis was used to classify the data.Further,we used Pearson’s correlation analysis to explore the relationship between fALFF values in specific brain regions and clinical behaviors in patients with HR.RESULTS:The brain areas of the HR group with lower fALFF values than HCs were the right orbital part of the middle frontal gyrus(RO-MFG)and right lingual gyrus.In contrast,the values of fALFFs in the left middle temporal gyrus(MTG),left superior temporal pole(STP),left middle frontal gyrus(MFG),left superior marginal gyrus(SMG),left superior parietal lobule(SPL),and right supplementary motor area(SMA)were higher in the HR group.The results of a t-test showed that the average values of fALFFs were statistically significantly different in the HR group and HC group(P<0.001).The fALFF values of the left middle frontal gyrus in HR patients were positively correlated with anxiety scores(r=0.9232;P<0.0001)and depression scores(r=0.9682;P<0.0001).CONCLUSION:fALFF values in multiple brain regions of HR patients are abnormal,suggesting that these brain regions in HR patients may be dysfunctional,which may help to reveal the pathophysiological mechanisms of HR.展开更多
AIM:To assess changed spontaneous brain activity in hyperthyroid exophthalmos(HE)patients by the amplitude of the low-frequency fluctuation(ALFF)method,and to analyze the correlation between brain activity and ALFF va...AIM:To assess changed spontaneous brain activity in hyperthyroid exophthalmos(HE)patients by the amplitude of the low-frequency fluctuation(ALFF)method,and to analyze the correlation between brain activity and ALFF values in these patients.METHODS:Totally 18 HE and 18 hyperthyroid nonexophthalmos(HNE)patients were enrolled.The participants were tested by resting-state functional magnetic resonance imaging,and receiver operating characteristic(ROC)curves were generated to classify the ALFF values of the study population.Pearson’s correlation analysis was utilized to evaluate the relationship between the ALFF values obtained from different brain areas and clinical manifestations.RESULTS:Contrary to HNE patients,we observed lower ALFF values in the left calcarine fissure and surrounding cortex(LCFSC)in HE patients.In the ROC curve analysis of the LCFSC,the area under the curve reflected a high degree of accuracy.In addition,there was positive correlation between mean ALFF values of the LCFSC and the bestcorrected visual acuity of the affected eyes.CONCLUSION:The study displays abnormal brain activity in LCFSC in patients with HE,which might suggest pathological mechanism of visual impairment of HE patients.展开更多
AIM:To analyze changes in amplitude of low-frequency fluctuations(ALFFs)and default mode network(DMN)connectivity in the brain,using resting-state functional magnetic resonance imaging(rs-fMRI),in high myopia(HM)patie...AIM:To analyze changes in amplitude of low-frequency fluctuations(ALFFs)and default mode network(DMN)connectivity in the brain,using resting-state functional magnetic resonance imaging(rs-fMRI),in high myopia(HM)patients.METHODS:Eleven patients with HM(HM group)and 15 age-and sex-matched non-HM controls(non-HM group)were recruited.ALFFs were calculated and compared between HM group and non-HM group.Independent component analysis(ICA)was conducted to identify DMN,and comparisons between DMNs of two groups were performed.Region-of-interest(ROI)-based analysis was performed to explore functional connectivity(FC)between DMN regions.RESULTS:Significantly increased ALFFs in left inferior temporal gyrus(ITG),bilateral rectus gyrus(REC),bilateral middle temporal gyrus(MTG),left superior temporal gyrus(STG),and left angular gyrus(ANG)were detected in HM group compared with non-HM group(all P<0.01).HM group showed increased FC in the posterior cingulate gyrus(PCC)/precuneus(preCUN)and decreased FC in the left medial prefrontal cortex(mPFG)within DMN compared with nonHM group(all P<0.01).Compared with non-HM group,HM group showed higher FC between mPFG and bilateral middle frontal gyrus(MFG),ANG,and MTG(all P<0.01).In addition,HM patients showed higher FC between PCC/(preCUN)and the right cerebellum,superior frontal gyrus(SFG),left pre CUN,superior frontal gyrus(SFG),and medial orbital of the superior frontal gyrus(ORB supmed;all P<0.01).CONCLUSION:HM patients show different ALFFs and DMNs compared with non-HM subjects,which may imply the cognitive alterations related to HM.展开更多
AIM:To study the relationships between amplitude of low-frequency fluctuations(ALFF)changes and clinical ophthalmic parameters in patients with primary open angle glaucoma(POAG)and analyze the diagnostic value of ALFF...AIM:To study the relationships between amplitude of low-frequency fluctuations(ALFF)changes and clinical ophthalmic parameters in patients with primary open angle glaucoma(POAG)and analyze the diagnostic value of ALFF.METHODS:Twenty-four POAG patients and 24 healthy controls(HCs)underwent resting-state functional magnetic resonance imaging(rs-fMRI).Nonparametric rank-sum tests were used to compare the ALFF values in the slow-4 and slow-5 bands,and Spearman or Pearson correlation analysis was used to assess the correlation between ALFF changes and clinical ophthalmic parameters in POAG patients.Receiver operating characteristic(ROC)curves were used to evaluate the diagnostic performance of the ALFF.RESULTS:There were 16 males in POAG patients(median age 48y)and 12 males in HCs(median age 39y).Compared with HCs,POAG patients presented increased or decreased ALFF values in different brain regions,and similar changes were observed in mild POAG patients.The ALFF values were correlated with retinal nerve fiber layer(RNFL)thickness,inner limiting membrane-retinal pigment epithelium thickness changes and the degree of visual field defects.Analysis of the diagnostic value of the ALFF via ROC curves revealed that the right medial frontal gyrus[area under the curve(AUC)=0.9063]and superior frontal gyrus(AUC=0.9097)had better diagnostic value than did the optic disc area(AUC=0.8019),visual field index(VFI%,AUC=0.8988)and macular parameters.CONCLUSION:POAG patients present altered cortical function that is significantly correlated with the optic nerve and retinal thickness and had good diagnostic value,which may reflect the underlying neuropathological mechanism of POAG.展开更多
