期刊文献+
共找到255,043篇文章
< 1 2 250 >
每页显示 20 50 100
Two-Dimensional MXene-Based Advanced Sensors for Neuromorphic Computing Intelligent Application
1
作者 Lin Lu Bo Sun +2 位作者 Zheng Wang Jialin Meng Tianyu Wang 《Nano-Micro Letters》 2026年第2期664-691,共28页
As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and el... As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and electrochemical characteristics,MXenes have shown great potential in brain-inspired neuromorphic computing electronics,including neuromorphic gas sensors,pressure sensors and photodetectors.This paper provides a forward-looking review of the research progress regarding MXenes in the neuromorphic sensing domain and discussed the critical challenges that need to be resolved.Key bottlenecks such as insufficient long-term stability under environmental exposure,high costs,scalability limitations in large-scale production,and mechanical mismatch in wearable integration hinder their practical deployment.Furthermore,unresolved issues like interfacial compatibility in heterostructures and energy inefficiency in neu-romorphic signal conversion demand urgent attention.The review offers insights into future research directions enhance the fundamental understanding of MXene properties and promote further integration into neuromorphic computing applications through the convergence with various emerging technologies. 展开更多
关键词 TWO-DIMENSIONAL MXenes SENSOR Neuromorphic computing Multimodal intelligent system Wearable electronics
在线阅读 下载PDF
Mechanical Properties Analysis of Flexible Memristors for Neuromorphic Computing
2
作者 Zhenqian Zhu Jiheng Shui +1 位作者 Tianyu Wang Jialin Meng 《Nano-Micro Letters》 2026年第1期53-79,共27页
The advancement of flexible memristors has significantly promoted the development of wearable electronic for emerging neuromorphic computing applications.Inspired by in-memory computing architecture of human brain,fle... The advancement of flexible memristors has significantly promoted the development of wearable electronic for emerging neuromorphic computing applications.Inspired by in-memory computing architecture of human brain,flexible memristors exhibit great application potential in emulating artificial synapses for highefficiency and low power consumption neuromorphic computing.This paper provides comprehensive overview of flexible memristors from perspectives of development history,material system,device structure,mechanical deformation method,device performance analysis,stress simulation during deformation,and neuromorphic computing applications.The recent advances in flexible electronics are summarized,including single device,device array and integration.The challenges and future perspectives of flexible memristor for neuromorphic computing are discussed deeply,paving the way for constructing wearable smart electronics and applications in large-scale neuromorphic computing and high-order intelligent robotics. 展开更多
关键词 Flexible memristor Neuromorphic computing Mechanical property Wearable electronics
在线阅读 下载PDF
High-Entropy Oxide Memristors for Neuromorphic Computing:From Material Engineering to Functional Integration
3
作者 Jia‑Li Yang Xin‑Gui Tang +4 位作者 Xuan Gu Qi‑Jun Sun Zhen‑Hua Tang Wen‑Hua Li Yan-Ping Jiang 《Nano-Micro Letters》 2026年第2期138-169,共32页
High-entropy oxides(HEOs)have emerged as a promising class of memristive materials,characterized by entropy-stabilized crystal structures,multivalent cation coordination,and tunable defect landscapes.These intrinsic f... High-entropy oxides(HEOs)have emerged as a promising class of memristive materials,characterized by entropy-stabilized crystal structures,multivalent cation coordination,and tunable defect landscapes.These intrinsic features enable forming-free resistive switching,multilevel conductance modulation,and synaptic plasticity,making HEOs attractive for neuromorphic computing.This review outlines recent progress in HEO-based memristors across materials engineering,switching mechanisms,and synaptic emulation.Particular attention is given to vacancy migration,phase transitions,and valence-state dynamics—mechanisms that underlie the switching behaviors observed in both amorphous and crystalline systems.Their relevance to neuromorphic functions such as short-term plasticity and spike-timing-dependent learning is also examined.While encouraging results have been achieved at the device level,challenges remain in conductance precision,variability control,and scalable integration.Addressing these demands a concerted effort across materials design,interface optimization,and task-aware modeling.With such integration,HEO memristors offer a compelling pathway toward energy-efficient and adaptable brain-inspired electronics. 展开更多
