Energy efficiency(EE)is a critical design when taking into account circuit power consumption(CPC)in fifth-generation cellular networks.These problems arise because of the increasing number of antennas in massive multi...Energy efficiency(EE)is a critical design when taking into account circuit power consumption(CPC)in fifth-generation cellular networks.These problems arise because of the increasing number of antennas in massive multiple-input multiple-output(MIMO)systems,attributable to inter-cell interference for channel state information.Apart from that,a higher number of radio frequency(RF)chains at the base station and active users consume more power due to the processing activities in digital-to-analogue converters and power amplifiers.Therefore,antenna selection,user selection,optimal transmission power,and pilot reuse power are important aspects in improving energy efficiency in massive MIMO systems.This work aims to investigate joint antenna selection,optimal transmit power and joint user selection based on deriving the closed-form of the maximal EE,with complete knowledge of large-scale fading with maximum ratio transmission.It also accounts for channel estimation and eliminating pilot contamination as antennas M→∞.This formulates the optimization problem of joint optimal antenna selection,transmits power allocation and joint user selection to mitigate inter-cellinterference in downlink multi-cell massive MIMO systems under minimized reuse of pilot sequences based on a novel iterative low-complexity algorithm(LCA)for Newton’s methods and Lagrange multipliers.To analyze the precise power consumption,a novel power consumption scheme is proposed for each individual antenna,based on the transmit power amplifier and CPC.Simulation results demonstrate that the maximal EE was achieved using the iterative LCA based on reasonable maximum transmit power,in the case the noise power is less than the received power pilot.The maximum EE was achieved with the desired maximum transmit power threshold by minimizing pilot reuse,in the case the transmit power allocationρd=40 dBm,and the optimal EE=71.232 Mb/j.展开更多
Sparse code multiple access(SCMA)is a non-orthogonal multiple access(NOMA)scheme based on joint modulation and spread spectrum coding.It is ideal for future communication networks with a massive number of nodes due to...Sparse code multiple access(SCMA)is a non-orthogonal multiple access(NOMA)scheme based on joint modulation and spread spectrum coding.It is ideal for future communication networks with a massive number of nodes due to its ability to handle user overload.Introducing SCMA into visible light communication(VLC)systems can improve the data transmission capability of the system.However,designing a suitable codebook becomes a challenging problem when addressing the demands of massive connectivity scenarios.Therefore,this paper proposes a low-complexity design method for high-overload codebooks based on the minimum bit error rate(BER)criterion.Firstly,this paper constructs a new codebook with parameters based on the symmetric mother codebook structure by allocating the codeword power so that the power of each user codebook is unbalanced;then,the BER performance in the visible light communication system is optimized to obtain specific parameters;finally,the successive interference cancellation(SIC)detection algorithm is used at the receiver side.Simulation results show that the method proposed in this paper can converge quickly by utilizing a relatively small number of detection iterations.This can simultaneously reduce the complexity of design and detection,outperforming existing design methods for massive SCMA codebooks.展开更多
Signal detection plays an essential role in massive Multiple-Input Multiple-Output(MIMO)systems.However,existing detection methods have not yet made a good tradeoff between Bit Error Rate(BER)and computational complex...Signal detection plays an essential role in massive Multiple-Input Multiple-Output(MIMO)systems.However,existing detection methods have not yet made a good tradeoff between Bit Error Rate(BER)and computational complexity,resulting in slow convergence or high complexity.To address this issue,a low-complexity Approximate Message Passing(AMP)detection algorithm with Deep Neural Network(DNN)(denoted as AMP-DNN)is investigated in this paper.Firstly,an efficient AMP detection algorithm is derived by scalarizing the simplification of Belief Propagation(BP)algorithm.Secondly,by unfolding the obtained AMP detection algorithm,a DNN is specifically designed for the optimal performance gain.For the proposed AMP-DNN,the number of trainable parameters is only related to that of layers,regardless of modulation scheme,antenna number and matrix calculation,thus facilitating fast and stable training of the network.In addition,the AMP-DNN can detect different channels under the same distribution with only one training.The superior performance of the AMP-DNN is also verified by theoretical analysis and experiments.It is found that the proposed algorithm enables the reduction of BER without signal prior information,especially in the spatially correlated channel,and has a lower computational complexity compared with existing state-of-the-art methods.展开更多
