期刊文献+
共找到282,760篇文章
< 1 2 250 >
每页显示 20 50 100
Energy-Efficient Low-Complexity Algorithm in 5G Massive MIMO Systems 被引量:4
1
作者 Adeeb Salh Lukman Audah +4 位作者 Qazwan Abdullah Nor Shahida M.Shah Shipun A.Hamzah Shahilah Nordin Nabil Farah 《Computers, Materials & Continua》 SCIE EI 2021年第6期3189-3214,共26页
Energy efficiency(EE)is a critical design when taking into account circuit power consumption(CPC)in fifth-generation cellular networks.These problems arise because of the increasing number of antennas in massive multi... Energy efficiency(EE)is a critical design when taking into account circuit power consumption(CPC)in fifth-generation cellular networks.These problems arise because of the increasing number of antennas in massive multiple-input multiple-output(MIMO)systems,attributable to inter-cell interference for channel state information.Apart from that,a higher number of radio frequency(RF)chains at the base station and active users consume more power due to the processing activities in digital-to-analogue converters and power amplifiers.Therefore,antenna selection,user selection,optimal transmission power,and pilot reuse power are important aspects in improving energy efficiency in massive MIMO systems.This work aims to investigate joint antenna selection,optimal transmit power and joint user selection based on deriving the closed-form of the maximal EE,with complete knowledge of large-scale fading with maximum ratio transmission.It also accounts for channel estimation and eliminating pilot contamination as antennas M→∞.This formulates the optimization problem of joint optimal antenna selection,transmits power allocation and joint user selection to mitigate inter-cellinterference in downlink multi-cell massive MIMO systems under minimized reuse of pilot sequences based on a novel iterative low-complexity algorithm(LCA)for Newton’s methods and Lagrange multipliers.To analyze the precise power consumption,a novel power consumption scheme is proposed for each individual antenna,based on the transmit power amplifier and CPC.Simulation results demonstrate that the maximal EE was achieved using the iterative LCA based on reasonable maximum transmit power,in the case the noise power is less than the received power pilot.The maximum EE was achieved with the desired maximum transmit power threshold by minimizing pilot reuse,in the case the transmit power allocationρd=40 dBm,and the optimal EE=71.232 Mb/j. 展开更多
关键词 Massive MIMO energy efficiency base station active users pilot contamination low-complexity algorithm radio frequency
在线阅读 下载PDF
Low-Complexity Codebook Design for SCMA-Assisted Indoor Visible Light Communication Systems
2
作者 Wang Yuhao Xu Chuan +3 位作者 Yu Lisu Lyu Xinxin Chen Junyuan Wang Zhenghai 《China Communications》 2025年第6期180-192,共13页
Sparse code multiple access(SCMA)is a non-orthogonal multiple access(NOMA)scheme based on joint modulation and spread spectrum coding.It is ideal for future communication networks with a massive number of nodes due to... Sparse code multiple access(SCMA)is a non-orthogonal multiple access(NOMA)scheme based on joint modulation and spread spectrum coding.It is ideal for future communication networks with a massive number of nodes due to its ability to handle user overload.Introducing SCMA into visible light communication(VLC)systems can improve the data transmission capability of the system.However,designing a suitable codebook becomes a challenging problem when addressing the demands of massive connectivity scenarios.Therefore,this paper proposes a low-complexity design method for high-overload codebooks based on the minimum bit error rate(BER)criterion.Firstly,this paper constructs a new codebook with parameters based on the symmetric mother codebook structure by allocating the codeword power so that the power of each user codebook is unbalanced;then,the BER performance in the visible light communication system is optimized to obtain specific parameters;finally,the successive interference cancellation(SIC)detection algorithm is used at the receiver side.Simulation results show that the method proposed in this paper can converge quickly by utilizing a relatively small number of detection iterations.This can simultaneously reduce the complexity of design and detection,outperforming existing design methods for massive SCMA codebooks. 展开更多
关键词 high overload low-complexity codebook design sparse code multiple access(SCMA) successive interference cancellation(SIC) visible light communication(VLC)