关键词 High-entropy oxides MEMRISTORS Neuromorphic computing Configurational entropy Resistive switching
在线阅读 下载PDF
Lightweight YOLOv5 with ShuffleNetV2 for Rice Disease Detection in Edge Computing
4
作者 Qingtao Meng Sang-Hyun Lee 《Computers, Materials & Continua》 2026年第1期1395-1409,共15页
This study proposes a lightweight rice disease detection model optimized for edge computing environments.The goal is to enhance the You Only Look Once(YOLO)v5 architecture to achieve a balance between real-time diagno... This study proposes a lightweight rice disease detection model optimized for edge computing environments.The goal is to enhance the You Only Look Once(YOLO)v5 architecture to achieve a balance between real-time diagnostic performance and computational efficiency.To this end,a total of 3234 high-resolution images(2400×1080)were collected from three major rice diseases Rice Blast,Bacterial Blight,and Brown Spot—frequently found in actual rice cultivation fields.These images served as the training dataset.The proposed YOLOv5-V2 model removes the Focus layer from the original YOLOv5s and integrates ShuffleNet V2 into the backbone,thereby resulting in both model compression and improved inference speed.Additionally,YOLOv5-P,based on PP-PicoDet,was configured as a comparative model to quantitatively evaluate performance.Experimental results demonstrated that YOLOv5-V2 achieved excellent detection performance,with an mAP 0.5 of 89.6%,mAP 0.5–0.95 of 66.7%,precision of 91.3%,and recall of 85.6%,while maintaining a lightweight model size of 6.45 MB.In contrast,YOLOv5-P exhibited a smaller model size of 4.03 MB,but showed lower performance with an mAP 0.5 of 70.3%,mAP 0.5–0.95 of 35.2%,precision of 62.3%,and recall of 74.1%.This study lays a technical foundation for the implementation of smart agriculture and real-time disease diagnosis systems by proposing a model that satisfies both accuracy and lightweight requirements. 展开更多
关键词 Lightweight object detection YOLOv5-V2 ShuffleNet V2 edge computing rice disease detection
在线阅读 下载PDF
Providing Robust and Low-Cost Edge Computing in Smart Grid:An Energy Harvesting Based Task Scheduling and Resource Management Framework 被引量:1
5
作者 Xie Zhigang Song Xin +1 位作者 Xu Siyang Cao Jing 《China Communications》 2025年第2期226-240,共15页
Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power sta... Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power stations).To solve the problem,we propose an energy harvesting based task scheduling and resource management framework to provide robust and low-cost edge computing services for smart grid.First,we formulate an energy consumption minimization problem with regard to task offloading,time switching,and resource allocation for mobile devices,which can be decoupled and transformed into a typical knapsack problem.Then,solutions are derived by two different algorithms.Furthermore,we deploy renewable energy and energy storage units at edge servers to tackle intermittency and instability problems.Finally,we design an energy management algorithm based on sampling average approximation for edge computing servers to derive the optimal charging/discharging strategies,number of energy storage units,and renewable energy utilization.The simulation results show the efficiency and superiority of our proposed framework. 展开更多
关键词 edge computing energy harvesting energy storage unit renewable energy sampling average approximation task scheduling
在线阅读 下载PDF
Offload Strategy for Edge Computing in Satellite Networks Based on Software Defined Network 被引量:1
6
作者 Zhiguo Liu Yuqing Gui +1 位作者 Lin Wang Yingru Jiang 《Computers, Materials & Continua》 SCIE EI 2025年第1期863-879,共17页
Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in us... Satellite edge computing has garnered significant attention from researchers;however,processing a large volume of tasks within multi-node satellite networks still poses considerable challenges.The sharp increase in user demand for latency-sensitive tasks has inevitably led to offloading bottlenecks and insufficient computational capacity on individual satellite edge servers,making it necessary to implement effective task offloading scheduling to enhance user experience.In this paper,we propose a priority-based task scheduling strategy based on a Software-Defined Network(SDN)framework for satellite-terrestrial integrated networks,which clarifies the execution order of tasks based on their priority.Subsequently,we apply a Dueling-Double Deep Q-Network(DDQN)algorithm enhanced with prioritized experience replay to derive a computation offloading strategy,improving the experience replay mechanism within the Dueling-DDQN framework.Next,we utilize the Deep Deterministic Policy Gradient(DDPG)algorithm to determine the optimal resource allocation strategy to reduce the processing latency of sub-tasks.Simulation results demonstrate that the proposed d3-DDPG algorithm outperforms other approaches,effectively reducing task processing latency and thus improving user experience and system efficiency. 展开更多
关键词 Satellite network edge computing task scheduling computing offloading
在线阅读 下载PDF
Optoelectronic memristor based on a-C:Te film for muti-mode reservoir computing 被引量:2
7
作者 Qiaoling Tian Kuo Xun +7 位作者 Zhuangzhuang Li Xiaoning Zhao Ya Lin Ye Tao Zhongqiang Wang Daniele Ielmini Haiyang Xu Yichun Liu 《Journal of Semiconductors》 2025年第2期144-149,共6页
Optoelectronic memristor is generating growing research interest for high efficient computing and sensing-memory applications.In this work,an optoelectronic memristor with Au/a-C:Te/Pt structure is developed.Synaptic ... Optoelectronic memristor is generating growing research interest for high efficient computing and sensing-memory applications.In this work,an optoelectronic memristor with Au/a-C:Te/Pt structure is developed.Synaptic functions,i.e.,excita-tory post-synaptic current and pair-pulse facilitation are successfully mimicked with the memristor under electrical and optical stimulations.More importantly,the device exhibited distinguishable response currents by adjusting 4-bit input electrical/opti-cal signals.A multi-mode reservoir computing(RC)system is constructed with the optoelectronic memristors to emulate human tactile-visual fusion recognition and an accuracy of 98.7%is achieved.The optoelectronic memristor provides potential for developing multi-mode RC system. 展开更多
关键词 optoelectronic memristor volatile switching muti-mode reservoir computing
在线阅读 下载PDF
Low-cost cloud computing solution for geo-information processing 被引量:3
8
作者 高培超 刘钊 +1 位作者 谢美慧 田琨 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3217-3224,共8页
Cloud computing has emerged as a leading computing paradigm,with an increasing number of geographic information(geo-information) processing tasks now running on clouds.For this reason,geographic information system/rem... Cloud computing has emerged as a leading computing paradigm,with an increasing number of geographic information(geo-information) processing tasks now running on clouds.For this reason,geographic information system/remote sensing(GIS/RS) researchers rent more public clouds or establish more private clouds.However,a large proportion of these clouds are found to be underutilized,since users do not deal with big data every day.The low usage of cloud resources violates the original intention of cloud computing,which is to save resources by improving usage.In this work,a low-cost cloud computing solution was proposed for geo-information processing,especially for temporary processing tasks.The proposed solution adopted a hosted architecture and can be realized based on ordinary computers in a common GIS/RS laboratory.The usefulness and effectiveness of the proposed solution was demonstrated by using big data simplification as a case study.Compared to commercial public clouds and dedicated private clouds,the proposed solution is more low-cost and resource-saving,and is more suitable for GIS/RS applications. 展开更多
关键词 cloud computing geo-information processing geo-processing
在线阅读 下载PDF
Dynamic Task Offloading Scheme for Edge Computing via Meta-Reinforcement Learning 被引量:1
9
作者 Jiajia Liu Peng Xie +2 位作者 Wei Li Bo Tang Jianhua Liu 《Computers, Materials & Continua》 2025年第2期2609-2635,共27页