Collision detection mechanisms in Wireless Sensor Networks (WSNs) have largely been revolving around direct demodulation and decoding of received packets and deciding on a collision based on some form of a frame error...Collision detection mechanisms in Wireless Sensor Networks (WSNs) have largely been revolving around direct demodulation and decoding of received packets and deciding on a collision based on some form of a frame error detection mechanism, such as a CRC check. The obvious drawback of full detection of a received packet is the need to expend a significant amount of energy and processing complexity in order to fully decode a packet, only to discover the packet is illegible due to a collision. In this paper, we propose a suite of novel, yet simple and power-efficient algorithms to detect a collision without the need for full-decoding of the received packet. Our novel algorithms aim at detecting collision through fast examination of the signal statistics of a short snippet of the received packet via a relatively small number of computations over a small number of received IQ samples. Hence, the proposed algorithms operate directly at the output of the receiver's analog-to-digital converter and eliminate the need to pass the signal through the entire. In addition, we present a complexity and power-saving comparison between our novel algorithms and conventional full-decoding (for select coding schemes) to demonstrate the significant power and complexity saving advantage of our algorithms.展开更多
A low-complexity optimization scheme is proposed to balance the tradeoff between system capacity and proportional fairness in orthogonal frequency division multiple access(OFDMA) based multicast systems. The major cha...A low-complexity optimization scheme is proposed to balance the tradeoff between system capacity and proportional fairness in orthogonal frequency division multiple access(OFDMA) based multicast systems. The major challenge is to solve the non-convexity optimization problem with strict proportional fairness. Constrained team progress algorithm(CTPA) solves this non-convexity problem by allocating sub-channels to each group based on sub-channel gains and proportional fairness constraint. Mapping power algorithm(MPA) guarantees strict proportional fairness with efficient power allocation which utilizes the mapping relation between power and throughput. CTPA-MPA is analyzed in three aspects: complexity, fairness and efficiency. We numerically show that when the system capacity is slightly increased in lower power region compared with several previous approaches, CTPA-MPA improves the proportional fairness in a typical scenario with 4 groups over 16 sub-channels, while reducing the complexity from exponential to linear in the number of sub-channels. It is also proved available in a more complicated system.展开更多
Massive MIMO is a promising technology to improve spectral efficiency, cell coverage, and system capacity for 5G. However, these benefits take place at great cost of computational complexity, especially in systems wit...Massive MIMO is a promising technology to improve spectral efficiency, cell coverage, and system capacity for 5G. However, these benefits take place at great cost of computational complexity, especially in systems with hundreds of antennas at the base station. This paper aims to address the minimum mean square error(MMSE) detection in uplink massive MIMO systems utilizing the symmetric complex bi-conjugate gradients(SCBiCG) and the Lanczos method. Both the proposed methods can avoid the large scale matrix inversion which is necessary for MMSE, thus, reducing the computational complexity by an order of magnitude with respect to the number of user equipment. To enable the proposed methods for soft-output detection, we also derive an approximating calculation scheme for the log-likelihood ratios(LLRs), which further reduces the complexity. We compare the proposed methods with existing exact and approximate detection methods. Simulation results demonstrate that the proposed methods can achieve near-optimal performance of MMSE detection with relatively low computational complexity.展开更多