Background Previous studies have shown that brain functional activity in the resting state is impaired in Alzheimer's disease (AD) patients. However, alterations in intrinsic brain activity patterns in mild cogniti...Background Previous studies have shown that brain functional activity in the resting state is impaired in Alzheimer's disease (AD) patients. However, alterations in intrinsic brain activity patterns in mild cognitive impairment (MCI) patients are poorly understood. This study aimed to explore the differences in regional intrinsic activities throughout the whole brain between aMCI patients and controls. Methods In the present study, resting-state functional magnetic resonance imaging (fMRI) was performed on 18 amnestic MCI (aMCI) patients, 18 mild AD patients and 20 healthy elderly subjects. And amplitude of low-frequency fluctuation (ALFF) method was used. Results Compared with healthy elderly subjects, aMCI patients showed decreased ALFF in the right hippocampus and parahippocampal cortex, left lateral temporal cortex, and right ventral medial prefrontal cortex (vMPFC) and increased ALFF in the left temporal-parietal junction (TPJ) and inferior parietal Iobule (IPL). Mild AD patients showed decreased ALFF in the left TPJ, posterior IPL (plPL), and dorsolateral prefrontal cortex compared with aMCI patients. Mild AD patients also had decreased ALFF in the right posterior cingulate cortex, right vMPFC and bilateral dorsal MPFC (dMPFC) compared with healthy elderly subjects. Conclusions Decreased intrinsic activities in brain regions closely related to episodic memory were found in aMCI and AD patients. Increased TPJ and IPL activity may indicate compensatory mechanisms for loss of memory function in aMCI patients. These findings suggest that the fMRI based on ALFF analysis may provide a useful tool in the study of aMCI patients.展开更多
Background:The pathogenesis of neck pain in the brain,which is the fourth most common cause of disability,remains unclear.Furthermore,little is known about the characteristics of dynamic local functional brain activit...Background:The pathogenesis of neck pain in the brain,which is the fourth most common cause of disability,remains unclear.Furthermore,little is known about the characteristics of dynamic local functional brain activity in cervical pain.Objective:The present study aimed to investigate the changes of local brain activity caused by chronic neck pain and the factors leading to neck pain.Methods:Using the amplitude of low-frequency fluctuations(ALFF)method combined with sliding window approach,we compared local brain activity that was measured by the functional magnetic resonance imaging(fMRI)of 107 patients with chronic neck pain(CNP)with that of 57 healthy control participants.Five pathogenic factors were selected for correlation analysis.Results:The group comparison results of dynamic amplitude of low-frequency fluctuation(dALFF)variability showed that patients with CNP exhibited decreased dALFF variability in the left inferior temporal gyrus,the middle temporal gyrus,the angular gyrus,the inferior parietal marginal angular gyrus,and the middle occipital gyrus.The abnormal dALFF variability of the left inferior temporal gyrus was negatively correlated with the average daily working hours of patients with neck pain.Conclusions:The findings indicated that the brain regions of patients with CNP responsible for audition,vision,memory,and emotion were subjected to temporal variability of abnormal regional brain activity.Moreover,the dALFF variability in the left inferior temporal gyrus might be a risk factor for neck pain.This study revealed the brain dysfunction of patients with CNP from the perspective of dynamic local brain activity,and highlighted the important role of dALFF variability in understanding the neural mechanism of CNP.展开更多
-low-frequency sea level fluctuations in the Hangzhou Bay in winter and summer, 1973-1974 are analyzed in this paper. The established multi-spectrum response models effectively identify the different dynamical factors...-low-frequency sea level fluctuations in the Hangzhou Bay in winter and summer, 1973-1974 are analyzed in this paper. The established multi-spectrum response models effectively identify the different dynamical factors and their contributions to the low-frequency sea level fluctuations inside the bay. The results show that the Ekman transport due to longshore winds is the major mechanism to induce the sea level fluctuations, more important than the frictional effect of local winds. There also exists obviously the influental effect of the free fluctuations of the continental shelf. In addition ,a simple estimation suggests that the remarkable sea level fluctuation of 0. 4 d-1 in the bay is related to the resonance of the Huanghai Sea and the Bohai Sea (taken as a single bay).展开更多
Aiming at the low-frequency pressure fluctuation phenomena in certain liquid oxygen delivery systems during dual engine operation,a numerical study on the intrinsic frequency of the liquid oxygen delivery system was c...Aiming at the low-frequency pressure fluctuation phenomena in certain liquid oxygen delivery systems during dual engine operation,a numerical study on the intrinsic frequency of the liquid oxygen delivery system was conducted by adopting an acoustic unit in Abaqus.Factors such as condensation characteristics of the oxygen-enriched gas gas in the liquid oxygen’s pipeline between pumps,flexibility of the accumulator,and cavitation flexibility of the engine were considered in the simulation models.The simulation results show that the second order frequency of the liquid oxygen delivery system is 8.77 Hz,and the phase difference of the corresponding acoustic modal is 180°,which is the liquid circuit frequency of the small loop between the two branches of the tee.This is consistent with the low-frequency fluctuation phenomenon during flight.Moreover,the simulation results were consistent with the liquid circuit frequency solved via the transfer matrix,which also verified the effectiveness of the frequency analysis method based on acoustic theory.展开更多
The magnetic field variations are analyzed in the range of time periods from 4 s to 240 s in the magnetosheath observed by the Double Star TC-1 and Cluster in 2004. The characteristics of the magnetic field fluctuatio...The magnetic field variations are analyzed in the range of time periods from 4 s to 240 s in the magnetosheath observed by the Double Star TC-1 and Cluster in 2004. The characteristics of the magnetic field fluctuations are strongly controlled by the angle between the upstream interplanetary magnetic field (IMF) and the normal of the bow shock. Generally speaking, the magnetic field fluctuations in the quasi- parallel magnetosheath are more intense than those in the quasi-perpendicular ones. Almost purely compressional waves are found in the quasi-perpendicular magnetosheath. With the increase of the local plasma β, both the magnitude and direction of the magnetic field fluctuate more intensely. There exists an inverse correlation between the local temperature anisotropy T⊥/T|| and the plasma β.展开更多
In order to obtain a lower frequency band gap,this paper proposes a novel locally resonant meta-beam incorporating a softening nonlinear factor.An improved camroller structure is designed in this meta-beam to achieve ...In order to obtain a lower frequency band gap,this paper proposes a novel locally resonant meta-beam incorporating a softening nonlinear factor.An improved camroller structure is designed in this meta-beam to achieve the softening nonlinear stiffness of the local oscillators.Firstly,based on Hamilton's principle and the Galerkin method,the control equations for the coupled system are established.The theoretical band gap boundary is then derived with the modal analysis method.The theoretical results reveal that the band gap of the meta-beam shifts towards lower frequencies due to the presence of a softening nonlinear factor,distinguishing it from both linear metamaterials and those with hardening nonlinear characteristics.Then,the vibration attenuation characteristics of a finite size meta-beam are investigated through numerical calculation,and are verified by the theoretical results.Furthermore,parameter studies indicate that the reasonable design of the local oscillator parameters based on lightweight principles helps to achieve further broadband and efficient vibration reduction in the low-frequency region.Finally,a prototype of the meta-beam is fabricated and assembled,and the formations of the low-frequency band gap and the amplitude-induced band gap phenomenon are verified through experiments.展开更多