在线阅读 下载PDF
A low-complexity AMP detection algorithm with deep neural network for massive mimo systems
3
作者 Zufan Zhang Yang Li +1 位作者 Xiaoqin Yan Zonghua Ouyang 《Digital Communications and Networks》 CSCD 2024年第5期1375-1386,共12页
Signal detection plays an essential role in massive Multiple-Input Multiple-Output(MIMO)systems.However,existing detection methods have not yet made a good tradeoff between Bit Error Rate(BER)and computational complex... Signal detection plays an essential role in massive Multiple-Input Multiple-Output(MIMO)systems.However,existing detection methods have not yet made a good tradeoff between Bit Error Rate(BER)and computational complexity,resulting in slow convergence or high complexity.To address this issue,a low-complexity Approximate Message Passing(AMP)detection algorithm with Deep Neural Network(DNN)(denoted as AMP-DNN)is investigated in this paper.Firstly,an efficient AMP detection algorithm is derived by scalarizing the simplification of Belief Propagation(BP)algorithm.Secondly,by unfolding the obtained AMP detection algorithm,a DNN is specifically designed for the optimal performance gain.For the proposed AMP-DNN,the number of trainable parameters is only related to that of layers,regardless of modulation scheme,antenna number and matrix calculation,thus facilitating fast and stable training of the network.In addition,the AMP-DNN can detect different channels under the same distribution with only one training.The superior performance of the AMP-DNN is also verified by theoretical analysis and experiments.It is found that the proposed algorithm enables the reduction of BER without signal prior information,especially in the spatially correlated channel,and has a lower computational complexity compared with existing state-of-the-art methods. 展开更多
关键词 Massive MIMO system Approximate message passing(AMP)detection algorithm Deep neural network(DNN) Bit error rate(BER) low-complexity
在线阅读 下载PDF
A Novel Low-Complexity Low-Latency Power Efficient Collision Detection Algorithm for Wireless Sensor Networks
4
作者 Fawaz Alassery Walid K. M. Ahmed +1 位作者 Mohsen Sarraf Victor Lawrence 《Wireless Sensor Network》 2015年第6期43-75,共33页
Collision detection mechanisms in Wireless Sensor Networks (WSNs) have largely been revolving around direct demodulation and decoding of received packets and deciding on a collision based on some form of a frame error... Collision detection mechanisms in Wireless Sensor Networks (WSNs) have largely been revolving around direct demodulation and decoding of received packets and deciding on a collision based on some form of a frame error detection mechanism, such as a CRC check. The obvious drawback of full detection of a received packet is the need to expend a significant amount of energy and processing complexity in order to fully decode a packet, only to discover the packet is illegible due to a collision. In this paper, we propose a suite of novel, yet simple and power-efficient algorithms to detect a collision without the need for full-decoding of the received packet. Our novel algorithms aim at detecting collision through fast examination of the signal statistics of a short snippet of the received packet via a relatively small number of computations over a small number of received IQ samples. Hence, the proposed algorithms operate directly at the output of the receiver's analog-to-digital converter and eliminate the need to pass the signal through the entire. In addition, we present a complexity and power-saving comparison between our novel algorithms and conventional full-decoding (for select coding schemes) to demonstrate the significant power and complexity saving advantage of our algorithms. 展开更多
关键词 WIRELESS SENSOR Networks WIRELESS SENSOR Protocols COLLISION Detection algorithmS Power-Efficient Techniques Low COMPLEXITY algorithmS
在线阅读 下载PDF
A Low-Complexity Resource Allocation Scheme for OFDMA Multicast Systems with Proportional Fairness 被引量:3
5
作者 Lijing Jiang Rongfang Song 《China Communications》 SCIE CSCD 2018年第1期1-11,共11页