Acoustic scene classification(ASC)is a method of recognizing and classifying environments that employ acoustic signals.Various ASC approaches based on deep learning have been developed,with convolutional neural networ...Acoustic scene classification(ASC)is a method of recognizing and classifying environments that employ acoustic signals.Various ASC approaches based on deep learning have been developed,with convolutional neural networks(CNNs)proving to be the most reliable and commonly utilized in ASC systems due to their suitability for constructing lightweight models.When using ASC systems in the real world,model complexity and device robustness are essential considerations.In this paper,we propose a two-pass mobile network for low-complexity classification of the acoustic scene,named TP-MobNet.With inverse residuals and linear bottlenecks,TPMobNet is based on MobileNetV2,and following mobile blocks,coordinate attention and two-pass fusion approaches are utilized.The log-range dependencies and precise position information in feature maps can be trained via coordinate attention.By capturing more diverse feature resolutions at the network’s end sides,two-pass fusions can also train generalization.Also,the model size is reduced by applying weight quantization to the trained model.By adding weight quantization to the trained model,the model size is also lowered.The TAU Urban Acoustic Scenes 2020 Mobile development set was used for all of the experiments.It has been confirmed that the proposed model,with a model size of 219.6 kB,achieves an accuracy of 73.94%.展开更多
A low complexity MP3 decoder based on Broadcom embedded platform was proposed. C code level optimization algorithms on inverse quantization, stereo decoding and alias reduction based on PC were proposed to further re...A low complexity MP3 decoder based on Broadcom embedded platform was proposed. C code level optimization algorithms on inverse quantization, stereo decoding and alias reduction based on PC were proposed to further reduce the amount of memory usage and the computational complex ity. Furthermore, the executable file of the optimized MP3 decoder was generated under the Linux environment, and transplanted to the set top box based on Broadcom embedded platform. Experi ment results showed that the total time for decoding was reduced on the embedded platform, and the goal of real time and fluent playing of audio files was fulfilled, which demonstrated the effectiveness of the proposed MP3 decoder. The proposed MP3 decoder could be applied in fields such xs the set top box based on Broadcom embedded platform and other portable devices.展开更多
In mobile environment, a low-complexity is the significant feature because the mobile device has very limited resources due to power consumption. In this paper, we propose a low-complexity watermarking scheme for mobi...In mobile environment, a low-complexity is the significant feature because the mobile device has very limited resources due to power consumption. In this paper, we propose a low-complexity watermarking scheme for mobile device. We apply the minimum average correlation energy Mellin radial harmonic (MACE-MRH) correlation filter to watermark detection. By the scale tolerance property of MACE-MRH correlation filter, the proposed watermark detector can be robust to scaling attacks. Empirical evidence from a large database of test images indicates outperforming performance of the proposed method.展开更多
With the development of manufacture technology, the multi-level cell(MLC)technique dramatically increases the storage density of NAND flash memory. As the result,cell-to-cell interference(CCI) becomes more serious and...With the development of manufacture technology, the multi-level cell(MLC)technique dramatically increases the storage density of NAND flash memory. As the result,cell-to-cell interference(CCI) becomes more serious and hence causes an increase in the raw bit error rate of data stored in the cells.Recently, low-density parity-check(LDPC)codes have appeared to be a promising solution to combat the interference of MLC NAND flash memory. However, the decoding complexity of the sum-product algorithm(SPA) is extremely high. In this paper, to improve the accuracy of the log likelihood ratio(LLR) information of each bit in each NAND flash memory cell, we adopt a non-uniform detection(N-UD) which uses the average maximum mutual information to determine the value of the soft-decision reference voltages.Furthermore, with an aim to reduce the decoding complexity and improve the decoding performance, we propose a modified soft reliabilitybased iterative majority-logic decoding(MSRBI-MLGD) algorithm, which uses a non-uniform quantizer based on power function to decode LDPC codes. Simulation results show that our design can offer a desirable trade-off between the performance and complexity for high-column-weight LDPC-coded MLC NAND flash memory.展开更多
Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which ent...Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.展开更多
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr...Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%.展开更多
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently...Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.展开更多
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th...Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy.展开更多