Low-frequency vibroseis acquisition has become a routine operation in land seismic surveys,given the advantages of low-frequency signals in characterizing geological structures and enhancing the imaging of deep explor...Low-frequency vibroseis acquisition has become a routine operation in land seismic surveys,given the advantages of low-frequency signals in characterizing geological structures and enhancing the imaging of deep exploration targets.The two key points of low-frequency sweep design techniques include controlling the distortion and improving the output energy during the low-frequency stage.However,the vibrators are limited by the maximum fl ow provided by the hydraulic systems at the low-frequency stage,causing difficulty in satisfying exploration energy requirements.Initially,a theoretical analysis of the low-frequency acquisition performance of vibrators is conducted.A theoretical maximum output force below 10 Hz is obtained by guiding through theoretical formulas and combining actual vibrator parameters.Then,the signal is optimized according to the surface characteristics of the operation area.Finally,detailed application quality control and operational procedures are established.The new low-frequency sweep design method has overcome the maximum flow limitations of the hydraulic system,increased the low-frequency energy,and achieved broadband acquisition.The designed signal has been tested and applied on various types of ground surfaces in the Middle East desert region,yielding good performance.The proposed low-frequency sweep design method holds considerable value for the application of conventional vibroseis in low-frequency acquisition.展开更多
Controlling low-frequency noise presents a significant challenge for traditional sound absorption materials,such as foams and fibrous substances.Recently developed acoustic absorption metamaterials,which rely on local...Controlling low-frequency noise presents a significant challenge for traditional sound absorption materials,such as foams and fibrous substances.Recently developed acoustic absorption metamaterials,which rely on local resonance can effectively balance the volume occupation and low-frequency absorption performance.However,these materials often exhibit a very narrow and fixed absorption band.Inspired by Helmholtz resonators and bistable structures,we propose bistable reconfigurable acoustic metamaterials(BRAMs)that offer multiband low-frequency absorption.These BRAMs are fabricated using shape-memory polylactic acid(SM-PLA)via four-dimension(4D)printing technology.Consequently,the geometry and absorption performance of the BRAMs can be adjusted by applying thermal stimuli(at 55℃)to switch between two stable states.The BRAMs demonstrate excellent low-frequency absorption with multiband characteristics,achieving an absorption coefficient of 0.981 at 136 Hz and 0.998 at 230 Hz for stable state I,and coefficients of 0.984 at 156 Hz and 0.961 at 542 Hz for stable state II.It was found that the BRAMs with different inclined plate angles had linear recovery stages,and the recovery speeds range from 0.75 mm/s to 1.1 mm/s.By combining a rational structural design and 4D printing,the reported reconfigurable acoustic metamaterials will inspire further studies on the design of dynamic and broadband absorption devices.展开更多
Recent advances in two-dimensional layered systems have greatly enriched electronic transport studies, particularly in inter-layer Coulomb drag research. Here, systematic transport measurements were conducted in graph...Recent advances in two-dimensional layered systems have greatly enriched electronic transport studies, particularly in inter-layer Coulomb drag research. Here, systematic transport measurements were conducted in graphene-based electronic double-layer structures, revealing giant yet reproducible drag fluctuations at cryogenic temperatures. These fluctuations' characteristics, including amplitude and peak/valley spacing, are mainly determined by the drag layer's carrier dynamics rather than the drive layer's, resulting in violation of the Onsager reciprocity relation. Notably, the drag fluctuations remain observable up to 35 K, far exceeding universal conductance fluctuations within individual layers. This suggests enhanced phase coherence in inter-layer drag compared to single-layer transport, as further confirmed by quantitative analysis of auto-correlation fields of fluctuations under magnetic fields. Our findings provide new insights into quantum interference effects and their interplay with Coulomb interactions in solids. The observations of significant drag fluctuations could potentially help address chaotic signals between nearby components in nanoscale devices.展开更多
Metamaterials can control and manipulate acoustic/elastic waves on a subwavelength scale using cavities or additional components.However,the large cavity and weak stiffness components of traditional metamaterials may ...Metamaterials can control and manipulate acoustic/elastic waves on a subwavelength scale using cavities or additional components.However,the large cavity and weak stiffness components of traditional metamaterials may cause a conflict between vibroacoustic reduction and load-bearing capacity,and thus limit their application.Here,we propose a lightweight multifunctional metamaterial that can simultaneously achieve low-frequency sound insulation,broadband vibration reduction,and excellent load-bearing performance,named as vibroacoustic isolation and bearing metamaterial(VIBM).The advent of additive manufacturing technology provides a convenient and reliable method for the fabrication of VIBM samples.The results show that the compressive strength of the VIBM is as high as 9.71 MPa,which is nearly 87.81%higher than that of the conventional grid structure(CGS)under the same volume fraction.Moreover,the vibration and sound transmission are significantly reduced over a low and wide frequency range,which agrees well with the experimental data,and the reduction degree is obviously larger than that obtained by the CGS.The design strategy can effectively realize the key components of metamaterials and improve their application scenarios.展开更多