As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the... As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the task offloading strategies by interacting with the entities. In actual application scenarios, users of edge computing are always changing dynamically. However, the existing task offloading strategies cannot be applied to such dynamic scenarios. To solve this problem, we propose a novel dynamic task offloading framework for distributed edge computing, leveraging the potential of meta-reinforcement learning (MRL). Our approach formulates a multi-objective optimization problem aimed at minimizing both delay and energy consumption. We model the task offloading strategy using a directed acyclic graph (DAG). Furthermore, we propose a distributed edge computing adaptive task offloading algorithm rooted in MRL. This algorithm integrates multiple Markov decision processes (MDP) with a sequence-to-sequence (seq2seq) network, enabling it to learn and adapt task offloading strategies responsively across diverse network environments. To achieve joint optimization of delay and energy consumption, we incorporate the non-dominated sorting genetic algorithm II (NSGA-II) into our framework. Simulation results demonstrate the superiority of our proposed solution, achieving a 21% reduction in time delay and a 19% decrease in energy consumption compared to alternative task offloading schemes. Moreover, our scheme exhibits remarkable adaptability, responding swiftly to changes in various network environments. 展开更多
关键词 Edge computing adaptive META task offloading joint optimization
在线阅读 下载PDF
Near‑Sensor Edge Computing System Enabled by a CMOS Compatible Photonic Integrated Circuit Platform Using Bilayer AlN/Si Waveguides 被引量:1
10
作者 Zhihao Ren Zixuan Zhang +4 位作者 Yangyang Zhuge Zian Xiao Siyu Xu Jingkai Zhou Chengkuo Lee 《Nano-Micro Letters》 2025年第11期1-20,共20页
The rise of large-scale artificial intelligence(AI)models,such as ChatGPT,Deep-Seek,and autonomous vehicle systems,has significantly advanced the boundaries of AI,enabling highly complex tasks in natural language proc... The rise of large-scale artificial intelligence(AI)models,such as ChatGPT,Deep-Seek,and autonomous vehicle systems,has significantly advanced the boundaries of AI,enabling highly complex tasks in natural language processing,image recognition,and real-time decisionmaking.However,these models demand immense computational power and are often centralized,relying on cloud-based architectures with inherent limitations in latency,privacy,and energy efficiency.To address these challenges and bring AI closer to real-world applications,such as wearable health monitoring,robotics,and immersive virtual environments,innovative hardware solutions are urgently needed.This work introduces a near-sensor edge computing(NSEC)system,built on a bilayer AlN/Si waveguide platform,to provide real-time,energy-efficient AI capabilities at the edge.Leveraging the electro-optic properties of AlN microring resonators for photonic feature extraction,coupled with Si-based thermo-optic Mach-Zehnder interferometers for neural network computations,the system represents a transformative approach to AI hardware design.Demonstrated through multimodal gesture and gait analysis,the NSEC system achieves high classification accuracies of 96.77%for gestures and 98.31%for gaits,ultra-low latency(<10 ns),and minimal energy consumption(<0.34 pJ).This groundbreaking system bridges the gap between AI models and real-world applications,enabling efficient,privacy-preserving AI solutions for healthcare,robotics,and next-generation human-machine interfaces,marking a pivotal advancement in edge computing and AI deployment. 展开更多
关键词 Photonic integrated circuits Edge computing Aluminum nitride Neural networks Wearable sensors
在线阅读 下载PDF
Synaptic devices based on silicon carbide for neuromorphic computing 被引量:1
11
作者 Boyu Ye Xiao Liu +2 位作者 Chao Wu Wensheng Yan Xiaodong Pi 《Journal of Semiconductors》 2025年第2期38-51,共14页