In multiuser massive Multiple Input Multiple Output(MIMO)systems,a large amount of antennas are deployed at the Base Station(BS).In this case,the Minimum Mean Square Error(MMSE)detector with soft-output can achieve th...In multiuser massive Multiple Input Multiple Output(MIMO)systems,a large amount of antennas are deployed at the Base Station(BS).In this case,the Minimum Mean Square Error(MMSE)detector with soft-output can achieve the near-optimal performance at the cost of a large-scale matrix inversion operation.The optimization algorithms such as Gradient Descent(GD)method have received a lot of attention to realize the MMSE detection efficiently without a large scale matrix inversion operation.However,they converge slowly when the condition number of the MMSE filtering matrix(the coefficient matrix)increases,which can compromise the efficiency of their implementation.Moreover,their soft information computation also involves a large-scale matrix-matrix multiplication operation.In this paper,a low-complexity soft-output signal detector based on Adaptive Pre-conditioned Gradient Descent(APGD-SOD)method is proposed to realize the MMSE detection with soft-output for uplink multiuser massive MIMO systems.In the proposed detector,an Adaptive Pre-conditioner(AP)matrix obtained through the Quasi-Newton Symmetric Rank One(QN-SR1)update in each iteration is used to accelerate the convergence of the GD method.The QN-SR1 update supports the intuitive notion that for the quadractic problem one should strive to make the pre-conditioner matrix close to the inverse of the coefficient matrix,since then the condition number would be close to unity and the convergence would be rapid.By expanding the signal model of the massive MIMO system and exploiting the channel hardening property of massive MIMO systems,the computational complexity of the soft information is simplified.The proposed AP matrix is applied to the GD method as a showcase.However,it also can be used by Conjugate Gradient(CG)method due to its generality.It is demonstrated that the proposed detector is robust and its convergence rate is superlinear.Simulation results show that the proposed detector converges at most four iterations.Simulation results also show that the proposed approach achieves a better trade-off between the complexity and the performance than several existing detectors and achieves a near-optimal performance of the MMSE detector with soft-output at four iterations without a complicated large scale matrix inversion operation,which entails a big challenge for the efficient implementation.展开更多
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms...In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set.展开更多
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t...In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching.展开更多
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol...Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score.展开更多
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so...Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design.展开更多
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The...To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks.展开更多
基金support under the Multi-Disciplinary Research(MDR)Grant(H470)the Ministry of Higher Education Malaysia under the Fundamental Research Grant Scheme(FRGS/1/2019/TK04/UTHM/02/8).
文摘Energy efficiency(EE)is a critical design when taking into account circuit power consumption(CPC)in fifth-generation cellular networks.These problems arise because of the increasing number of antennas in massive multiple-input multiple-output(MIMO)systems,attributable to inter-cell interference for channel state information.Apart from that,a higher number of radio frequency(RF)chains at the base station and active users consume more power due to the processing activities in digital-to-analogue converters and power amplifiers.Therefore,antenna selection,user selection,optimal transmission power,and pilot reuse power are important aspects in improving energy efficiency in massive MIMO systems.This work aims to investigate joint antenna selection,optimal transmit power and joint user selection based on deriving the closed-form of the maximal EE,with complete knowledge of large-scale fading with maximum ratio transmission.It also accounts for channel estimation and eliminating pilot contamination as antennas M→∞.This formulates the optimization problem of joint optimal antenna selection,transmits power allocation and joint user selection to mitigate inter-cellinterference in downlink multi-cell massive MIMO systems under minimized reuse of pilot sequences based on a novel iterative low-complexity algorithm(LCA)for Newton’s methods and Lagrange multipliers.To analyze the precise power consumption,a novel power consumption scheme is proposed for each individual antenna,based on the transmit power amplifier and CPC.Simulation results demonstrate that the maximal EE was achieved using the iterative LCA based on reasonable maximum transmit power,in the case the noise power is less than the received power pilot.The maximum EE was achieved with the desired maximum transmit power threshold by minimizing pilot reuse,in the case the transmit power allocationρd=40 dBm,and the optimal EE=71.232 Mb/j.