Low-frequency structural vibrations caused by poor rigidity are one of the main obstacles limiting the machining efficiency of robotic milling.Existing vibration suppression strategies primarily focus on passive vibra...Low-frequency structural vibrations caused by poor rigidity are one of the main obstacles limiting the machining efficiency of robotic milling.Existing vibration suppression strategies primarily focus on passive vibration absorption at the robotic end and feedback control at the joint motor.Although these strategies have a certain vibration suppression effect,the limitations of robotic flexibility and the extremely limited applicable speed range remain to be overcome.In this study,a Magnetorheological Joint Damper(MRJD)is developed.The joint-mounted feature ensures machining flexibility of the robot,and the millisecond response time of the Magnetorheological Fluid(MRF)ensures a large effective spindle speed range.More importantly,the evolution law of the damping performance of MRJD was revealed based on a low-frequency chatter mechanism,which guarantees the application of MRJD in robotic milling machining.To analyze the influence of the robotic joint angle on the suppression effect of the MRJD,the joint braking coefficient and end braking coefficient were proposed.Parallel coordinate plots were used to visualize the joint range with the optimal vibration suppression effect.Finally,a combination of different postures and cutting parameters was used to verify the vibration suppression effect and feasibility of the joint angle optimization.The experimental results show that the MRJD,which directly improves the joint vibration resistance,can effectively suppress the low-frequency vibration of robotic milling under a variety of cutting conditions.展开更多
Implementing additive manufacturing to NiTi(Nitinol)alloys typically enables a preferred<001>_(B2) tex-ture along the building direction.Unfortunately,this growth orientation always possesses a high criti-cal st...Implementing additive manufacturing to NiTi(Nitinol)alloys typically enables a preferred<001>_(B2) tex-ture along the building direction.Unfortunately,this growth orientation always possesses a high criti-cal stress level to induce the martensitic transformation and experiences premature failure before the formation of martensite during tensile testing.By utilizing in situ characterization technologies,in this study,we demonstrate that by fabricating a NiTi sample with complete<001>_(B2) texture using wire-fed electron beam directed energy deposition,a sluggish martensitic transformation can be achieved to re-tard the initiation of fracture under tensile loading.To discern the origins of this tensile response,we combine experiments with molecular dynamics simulations to systematically analyze the micro-scale de-tails on how internal lattice defects can select the variety of martensite variants.Using both quasi in situ transmission electron microscopy analysis and calculations of the different atomic configurations,our results indicate that the pre-existing precipitates and accumulated dislocation defects,rather than columnar boundaries,can have a positive influence on the sluggish formation of variants that can cou-ple with plastic deformation within a much wider stress interval.Specifically,only the variant favored by both internal strain/stress fluctuations around local defects and external tensile load will overcome the high-energy transition barrier of<001>_(B2)-oriented tension to nucleate and grow sluggishly.The cur-rent findings not only show how the mechanical responses can be controlled in additively manufactured NiTi alloys with<001>_(B2) texture,but also regard this understanding to be a step forward in decoding the salient underlying mechanisms for the correlating texture,defects,and phase transformation of these functional materials.展开更多
文摘BACKGROUND Diabetes mellitus is a metabolic disorder characterized by prolonged elevation of blood glucose due to various causes.Currently,the relationship between diabetic retinopathy(DR)and altered connectivity of brain function is unclear.AIM To investigate the relationship between this brain activity and clinical manifestations and behaviors of DR patients by using the amplitude of low-frequency fluctuation(ALFF)technique.METHODS Twenty-four DR patients and 24 healthy controls(HCs)matched for age and gender were enrolled.We measured and recorded average ALFF values of DR patients and HCs and then classified them using receiver operating characteristic(ROC)curves.RESULTS ALFF values of both left and right posterior cerebellar lobe and right anterior cingulate gyrus were remarkably higher in the DR patients than in the HCs;however,DR patients had lower values in the bilateral calcarine area.ROC curve analysis of different brain regions demonstrated high accuracy in the area under the curve analysis.There was no significant relationship between mean ALFF values for different regions and clinical presentations in DR patients.Neuronal synchronization abnormalities in some brain regions of DR patients were associated with cognitive and visual disorders.CONCLUSION Abnormal spontaneous brain activity was observed in many areas of DR patients’brains,which may suggest a possible link between clinical manifestations and behaviors in DR patients.
基金supported by the National Natural Science Foundation of China (81020108022,30770594).
文摘Objective Behavioral studies have suggested a low-frequency(0.05 Hz) fluctuation of sustained attention on the basis of the intra-individual variability of reaction-time.Conventional task designs for functional magnetic resonance imaging(fMRI) studies are not appropriate for frequency analysis.The present study aimed to propose a new paradigm,real-time finger force feedback(RT-FFF),to study the brain mechanisms of sustained attention and neurofeedback.Methods We compared the low-frequency fluctuations in both behavioral and fMRI data from 38 healthy adults(19 males;mean age,22.3 years).Two fMRI sessions,in RT-FFF and sham finger force feedback(S-FFF) states,were acquired(TR 2 s,Siemens Trio 3-Tesla scanner,8 min each,counter-balanced).Behavioral data of finger force were obtained simultaneously at a sampling rate of 250 Hz.Results Frequency analysis of the behavioral data showed lower amplitude in the lowfrequency band(0.004-0.104 Hz) but higher amplitude in the high-frequency band(27.02-125 Hz) in the RT-FFF than the S-FFF states.The mean finger force was not significantly different between the two states.fMRI data analysis showed higher fractional amplitude of low-frequency fluctuation(fALFF) in the S-FFF than in the RT-FFF state in the visual cortex,but higher fALFF in RT-FFF than S-FFF in the middle frontal gyrus,the superior frontal gyrus,and the default mode network.Conclusion The behavioral results suggest that the proposed paradigm may provide a new approach to studies of sustained attention.The fMRI results suggest that a distributed network including visual,motor,attentional,and default mode networks may be involved in sustained attention and/or real-time feedback.This paradigm may be helpful for future studies on deficits of attention,such as attention deficit hyperactivity disorder and mild traumatic brain injury.
基金Supported by the Natural Science Foundation of China,No.81901373the Intelligent Medicine Research Project of Chongqing Medical University,No.ZHYX202126.