To address the increasing demand for massive data storage and processing,brain-inspired neuromorphic comput-ing systems based on artificial synaptic devices have been actively developed in recent years.Among the vario... To address the increasing demand for massive data storage and processing,brain-inspired neuromorphic comput-ing systems based on artificial synaptic devices have been actively developed in recent years.Among the various materials inves-tigated for the fabrication of synaptic devices,silicon carbide(SiC)has emerged as a preferred choices due to its high electron mobility,superior thermal conductivity,and excellent thermal stability,which exhibits promising potential for neuromorphic applications in harsh environments.In this review,the recent progress in SiC-based synaptic devices is summarized.Firstly,an in-depth discussion is conducted regarding the categories,working mechanisms,and structural designs of these devices.Subse-quently,several application scenarios for SiC-based synaptic devices are presented.Finally,a few perspectives and directions for their future development are outlined. 展开更多
关键词 silicon carbide wide bandgap semiconductors synaptic devices neuromorphic computing high temperature
在线阅读 下载PDF
CBBM-WARM:A Workload-Aware Meta-Heuristic for Resource Management in Cloud Computing 被引量:1
12
作者 K Nivitha P Pabitha R Praveen 《China Communications》 2025年第6期255-275,共21页
The rapid advent in artificial intelligence and big data has revolutionized the dynamic requirement in the demands of the computing resource for executing specific tasks in the cloud environment.The process of achievi... The rapid advent in artificial intelligence and big data has revolutionized the dynamic requirement in the demands of the computing resource for executing specific tasks in the cloud environment.The process of achieving autonomic resource management is identified to be a herculean task due to its huge distributed and heterogeneous environment.Moreover,the cloud network needs to provide autonomic resource management and deliver potential services to the clients by complying with the requirements of Quality-of-Service(QoS)without impacting the Service Level Agreements(SLAs).However,the existing autonomic cloud resource managing frameworks are not capable in handling the resources of the cloud with its dynamic requirements.In this paper,Coot Bird Behavior Model-based Workload Aware Autonomic Resource Management Scheme(CBBM-WARMS)is proposed for handling the dynamic requirements of cloud resources through the estimation of workload that need to be policed by the cloud environment.This CBBM-WARMS initially adopted the algorithm of adaptive density peak clustering for workloads clustering of the cloud.Then,it utilized the fuzzy logic during the process of workload scheduling for achieving the determining the availability of cloud resources.It further used CBBM for potential Virtual Machine(VM)deployment that attributes towards the provision of optimal resources.It is proposed with the capability of achieving optimal QoS with minimized time,energy consumption,SLA cost and SLA violation.The experimental validation of the proposed CBBMWARMS confirms minimized SLA cost of 19.21%and reduced SLA violation rate of 18.74%,better than the compared autonomic cloud resource managing frameworks. 展开更多
关键词 autonomic resource management cloud computing coot bird behavior model SLA violation cost WORKLOAD
在线阅读 下载PDF
DeepSeek vs.ChatGPT vs.Claude:A comparative study for scientific computing and scientific machine learning tasks 被引量:1
13
作者 Qile Jiang Zhiwei Gao George Em Karniadakis 《Theoretical & Applied Mechanics Letters》 2025年第3期194-206,共13页
Large language models(LLMs)have emerged as powerful tools for addressing a wide range of problems,including those in scientific computing,particularly in solving partial differential equations(PDEs).However,different ... Large language models(LLMs)have emerged as powerful tools for addressing a wide range of problems,including those in scientific computing,particularly in solving partial differential equations(PDEs).However,different models exhibit distinct strengths and preferences,resulting in varying levels of performance.In this paper,we compare the capabilities of the most advanced LLMs—DeepSeek,ChatGPT,and Claude—along with their reasoning-optimized versions in addressing computational challenges.Specifically,we evaluate their proficiency in solving traditional numerical problems in scientific computing as well as leveraging scientific machine learning techniques for PDE-based problems.We designed all our experiments so that a nontrivial decision is required,e.g,defining the proper space of input functions for neural operator learning.Our findings show that reasoning and hybrid-reasoning models consistently and significantly outperform non-reasoning ones in solving challenging problems,with ChatGPT o3-mini-high generally offering the fastest reasoning speed. 展开更多