基金supported in part by the National Science Foundation of China(NSFC)under Grant 62161024Jiangxi Provincial Natural Science Foundation under Grant 20224BAB212002+3 种基金Jiangxi Provincial Talent Project for Academic and Technical Leaders of Major Disciplines under Grant 20232BCJ23085,China Postdoctoral Science Foundation under Grant 2021TQ0136 and 2022M711463the State Key Laboratory of Computer Architecture(ICT,CAS)Open Project under Grant CARCHB202019supported in part by the National Natural Science Foundation of China(NSFC)under Grant 62061030supported in part by the National Natural Science Foundation of China(NSFC)under Grant 62161023。
文摘Sparse code multiple access(SCMA)is a non-orthogonal multiple access(NOMA)scheme based on joint modulation and spread spectrum coding.It is ideal for future communication networks with a massive number of nodes due to its ability to handle user overload.Introducing SCMA into visible light communication(VLC)systems can improve the data transmission capability of the system.However,designing a suitable codebook becomes a challenging problem when addressing the demands of massive connectivity scenarios.Therefore,this paper proposes a low-complexity design method for high-overload codebooks based on the minimum bit error rate(BER)criterion.Firstly,this paper constructs a new codebook with parameters based on the symmetric mother codebook structure by allocating the codeword power so that the power of each user codebook is unbalanced;then,the BER performance in the visible light communication system is optimized to obtain specific parameters;finally,the successive interference cancellation(SIC)detection algorithm is used at the receiver side.Simulation results show that the method proposed in this paper can converge quickly by utilizing a relatively small number of detection iterations.This can simultaneously reduce the complexity of design and detection,outperforming existing design methods for massive SCMA codebooks.
基金supported by Major Project of Science and Technology Research Program of Chongqing Education Commission of China(Grant No.KJZD-M201900601)China Postdoctoral Science Foundation(Grant No.2021MD703932)Project Supported by Engineering Research Center of Mobile Communications,Ministry of Education,China(Grant No.cqupt-mct-202006)。
文摘Signal detection plays an essential role in massive Multiple-Input Multiple-Output(MIMO)systems.However,existing detection methods have not yet made a good tradeoff between Bit Error Rate(BER)and computational complexity,resulting in slow convergence or high complexity.To address this issue,a low-complexity Approximate Message Passing(AMP)detection algorithm with Deep Neural Network(DNN)(denoted as AMP-DNN)is investigated in this paper.Firstly,an efficient AMP detection algorithm is derived by scalarizing the simplification of Belief Propagation(BP)algorithm.Secondly,by unfolding the obtained AMP detection algorithm,a DNN is specifically designed for the optimal performance gain.For the proposed AMP-DNN,the number of trainable parameters is only related to that of layers,regardless of modulation scheme,antenna number and matrix calculation,thus facilitating fast and stable training of the network.In addition,the AMP-DNN can detect different channels under the same distribution with only one training.The superior performance of the AMP-DNN is also verified by theoretical analysis and experiments.It is found that the proposed algorithm enables the reduction of BER without signal prior information,especially in the spatially correlated channel,and has a lower computational complexity compared with existing state-of-the-art methods.
文摘Collision detection mechanisms in Wireless Sensor Networks (WSNs) have largely been revolving around direct demodulation and decoding of received packets and deciding on a collision based on some form of a frame error detection mechanism, such as a CRC check. The obvious drawback of full detection of a received packet is the need to expend a significant amount of energy and processing complexity in order to fully decode a packet, only to discover the packet is illegible due to a collision. In this paper, we propose a suite of novel, yet simple and power-efficient algorithms to detect a collision without the need for full-decoding of the received packet. Our novel algorithms aim at detecting collision through fast examination of the signal statistics of a short snippet of the received packet via a relatively small number of computations over a small number of received IQ samples. Hence, the proposed algorithms operate directly at the output of the receiver's analog-to-digital converter and eliminate the need to pass the signal through the entire. In addition, we present a complexity and power-saving comparison between our novel algorithms and conventional full-decoding (for select coding schemes) to demonstrate the significant power and complexity saving advantage of our algorithms.