文摘BACKGROUND Major depressive disorder(MDD)tends to have a high incidence and high suicide risk.Electroconvulsive therapy(ECT)is currently a relatively effective treatment for MDD.However,the mechanism of efficacy of ECT is still unclear.AIM To investigate the changes in the amplitude of low-frequency fluctuations in specific frequency bands in patients with MDD after ECT.METHODS Twenty-two MDD patients and fifteen healthy controls(HCs)were recruited to this study.MDD patients received 8 ECT sessions with bitemporal placement.Resting-state functional magnetic resonance imaging was adopted to examine regional cerebellar blood flow in both the MDD patients and HCs.The MDD patients were scanned twice(before the first ECT session and after the eighth ECT session)to acquire data.Then,the amplitude of low-frequency fluctuations(ALFF)was computed to characterize the intrinsic neural oscillations in different bands(typical frequency,slow-5,and slow-4 bands).RESULTS Compared to before ECT(pre-ECT),we found that MDD patients after the eighth ECT(post-ECT)session had a higher ALFF in the typical band in the right middle frontal gyrus,posterior cingulate,right supramarginal gyrus,left superior frontal gyrus,and left angular gyrus.There was a lower ALFF in the right superior temporal gyrus.Compared to pre-ECT values,the ALFF in the slow-5 band was significantly increased in the right limbic lobe,cerebellum posterior lobe,right middle orbitofrontal gyrus,and frontal lobe in post-ECT patients,whereas the ALFF in the slow-5 band in the left sublobar region,right angular gyrus,and right frontal lobe was lower.In contrast,significantly higher ALFF in the slow-4 band was observed in the frontal lobe,superior frontal gyrus,parietal lobe,right inferior parietal lobule,and left angular gyrus.CONCLUSION Our results suggest that the abnormal ALFF in pre-and post-ECT MDD patients may be associated with specific frequency bands.
文摘In order to investigate the conversion of kinetic energy from a synoptic scale disturbance (SSD; period≤seven days) to a low-frequency fluctuation (LFF; period〉seven days), the budget equation of the LFF kinetic energy is derived. The energy conversion is then calculated and analyzed for the summers of 1997 and 1999. The results show that the energy conversion from the SSD to the LFF is obviously enhanced in the middle and lower troposphere during the heavy rainfall, suggesting this to be one of mechanisms inducing the heavy rainfall, although the local LFF kinetic energy may not be enhanced.
基金Supported by National Natural Science Foundation of China(No.82160195)Jiangxi Double-Thousand Plan High-Level Talent Project of Science and Technology Innovation(No.jxsq2023201036)+2 种基金Key R&D Program of Jiangxi Province(No.20223BBH80014)Science and Technology Project of Jiangxi Province Health Commission of Traditional Chinese Medicine(No.2022B258)Science and Technology Project of Jiangxi Health Commission(No.202210017).
文摘AIM:To study functional brain abnormalities in patients with hypertensive retinopathy(HR)and to discuss the pathophysiological mechanisms of HR by fractional amplitude of low-frequency fluctuations(fALFFs)method.METHODS:Twenty HR patients and 20 healthy controls(HCs)were respectively recruited.The age,gender,and educational background characteristics of the two groups were similar.After functional magnetic resonance imaging(fMRI)scanning,the subjects’spontaneous brain activity was evaluated with the fALFF method.Receiver operating characteristic(ROC)curve analysis was used to classify the data.Further,we used Pearson’s correlation analysis to explore the relationship between fALFF values in specific brain regions and clinical behaviors in patients with HR.RESULTS:The brain areas of the HR group with lower fALFF values than HCs were the right orbital part of the middle frontal gyrus(RO-MFG)and right lingual gyrus.In contrast,the values of fALFFs in the left middle temporal gyrus(MTG),left superior temporal pole(STP),left middle frontal gyrus(MFG),left superior marginal gyrus(SMG),left superior parietal lobule(SPL),and right supplementary motor area(SMA)were higher in the HR group.The results of a t-test showed that the average values of fALFFs were statistically significantly different in the HR group and HC group(P<0.001).The fALFF values of the left middle frontal gyrus in HR patients were positively correlated with anxiety scores(r=0.9232;P<0.0001)and depression scores(r=0.9682;P<0.0001).CONCLUSION:fALFF values in multiple brain regions of HR patients are abnormal,suggesting that these brain regions in HR patients may be dysfunctional,which may help to reveal the pathophysiological mechanisms of HR.
基金the National Natural ScienceFoundation (No.82160195)Central Government GuidesLocal Science and Technology Development Foundation(No.20211ZDG02003)+2 种基金Key Research Foundation of JiangxiProvince (No.20181BBG70004No.20203BBG73059)Excellent Talents Development Project of Jiangxi Province(No.20192BCBL23020).
文摘AIM:To assess changed spontaneous brain activity in hyperthyroid exophthalmos(HE)patients by the amplitude of the low-frequency fluctuation(ALFF)method,and to analyze the correlation between brain activity and ALFF values in these patients.METHODS:Totally 18 HE and 18 hyperthyroid nonexophthalmos(HNE)patients were enrolled.The participants were tested by resting-state functional magnetic resonance imaging,and receiver operating characteristic(ROC)curves were generated to classify the ALFF values of the study population.Pearson’s correlation analysis was utilized to evaluate the relationship between the ALFF values obtained from different brain areas and clinical manifestations.RESULTS:Contrary to HNE patients,we observed lower ALFF values in the left calcarine fissure and surrounding cortex(LCFSC)in HE patients.In the ROC curve analysis of the LCFSC,the area under the curve reflected a high degree of accuracy.In addition,there was positive correlation between mean ALFF values of the LCFSC and the bestcorrected visual acuity of the affected eyes.CONCLUSION:The study displays abnormal brain activity in LCFSC in patients with HE,which might suggest pathological mechanism of visual impairment of HE patients.