关键词 Large language models(LLM) Scientific computing Scientific machine learning Physics-informed neural network
在线阅读 下载PDF
MXene‑Ti_(3)C_(2)T_(x)‑Based Neuromorphic Computing:Physical Mechanisms,Performance Enhancement,and Cutting‑Edge Computing 被引量:1
14
作者 Kaiyang Wang Shuhui Ren +3 位作者 Yunfang Jia Xiaobing Yan Lizhen Wang Yubo Fan 《Nano-Micro Letters》 2025年第11期251-302,共52页
Neuromorphic devices have shown great potential in simulating the function of biological neurons due to their efficient parallel information processing and low energy consumption.MXene-Ti_(3)C_(2)T_(x),an emerging two... Neuromorphic devices have shown great potential in simulating the function of biological neurons due to their efficient parallel information processing and low energy consumption.MXene-Ti_(3)C_(2)T_(x),an emerging twodimensional material,stands out as an ideal candidate for fabricating neuromorphic devices.Its exceptional electrical performance and robust mechanical properties make it an ideal choice for this purpose.This review aims to uncover the advantages and properties of MXene-Ti_(3)C_(2)T_(x)in neuromorphic devices and to promote its further development.Firstly,we categorize several core physical mechanisms present in MXene-Ti_(3)C_(2)T_(x)neuromorphic devices and summarize in detail the reasons for their formation.Then,this work systematically summarizes and classifies advanced techniques for the three main optimization pathways of MXene-Ti_(3)C_(2)T_(x),such as doping engineering,interface engineering,and structural engineering.Significantly,this work highlights innovative applications of MXene-Ti_(3)C_(2)T_(x)neuromorphic devices in cutting-edge computing paradigms,particularly near-sensor computing and in-sensor computing.Finally,this review carefully compiles a table that integrates almost all research results involving MXene-Ti_(3)C_(2)T_(x)neuromorphic devices and discusses the challenges,development prospects,and feasibility of MXene-Ti_(3)C_(2)T_(x)-based neuromorphic devices in practical applications,aiming to lay a solid theoretical foundation and provide technical support for further exploration and application of MXene-Ti_(3)C_(2)T_(x)in the field of neuromorphic devices. 展开更多
关键词 Neuromorphic device MXene-Ti_(3)C_(2)T_(x) Physical mechanisms Performance improvement Cutting-edge computing
在线阅读 下载PDF
A Comprehensive Study of Resource Provisioning and Optimization in Edge Computing
15
作者 Sreebha Bhaskaran Supriya Muthuraman 《Computers, Materials & Continua》 2025年第6期5037-5070,共34页
Efficient resource provisioning,allocation,and computation offloading are critical to realizing lowlatency,scalable,and energy-efficient applications in cloud,fog,and edge computing.Despite its importance,integrating ... Efficient resource provisioning,allocation,and computation offloading are critical to realizing lowlatency,scalable,and energy-efficient applications in cloud,fog,and edge computing.Despite its importance,integrating Software Defined Networks(SDN)for enhancing resource orchestration,task scheduling,and traffic management remains a relatively underexplored area with significant innovation potential.This paper provides a comprehensive review of existing mechanisms,categorizing resource provisioning approaches into static,dynamic,and user-centric models,while examining applications across domains such as IoT,healthcare,and autonomous systems.The survey highlights challenges such as scalability,interoperability,and security in managing dynamic and heterogeneous infrastructures.This exclusive research evaluates how SDN enables adaptive policy-based handling of distributed resources through advanced orchestration processes.Furthermore,proposes future directions,including AI-driven optimization techniques and hybrid orchestrationmodels.By addressing these emerging opportunities,thiswork serves as a foundational reference for advancing resource management strategies in next-generation cloud,fog,and edge computing ecosystems.This survey concludes that SDN-enabled computing environments find essential guidance in addressing upcoming management opportunities. 展开更多
关键词 Cloud computing edge computing fog computing resource provisioning resource allocation computation offloading optimization techniques software defined network
在线阅读 下载PDF