A low-complexity optimization scheme is proposed to balance the tradeoff between system capacity and proportional fairness in orthogonal frequency division multiple access(OFDMA) based multicast systems. The major cha... A low-complexity optimization scheme is proposed to balance the tradeoff between system capacity and proportional fairness in orthogonal frequency division multiple access(OFDMA) based multicast systems. The major challenge is to solve the non-convexity optimization problem with strict proportional fairness. Constrained team progress algorithm(CTPA) solves this non-convexity problem by allocating sub-channels to each group based on sub-channel gains and proportional fairness constraint. Mapping power algorithm(MPA) guarantees strict proportional fairness with efficient power allocation which utilizes the mapping relation between power and throughput. CTPA-MPA is analyzed in three aspects: complexity, fairness and efficiency. We numerically show that when the system capacity is slightly increased in lower power region compared with several previous approaches, CTPA-MPA improves the proportional fairness in a typical scenario with 4 groups over 16 sub-channels, while reducing the complexity from exponential to linear in the number of sub-channels. It is also proved available in a more complicated system. 展开更多
关键词 RESOURCE allocation OFDMA MULTICAST team progress algorithm (TPA)
在线阅读 下载PDF
Low-Complexity Soft-Output Detection for Massive MIMO Using SCBiCG and Lanczos Methods 被引量:1
6
作者 XIAO Chiyang SU Xin +3 位作者 ZENG Jie RONG Liping XU Xibin WANG Jing 《China Communications》 SCIE CSCD 2015年第S1期9-17,共9页
Massive MIMO is a promising technology to improve spectral efficiency, cell coverage, and system capacity for 5G. However, these benefits take place at great cost of computational complexity, especially in systems wit... Massive MIMO is a promising technology to improve spectral efficiency, cell coverage, and system capacity for 5G. However, these benefits take place at great cost of computational complexity, especially in systems with hundreds of antennas at the base station. This paper aims to address the minimum mean square error(MMSE) detection in uplink massive MIMO systems utilizing the symmetric complex bi-conjugate gradients(SCBiCG) and the Lanczos method. Both the proposed methods can avoid the large scale matrix inversion which is necessary for MMSE, thus, reducing the computational complexity by an order of magnitude with respect to the number of user equipment. To enable the proposed methods for soft-output detection, we also derive an approximating calculation scheme for the log-likelihood ratios(LLRs), which further reduces the complexity. We compare the proposed methods with existing exact and approximate detection methods. Simulation results demonstrate that the proposed methods can achieve near-optimal performance of MMSE detection with relatively low computational complexity. 展开更多
关键词 MASSIVE MIMO soft-output DETECTION SCBiCG LANCZOS low-complexity
在线阅读 下载PDF
TP-MobNet: A Two-pass Mobile Network for Low-complexity Classification of Acoustic Scene 被引量:1
7
作者 Soonshin Seo Junseok Oh +3 位作者 Eunsoo Cho Hosung Park Gyujin Kim Ji-Hwan Kim 《Computers, Materials & Continua》 SCIE EI 2022年第11期3291-3303,共13页
Acoustic scene classification(ASC)is a method of recognizing and classifying environments that employ acoustic signals.Various ASC approaches based on deep learning have been developed,with convolutional neural networ... Acoustic scene classification(ASC)is a method of recognizing and classifying environments that employ acoustic signals.Various ASC approaches based on deep learning have been developed,with convolutional neural networks(CNNs)proving to be the most reliable and commonly utilized in ASC systems due to their suitability for constructing lightweight models.When using ASC systems in the real world,model complexity and device robustness are essential considerations.In this paper,we propose a two-pass mobile network for low-complexity classification of the acoustic scene,named TP-MobNet.With inverse residuals and linear bottlenecks,TPMobNet is based on MobileNetV2,and following mobile blocks,coordinate attention and two-pass fusion approaches are utilized.The log-range dependencies and precise position information in feature maps can be trained via coordinate attention.By capturing more diverse feature resolutions at the network’s end sides,two-pass fusions can also train generalization.Also,the model size is reduced by applying weight quantization to the trained model.By adding weight quantization to the trained model,the model size is also lowered.The TAU Urban Acoustic Scenes 2020 Mobile development set was used for all of the experiments.It has been confirmed that the proposed model,with a model size of 219.6 kB,achieves an accuracy of 73.94%. 展开更多