基金Supported by the National Natural Science Foundation of China(No.81870685)Beijing Natural Science Foundation(No.7172173)Key Laboratory of Myopia,Ministry of Health(Fudan University)(No.EENTM-15-01)。
文摘AIM:To analyze changes in amplitude of low-frequency fluctuations(ALFFs)and default mode network(DMN)connectivity in the brain,using resting-state functional magnetic resonance imaging(rs-fMRI),in high myopia(HM)patients.METHODS:Eleven patients with HM(HM group)and 15 age-and sex-matched non-HM controls(non-HM group)were recruited.ALFFs were calculated and compared between HM group and non-HM group.Independent component analysis(ICA)was conducted to identify DMN,and comparisons between DMNs of two groups were performed.Region-of-interest(ROI)-based analysis was performed to explore functional connectivity(FC)between DMN regions.RESULTS:Significantly increased ALFFs in left inferior temporal gyrus(ITG),bilateral rectus gyrus(REC),bilateral middle temporal gyrus(MTG),left superior temporal gyrus(STG),and left angular gyrus(ANG)were detected in HM group compared with non-HM group(all P<0.01).HM group showed increased FC in the posterior cingulate gyrus(PCC)/precuneus(preCUN)and decreased FC in the left medial prefrontal cortex(mPFG)within DMN compared with nonHM group(all P<0.01).Compared with non-HM group,HM group showed higher FC between mPFG and bilateral middle frontal gyrus(MFG),ANG,and MTG(all P<0.01).In addition,HM patients showed higher FC between PCC/(preCUN)and the right cerebellum,superior frontal gyrus(SFG),left pre CUN,superior frontal gyrus(SFG),and medial orbital of the superior frontal gyrus(ORB supmed;all P<0.01).CONCLUSION:HM patients show different ALFFs and DMNs compared with non-HM subjects,which may imply the cognitive alterations related to HM.
基金Supported by National Natural Science Foundation of China(No.82260203).
文摘AIM:To study the relationships between amplitude of low-frequency fluctuations(ALFF)changes and clinical ophthalmic parameters in patients with primary open angle glaucoma(POAG)and analyze the diagnostic value of ALFF.METHODS:Twenty-four POAG patients and 24 healthy controls(HCs)underwent resting-state functional magnetic resonance imaging(rs-fMRI).Nonparametric rank-sum tests were used to compare the ALFF values in the slow-4 and slow-5 bands,and Spearman or Pearson correlation analysis was used to assess the correlation between ALFF changes and clinical ophthalmic parameters in POAG patients.Receiver operating characteristic(ROC)curves were used to evaluate the diagnostic performance of the ALFF.RESULTS:There were 16 males in POAG patients(median age 48y)and 12 males in HCs(median age 39y).Compared with HCs,POAG patients presented increased or decreased ALFF values in different brain regions,and similar changes were observed in mild POAG patients.The ALFF values were correlated with retinal nerve fiber layer(RNFL)thickness,inner limiting membrane-retinal pigment epithelium thickness changes and the degree of visual field defects.Analysis of the diagnostic value of the ALFF via ROC curves revealed that the right medial frontal gyrus[area under the curve(AUC)=0.9063]and superior frontal gyrus(AUC=0.9097)had better diagnostic value than did the optic disc area(AUC=0.8019),visual field index(VFI%,AUC=0.8988)and macular parameters.CONCLUSION:POAG patients present altered cortical function that is significantly correlated with the optic nerve and retinal thickness and had good diagnostic value,which may reflect the underlying neuropathological mechanism of POAG.
基金grants from the Natural Science Foundation of China,the Shanghai High Technology Research Program
文摘Background Previous studies have shown that brain functional activity in the resting state is impaired in Alzheimer's disease (AD) patients. However, alterations in intrinsic brain activity patterns in mild cognitive impairment (MCI) patients are poorly understood. This study aimed to explore the differences in regional intrinsic activities throughout the whole brain between aMCI patients and controls. Methods In the present study, resting-state functional magnetic resonance imaging (fMRI) was performed on 18 amnestic MCI (aMCI) patients, 18 mild AD patients and 20 healthy elderly subjects. And amplitude of low-frequency fluctuation (ALFF) method was used. Results Compared with healthy elderly subjects, aMCI patients showed decreased ALFF in the right hippocampus and parahippocampal cortex, left lateral temporal cortex, and right ventral medial prefrontal cortex (vMPFC) and increased ALFF in the left temporal-parietal junction (TPJ) and inferior parietal Iobule (IPL). Mild AD patients showed decreased ALFF in the left TPJ, posterior IPL (plPL), and dorsolateral prefrontal cortex compared with aMCI patients. Mild AD patients also had decreased ALFF in the right posterior cingulate cortex, right vMPFC and bilateral dorsal MPFC (dMPFC) compared with healthy elderly subjects. Conclusions Decreased intrinsic activities in brain regions closely related to episodic memory were found in aMCI and AD patients. Increased TPJ and IPL activity may indicate compensatory mechanisms for loss of memory function in aMCI patients. These findings suggest that the fMRI based on ALFF analysis may provide a useful tool in the study of aMCI patients.
基金supported by the Science and Technology Support Program of Sichuan Province(2018JY0562)the National Natural Science Foundation of China(81722050,81973962 and U1808204)the Key Project of Research and Development of Ministry of Science and Technology(2018AAA0100705).
文摘Background:The pathogenesis of neck pain in the brain,which is the fourth most common cause of disability,remains unclear.Furthermore,little is known about the characteristics of dynamic local functional brain activity in cervical pain.Objective:The present study aimed to investigate the changes of local brain activity caused by chronic neck pain and the factors leading to neck pain.Methods:Using the amplitude of low-frequency fluctuations(ALFF)method combined with sliding window approach,we compared local brain activity that was measured by the functional magnetic resonance imaging(fMRI)of 107 patients with chronic neck pain(CNP)with that of 57 healthy control participants.Five pathogenic factors were selected for correlation analysis.Results:The group comparison results of dynamic amplitude of low-frequency fluctuation(dALFF)variability showed that patients with CNP exhibited decreased dALFF variability in the left inferior temporal gyrus,the middle temporal gyrus,the angular gyrus,the inferior parietal marginal angular gyrus,and the middle occipital gyrus.The abnormal dALFF variability of the left inferior temporal gyrus was negatively correlated with the average daily working hours of patients with neck pain.Conclusions:The findings indicated that the brain regions of patients with CNP responsible for audition,vision,memory,and emotion were subjected to temporal variability of abnormal regional brain activity.Moreover,the dALFF variability in the left inferior temporal gyrus might be a risk factor for neck pain.This study revealed the brain dysfunction of patients with CNP from the perspective of dynamic local brain activity,and highlighted the important role of dALFF variability in understanding the neural mechanism of CNP.