A comprehensive survey of orbital edge computing:Systems,applications,and algorithms
16
作者 Zengshan YIN Changhao WU +4 位作者 Chongbin GUO Yuanchun LI Mengwei XU Weiwei GAO Chuanxiu CHI 《Chinese Journal of Aeronautics》 2025年第7期310-339,共30页
The number of satellites,especially those operating in Low-Earth Orbit(LEO),has been exploding in recent years.Additionally,the burgeoning development of Artificial Intelligence(AI)software and hardware has opened up ... The number of satellites,especially those operating in Low-Earth Orbit(LEO),has been exploding in recent years.Additionally,the burgeoning development of Artificial Intelligence(AI)software and hardware has opened up new industrial opportunities in both air and space,with satellite-powered computing emerging as a new computing paradigm:Orbital Edge Computing(OEC).Compared to terrestrial edge computing,the mobility of LEO satellites and their limited communication,computation,and storage resources pose challenges in designing task-specific scheduling algorithms.Previous survey papers have largely focused on terrestrial edge computing or the integration of space and ground technologies,lacking a comprehensive summary of OEC architecture,algorithms,and case studies.This paper conducts a comprehensive survey and analysis of OEC's system architecture,applications,algorithms,and simulation tools,providing a solid background for researchers in the field.By discussing OEC use cases and the challenges faced,potential research directions for future OEC research are proposed. 展开更多
关键词 Orbital edge computing Ubiquitous computing Large-scale satellite constellations computation offloading
原文传递
Comparative study of IoT-and AI-based computing disease detection approaches
17
作者 Wasiur Rhmann Jalaluddin Khan +8 位作者 Ghufran Ahmad Khan Zubair Ashraf Babita Pandey Mohammad Ahmar Khan Ashraf Ali Amaan Ishrat Abdulrahman Abdullah Alghamdi Bilal Ahamad Mohammad Khaja Shaik 《Data Science and Management》 2025年第1期94-106,共13页
The emergence of different computing methods such as cloud-,fog-,and edge-based Internet of Things(IoT)systems has provided the opportunity to develop intelligent systems for disease detection.Compared to other machin... The emergence of different computing methods such as cloud-,fog-,and edge-based Internet of Things(IoT)systems has provided the opportunity to develop intelligent systems for disease detection.Compared to other machine learning models,deep learning models have gained more attention from the research community,as they have shown better results with a large volume of data compared to shallow learning.However,no comprehensive survey has been conducted on integrated IoT-and computing-based systems that deploy deep learning for disease detection.This study evaluated different machine learning and deep learning algorithms and their hybrid and optimized algorithms for IoT-based disease detection,using the most recent papers on IoT-based disease detection systems that include computing approaches,such as cloud,edge,and fog.Their analysis focused on an IoT deep learning architecture suitable for disease detection.It also recognizes the different factors that require the attention of researchers to develop better IoT disease detection systems.This study can be helpful to researchers interested in developing better IoT-based disease detection and prediction systems based on deep learning using hybrid algorithms. 展开更多
关键词 Deep learning Internet of Things(IoT) Cloud computing Fog computing Edge computing
在线阅读 下载PDF
Efficient rock joint detection from large-scale 3D point clouds using vectorization and parallel computing approaches
18
作者 Yunfeng Ge Zihao Li +2 位作者 Huiming Tang Qian Chen Zhongxu Wen 《Geoscience Frontiers》 2025年第5期1-15,共15页
The application of three-dimensional(3D)point cloud parametric analyses on exposed rock surfaces,enabled by Light Detection and Ranging(LiDAR)technology,has gained significant popularity due to its efficiency and the ... The application of three-dimensional(3D)point cloud parametric analyses on exposed rock surfaces,enabled by Light Detection and Ranging(LiDAR)technology,has gained significant popularity due to its efficiency and the high quality of data it provides.However,as research extends to address more regional and complex geological challenges,the demand for algorithms that are both robust and highly efficient in processing large datasets