关键词 Acoustic scene classification low-complexity device robustness two-pass mobile network coordinate attention weight quantization
在线阅读 下载PDF
Low-complexity MP3 decoder based on Broadcom embedded platform
8
作者 冉川 沈庭芝 《Journal of Beijing Institute of Technology》 EI CAS 2011年第1期94-99,共6页
A low complexity MP3 decoder based on Broadcom embedded platform was proposed. C code level optimization algorithms on inverse quantization, stereo decoding and alias reduction based on PC were proposed to further re... A low complexity MP3 decoder based on Broadcom embedded platform was proposed. C code level optimization algorithms on inverse quantization, stereo decoding and alias reduction based on PC were proposed to further reduce the amount of memory usage and the computational complex ity. Furthermore, the executable file of the optimized MP3 decoder was generated under the Linux environment, and transplanted to the set top box based on Broadcom embedded platform. Experi ment results showed that the total time for decoding was reduced on the embedded platform, and the goal of real time and fluent playing of audio files was fulfilled, which demonstrated the effectiveness of the proposed MP3 decoder. The proposed MP3 decoder could be applied in fields such xs the set top box based on Broadcom embedded platform and other portable devices. 展开更多
关键词 MP3 decoder algorithm optimization LINUX BROADCOM
在线阅读 下载PDF
A Low-Complexity Mobile Watermarking Scheme Resisting Scale Distortions
9
作者 Dai-Kyung Hyun Heung-Kyu Lee 《Journal of Computer and Communications》 2014年第4期77-81,共5页
In mobile environment, a low-complexity is the significant feature because the mobile device has very limited resources due to power consumption. In this paper, we propose a low-complexity watermarking scheme for mobi... In mobile environment, a low-complexity is the significant feature because the mobile device has very limited resources due to power consumption. In this paper, we propose a low-complexity watermarking scheme for mobile device. We apply the minimum average correlation energy Mellin radial harmonic (MACE-MRH) correlation filter to watermark detection. By the scale tolerance property of MACE-MRH correlation filter, the proposed watermark detector can be robust to scaling attacks. Empirical evidence from a large database of test images indicates outperforming performance of the proposed method. 展开更多
关键词 low-complexity MOBILE WATERMARKING MACE-MRH Correlation Filter
在线阅读 下载PDF
Low-Complexity Detection and Decoding Scheme for LDPC-Coded MLC NAND Flash Memory 被引量:1
10
作者 Xusheng Lin Guojun Han +2 位作者 Shijie Ouyang Yanfu Li Yi Fang 《China Communications》 SCIE CSCD 2018年第6期58-67,共10页
With the development of manufacture technology, the multi-level cell(MLC)technique dramatically increases the storage density of NAND flash memory. As the result,cell-to-cell interference(CCI) becomes more serious and... With the development of manufacture technology, the multi-level cell(MLC)technique dramatically increases the storage density of NAND flash memory. As the result,cell-to-cell interference(CCI) becomes more serious and hence causes an increase in the raw bit error rate of data stored in the cells.Recently, low-density parity-check(LDPC)codes have appeared to be a promising solution to combat the interference of MLC NAND flash memory. However, the decoding complexity of the sum-product algorithm(SPA) is extremely high. In this paper, to improve the accuracy of the log likelihood ratio(LLR) information of each bit in each NAND flash memory cell, we adopt a non-uniform detection(N-UD) which uses the average maximum mutual information to determine the value of the soft-decision reference voltages.Furthermore, with an aim to reduce the decoding complexity and improve the decoding performance, we propose a modified soft reliabilitybased iterative majority-logic decoding(MSRBI-MLGD) algorithm, which uses a non-uniform quantizer based on power function to decode LDPC codes. Simulation results show that our design can offer a desirable trade-off between the performance and complexity for high-column-weight LDPC-coded MLC NAND flash memory. 展开更多
关键词 Cell-to-cell interference(CCI) LDPC codes MLC NAND flash memory non-uniform detection(N-UD) modified soft reliability-based iterative majority-logic decoding(MSRBI-MLGD) algorithm
在线阅读 下载PDF
Low-complexity signal detection for massive MIMO systems via trace iterative method
11