文摘-low-frequency sea level fluctuations in the Hangzhou Bay in winter and summer, 1973-1974 are analyzed in this paper. The established multi-spectrum response models effectively identify the different dynamical factors and their contributions to the low-frequency sea level fluctuations inside the bay. The results show that the Ekman transport due to longshore winds is the major mechanism to induce the sea level fluctuations, more important than the frictional effect of local winds. There also exists obviously the influental effect of the free fluctuations of the continental shelf. In addition ,a simple estimation suggests that the remarkable sea level fluctuation of 0. 4 d-1 in the bay is related to the resonance of the Huanghai Sea and the Bohai Sea (taken as a single bay).
文摘Aiming at the low-frequency pressure fluctuation phenomena in certain liquid oxygen delivery systems during dual engine operation,a numerical study on the intrinsic frequency of the liquid oxygen delivery system was conducted by adopting an acoustic unit in Abaqus.Factors such as condensation characteristics of the oxygen-enriched gas gas in the liquid oxygen’s pipeline between pumps,flexibility of the accumulator,and cavitation flexibility of the engine were considered in the simulation models.The simulation results show that the second order frequency of the liquid oxygen delivery system is 8.77 Hz,and the phase difference of the corresponding acoustic modal is 180°,which is the liquid circuit frequency of the small loop between the two branches of the tee.This is consistent with the low-frequency fluctuation phenomenon during flight.Moreover,the simulation results were consistent with the liquid circuit frequency solved via the transfer matrix,which also verified the effectiveness of the frequency analysis method based on acoustic theory.
基金the CAS (Grant No. KJCX2-YW-T13)the National Natural Science Foundation of China (Grant Nos. 40621003, 40628003, 40390150)
文摘The magnetic field variations are analyzed in the range of time periods from 4 s to 240 s in the magnetosheath observed by the Double Star TC-1 and Cluster in 2004. The characteristics of the magnetic field fluctuations are strongly controlled by the angle between the upstream interplanetary magnetic field (IMF) and the normal of the bow shock. Generally speaking, the magnetic field fluctuations in the quasi- parallel magnetosheath are more intense than those in the quasi-perpendicular ones. Almost purely compressional waves are found in the quasi-perpendicular magnetosheath. With the increase of the local plasma β, both the magnitude and direction of the magnetic field fluctuate more intensely. There exists an inverse correlation between the local temperature anisotropy T⊥/T|| and the plasma β.
基金supported by the National Natural Science Foundation of China(Nos.12172014,U224126412332001)。
文摘In order to obtain a lower frequency band gap,this paper proposes a novel locally resonant meta-beam incorporating a softening nonlinear factor.An improved camroller structure is designed in this meta-beam to achieve the softening nonlinear stiffness of the local oscillators.Firstly,based on Hamilton's principle and the Galerkin method,the control equations for the coupled system are established.The theoretical band gap boundary is then derived with the modal analysis method.The theoretical results reveal that the band gap of the meta-beam shifts towards lower frequencies due to the presence of a softening nonlinear factor,distinguishing it from both linear metamaterials and those with hardening nonlinear characteristics.Then,the vibration attenuation characteristics of a finite size meta-beam are investigated through numerical calculation,and are verified by the theoretical results.Furthermore,parameter studies indicate that the reasonable design of the local oscillator parameters based on lightweight principles helps to achieve further broadband and efficient vibration reduction in the low-frequency region.Finally,a prototype of the meta-beam is fabricated and assembled,and the formations of the low-frequency band gap and the amplitude-induced band gap phenomenon are verified through experiments.
基金The authors would like to express their sincere appreciation to the research project of CNPC Geophysical Key Lab(2022DQ0604-4)National Natural Science Foundation of China(Grant No.42074141).
文摘Low-frequency vibroseis acquisition has become a routine operation in land seismic surveys,given the advantages of low-frequency signals in characterizing geological structures and enhancing the imaging of deep exploration targets.The two key points of low-frequency sweep design techniques include controlling the distortion and improving the output energy during the low-frequency stage.However,the vibrators are limited by the maximum fl ow provided by the hydraulic systems at the low-frequency stage,causing difficulty in satisfying exploration energy requirements.Initially,a theoretical analysis of the low-frequency acquisition performance of vibrators is conducted.A theoretical maximum output force below 10 Hz is obtained by guiding through theoretical formulas and combining actual vibrator parameters.Then,the signal is optimized according to the surface characteristics of the operation area.Finally,detailed application quality control and operational procedures are established.The new low-frequency sweep design method has overcome the maximum flow limitations of the hydraulic system,increased the low-frequency energy,and achieved broadband acquisition.The designed signal has been tested and applied on various types of ground surfaces in the Middle East desert region,yielding good performance.The proposed low-frequency sweep design method holds considerable value for the application of conventional vibroseis in low-frequency acquisition.
基金financially supported by National Key Research and Development Program of China(Grant No.2023YFB4604800)National Natural Science Foundation of China(Grant No.52275331)financial support from the Hong Kong Scholars Program(Grant No.XJ2022014).
文摘Controlling low-frequency noise presents a significant challenge for traditional sound absorption materials,such as foams and fibrous substances.Recently developed acoustic absorption metamaterials,which rely on local resonance can effectively balance the volume occupation and low-frequency absorption performance.However,these materials often exhibit a very narrow and fixed absorption band.Inspired by Helmholtz resonators and bistable structures,we propose bistable reconfigurable acoustic metamaterials(BRAMs)that offer multiband low-frequency absorption.These BRAMs are fabricated using shape-memory polylactic acid(SM-PLA)via four-dimension(4D)printing technology.Consequently,the geometry and absorption performance of the BRAMs can be adjusted by applying thermal stimuli(at 55℃)to switch between two stable states.The BRAMs demonstrate excellent low-frequency absorption with multiband characteristics,achieving an absorption coefficient of 0.981 at 136 Hz and 0.998 at 230 Hz for stable state I,and coefficients of 0.984 at 156 Hz and 0.961 at 542 Hz for stable state II.It was found that the BRAMs with different inclined plate angles had linear recovery stages,and the recovery speeds range from 0.75 mm/s to 1.1 mm/s.By combining a rational structural design and 4D printing,the reported reconfigurable acoustic metamaterials will inspire further studies on the design of dynamic and broadband absorption devices.