continues to grow.This study proposes an advanced rock joint identification algorithm leveraging artificial neural networks(ANNs),incorporating parallel computing and vectorization of high-performance computing.The algorithm utilizes point cloud attributes—specifically point normal and point curvatures-as input parameters for ANNs,which classify data into rock joints and non-rock joints.Subsequently,individual rock joints are extracted using the density-based spatial clustering of applications with noise(DBSCAN)technique.Principal component analysis(PCA)is subsequently employed to calculate their orientations.By fully utilizing the computational power of parallel computing and vectorization,the algorithm increases the running speed by 3–4 times,enabling the processing of large-scale datasets within seconds.This breakthrough maximizes computational efficiency while maintaining high accuracy(compared with manual measurement,the deviation of the automatic measurement is within 2°),making it an effective solution for large-scale rock joint detection challenges.©2025 China University of Geosciences(Beijing)and Peking University. 展开更多
关键词 Rock joints Pointclouds Artificialneuralnetwork High-performance computing Parallel computing VECTORIZATION
在线阅读 下载PDF
Computing over Space:Status,Challenges,and Opportunities
19
作者 Yaoqi Liu Yinhe Han +3 位作者 Hongxin Li Shuhao Gu Jibing Qiu Ting Li 《Engineering》 2025年第11期20-25,共6页
1.Introduction The rapid expansion of satellite constellations in recent years has resulted in the generation of massive amounts of data.This surge in data,coupled with diverse application scenarios,underscores the es... 1.Introduction The rapid expansion of satellite constellations in recent years has resulted in the generation of massive amounts of data.This surge in data,coupled with diverse application scenarios,underscores the escalating demand for high-performance computing over space.Computing over space entails the deployment of computational resources on platforms such as satellites to process large-scale data under constraints such as high radiation exposure,restricted power consumption,and minimized weight. 展开更多
关键词 satellite constellations deployment computational resources data processing space computing radiation exposure SPACE high performance computing power consumption
在线阅读 下载PDF
Nano device fabrication for in-memory and in-sensor reservoir computing
20
作者 Yinan Lin Xi Chen +4 位作者 Qianyu Zhang Junqi You Renjing Xu Zhongrui Wang Linfeng Sun 《International Journal of Extreme Manufacturing》 2025年第1期46-71,共26页
Recurrent neural networks(RNNs)have proven to be indispensable for processing sequential and temporal data,with extensive applications in language modeling,text generation,machine translation,and time-series forecasti... Recurrent neural networks(RNNs)have proven to be indispensable for processing sequential and temporal data,with extensive applications in language modeling,text generation,machine translation,and time-series forecasting.Despite their versatility,RNNs are frequently beset by significant training expenses and slow convergence times,which impinge upon their deployment in edge AI applications.Reservoir computing(RC),a specialized RNN variant,is attracting increased attention as a cost-effective alternative for processing temporal and sequential data at the edge.RC’s distinctive advantage stems from its compatibility with emerging memristive hardware,which leverages the energy efficiency and reduced footprint of analog in-memory and in-sensor computing,offering a streamlined and energy-efficient solution.This review offers a comprehensive explanation of RC’s underlying principles,fabrication processes,and surveys recent progress in nano-memristive device based RC systems from the viewpoints of in-memory and in-sensor RC function.It covers a spectrum of memristive device,from established oxide-based memristive device to cutting-edge material science developments,providing readers with a lucid understanding of RC’s hardware implementation and fostering innovative designs for in-sensor RC systems.Lastly,we identify prevailing challenges and suggest viable solutions,paving the way for future advancements in in-sensor RC technology. 展开更多
关键词 reservoir computing memristive device fabrication compute-in-memory in-sensor computing
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部