作者 IMRAN A.Khoso ZHANG Xiaofei +2 位作者 ABDUL Hayee Shaikh IHSAN A.Khoso ZAHEER Ahmed Dayo 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期549-557,共9页
Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which ent... Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas. 展开更多
关键词 signal detection low-complexity linear minimum mean square error(MMSE) massive multiple-input multiple-output(MIMO) trace iterative method(TIM)
在线阅读 下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
12
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
13
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
14
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
Low-complexity soft-output signal detector based on adaptive pre-conditioned gradient descent method for uplink multiuser massive MIMO systems
15
作者 Souleymane Berthe Xiaorong Jing +1 位作者 Hongqing Liu Qianbin Chen 《Digital Communications and Networks》 SCIE CSCD 2023年第2期557-566,共10页
In multiuser massive Multiple Input Multiple Output(MIMO)systems,a large amount of antennas are deployed at the Base Station(BS).In this case,the Minimum Mean Square Error(MMSE)detector with soft-output can achieve th... In multiuser massive Multiple Input Multiple Output(MIMO)systems,a large amount of antennas are deployed at the Base Station(BS).In this case,the Minimum Mean Square Error(MMSE)detector with soft-output can achieve the near-optimal performance at the cost of a large-scale matrix inversion operation.The optimization algorithms such as Gradient Descent(GD)method have received a lot of attention to realize the MMSE detection efficiently without a large scale matrix inversion operation.However,they converge slowly when the condition number of the MMSE filtering matrix(the coefficient matrix)increases,which can compromise the efficiency of their implementation.Moreover,their soft information computation also involves a large-scale matrix-matrix multiplication operation.In this paper,a low-complexity soft-output signal detector based on Adaptive Pre-conditioned Gradient Descent(APGD-SOD)method is proposed to realize the MMSE detection with soft-output for uplink multiuser massive MIMO systems.In the proposed detector,an Adaptive Pre-conditioner(AP)matrix obtained through the Quasi-Newton Symmetric Rank One(QN-SR1)update in each iteration is used to accelerate the convergence of the GD method.The QN-SR1 update supports the intuitive notion that for the quadractic problem one should strive to make the pre-conditioner matrix close to the inverse of the coefficient matrix,since then the condition number would be close to unity and the convergence would be rapid.By expanding the signal model of the massive MIMO system and exploiting the channel hardening property of massive MIMO systems,the computational complexity of the soft information is simplified.The proposed AP matrix is applied to the GD method as a showcase.However,it also can be used by Conjugate Gradient(CG)method due to its generality.It is demonstrated that the proposed detector is robust and its convergence rate is superlinear.Simulation results show that the proposed detector converges at most four iterations.Simulation results also show that the proposed approach achieves a better trade-off between the complexity and the performance than several existing detectors and achieves a near-optimal performance of the MMSE detector with soft-output at four iterations without a complicated large scale matrix inversion operation,which entails a big challenge for the efficient implementation. 展开更多
关键词 Multiuser massive MIMO MMSE algorithm GD Method Soft-output PRE-CONDITIONING Symmetric rank one update
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
16
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
Research on Euclidean Algorithm and Reection on Its Teaching
17
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
18
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
在线阅读 下载PDF
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
19
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
Path Planning for Thermal Power Plant Fan Inspection Robot Based on Improved A^(*)Algorithm 被引量:1
20
作者 Wei Zhang Tingfeng Zhang 《Journal of Electronic Research and Application》 2025年第1期233-239,共7页
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The... To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks. 展开更多
关键词 Power plant fans Inspection robot Path planning Improved A^(*)algorithm
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部