基金supported by the National Natural Science Foundation of China (Grant Nos.12474051 and 92165201)the Chinese Academy of Sciences Project for Young Scientists in Basic Research (Grant No.YSBR-046)+1 种基金the National Key Research and Development Program of China (Grant No.2023YFA1406300)the Anhui Provincial Natural Science Foundation (Grant Nos.2308085J11 and2308085QA14)。
文摘Recent advances in two-dimensional layered systems have greatly enriched electronic transport studies, particularly in inter-layer Coulomb drag research. Here, systematic transport measurements were conducted in graphene-based electronic double-layer structures, revealing giant yet reproducible drag fluctuations at cryogenic temperatures. These fluctuations' characteristics, including amplitude and peak/valley spacing, are mainly determined by the drag layer's carrier dynamics rather than the drive layer's, resulting in violation of the Onsager reciprocity relation. Notably, the drag fluctuations remain observable up to 35 K, far exceeding universal conductance fluctuations within individual layers. This suggests enhanced phase coherence in inter-layer drag compared to single-layer transport, as further confirmed by quantitative analysis of auto-correlation fields of fluctuations under magnetic fields. Our findings provide new insights into quantum interference effects and their interplay with Coulomb interactions in solids. The observations of significant drag fluctuations could potentially help address chaotic signals between nearby components in nanoscale devices.
基金Project supported by the National Natural Science Foundation of China(Nos.11991032 and 52241103)the Hunan Province Graduate Research Innovation Project of China(No.KY0409052440)。
文摘Metamaterials can control and manipulate acoustic/elastic waves on a subwavelength scale using cavities or additional components.However,the large cavity and weak stiffness components of traditional metamaterials may cause a conflict between vibroacoustic reduction and load-bearing capacity,and thus limit their application.Here,we propose a lightweight multifunctional metamaterial that can simultaneously achieve low-frequency sound insulation,broadband vibration reduction,and excellent load-bearing performance,named as vibroacoustic isolation and bearing metamaterial(VIBM).The advent of additive manufacturing technology provides a convenient and reliable method for the fabrication of VIBM samples.The results show that the compressive strength of the VIBM is as high as 9.71 MPa,which is nearly 87.81%higher than that of the conventional grid structure(CGS)under the same volume fraction.Moreover,the vibration and sound transmission are significantly reduced over a low and wide frequency range,which agrees well with the experimental data,and the reduction degree is obviously larger than that obtained by the CGS.The design strategy can effectively realize the key components of metamaterials and improve their application scenarios.
基金supported by the National Natural Science Foundation of China(No.U20A20294)the National Natural Science Foundation of China(No.52322511)the National Natural Science Foundation of China(No.52188102).
文摘Low-frequency structural vibrations caused by poor rigidity are one of the main obstacles limiting the machining efficiency of robotic milling.Existing vibration suppression strategies primarily focus on passive vibration absorption at the robotic end and feedback control at the joint motor.Although these strategies have a certain vibration suppression effect,the limitations of robotic flexibility and the extremely limited applicable speed range remain to be overcome.In this study,a Magnetorheological Joint Damper(MRJD)is developed.The joint-mounted feature ensures machining flexibility of the robot,and the millisecond response time of the Magnetorheological Fluid(MRF)ensures a large effective spindle speed range.More importantly,the evolution law of the damping performance of MRJD was revealed based on a low-frequency chatter mechanism,which guarantees the application of MRJD in robotic milling machining.To analyze the influence of the robotic joint angle on the suppression effect of the MRJD,the joint braking coefficient and end braking coefficient were proposed.Parallel coordinate plots were used to visualize the joint range with the optimal vibration suppression effect.Finally,a combination of different postures and cutting parameters was used to verify the vibration suppression effect and feasibility of the joint angle optimization.The experimental results show that the MRJD,which directly improves the joint vibration resistance,can effectively suppress the low-frequency vibration of robotic milling under a variety of cutting conditions.
基金supported by the National Natural Science Foundation of China(Nos.52101037,52401040 and 52171034)the Postdoctoral Fellowship Program of CPSF(No.GZB20230944)with the computational resources provided by LvLiang Cloud Comput-ing Center.
文摘Implementing additive manufacturing to NiTi(Nitinol)alloys typically enables a preferred<001>_(B2) tex-ture along the building direction.Unfortunately,this growth orientation always possesses a high criti-cal stress level to induce the martensitic transformation and experiences premature failure before the formation of martensite during tensile testing.By utilizing in situ characterization technologies,in this study,we demonstrate that by fabricating a NiTi sample with complete<001>_(B2) texture using wire-fed electron beam directed energy deposition,a sluggish martensitic transformation can be achieved to re-tard the initiation of fracture under tensile loading.To discern the origins of this tensile response,we combine experiments with molecular dynamics simulations to systematically analyze the micro-scale de-tails on how internal lattice defects can select the variety of martensite variants.Using both quasi in situ transmission electron microscopy analysis and calculations of the different atomic configurations,our results indicate that the pre-existing precipitates and accumulated dislocation defects,rather than columnar boundaries,can have a positive influence on the sluggish formation of variants that can cou-ple with plastic deformation within a much wider stress interval.Specifically,only the variant favored by both internal strain/stress fluctuations around local defects and external tensile load will overcome the high-energy transition barrier of<001>_(B2)-oriented tension to nucleate and grow sluggishly.The cur-rent findings not only show how the mechanical responses can be controlled in additively manufactured NiTi alloys with<001>_(B2) texture,but also regard this understanding to be a step forward in decoding the salient underlying mechanisms for the correlating texture,defects,and phase transformation of these functional materials.