文摘A low-complexity optimization scheme is proposed to balance the tradeoff between system capacity and proportional fairness in orthogonal frequency division multiple access(OFDMA) based multicast systems. The major challenge is to solve the non-convexity optimization problem with strict proportional fairness. Constrained team progress algorithm(CTPA) solves this non-convexity problem by allocating sub-channels to each group based on sub-channel gains and proportional fairness constraint. Mapping power algorithm(MPA) guarantees strict proportional fairness with efficient power allocation which utilizes the mapping relation between power and throughput. CTPA-MPA is analyzed in three aspects: complexity, fairness and efficiency. We numerically show that when the system capacity is slightly increased in lower power region compared with several previous approaches, CTPA-MPA improves the proportional fairness in a typical scenario with 4 groups over 16 sub-channels, while reducing the complexity from exponential to linear in the number of sub-channels. It is also proved available in a more complicated system.
基金supported by Chinas 863 Project NO.2015AA01A706the National S&T Major Project NO.2014ZX03001011+1 种基金the Science and Technology Program of Beijing NO.D151100000115003the Scientific and Technological Cooperation Projects NO.2015DFT10160B
文摘Massive MIMO is a promising technology to improve spectral efficiency, cell coverage, and system capacity for 5G. However, these benefits take place at great cost of computational complexity, especially in systems with hundreds of antennas at the base station. This paper aims to address the minimum mean square error(MMSE) detection in uplink massive MIMO systems utilizing the symmetric complex bi-conjugate gradients(SCBiCG) and the Lanczos method. Both the proposed methods can avoid the large scale matrix inversion which is necessary for MMSE, thus, reducing the computational complexity by an order of magnitude with respect to the number of user equipment. To enable the proposed methods for soft-output detection, we also derive an approximating calculation scheme for the log-likelihood ratios(LLRs), which further reduces the complexity. We compare the proposed methods with existing exact and approximate detection methods. Simulation results demonstrate that the proposed methods can achieve near-optimal performance of MMSE detection with relatively low computational complexity.
基金This work was supported by Institute of Information&communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)[No.2021-0-0268,Artificial Intelligence Innovation Hub(Artificial Intelligence Institute,Seoul National University)]。
文摘Acoustic scene classification(ASC)is a method of recognizing and classifying environments that employ acoustic signals.Various ASC approaches based on deep learning have been developed,with convolutional neural networks(CNNs)proving to be the most reliable and commonly utilized in ASC systems due to their suitability for constructing lightweight models.When using ASC systems in the real world,model complexity and device robustness are essential considerations.In this paper,we propose a two-pass mobile network for low-complexity classification of the acoustic scene,named TP-MobNet.With inverse residuals and linear bottlenecks,TPMobNet is based on MobileNetV2,and following mobile blocks,coordinate attention and two-pass fusion approaches are utilized.The log-range dependencies and precise position information in feature maps can be trained via coordinate attention.By capturing more diverse feature resolutions at the network’s end sides,two-pass fusions can also train generalization.Also,the model size is reduced by applying weight quantization to the trained model.By adding weight quantization to the trained model,the model size is also lowered.The TAU Urban Acoustic Scenes 2020 Mobile development set was used for all of the experiments.It has been confirmed that the proposed model,with a model size of 219.6 kB,achieves an accuracy of 73.94%.
基金Supported by the National Natural Science Foundation of China(60772066)
文摘A low complexity MP3 decoder based on Broadcom embedded platform was proposed. C code level optimization algorithms on inverse quantization, stereo decoding and alias reduction based on PC were proposed to further reduce the amount of memory usage and the computational complex ity. Furthermore, the executable file of the optimized MP3 decoder was generated under the Linux environment, and transplanted to the set top box based on Broadcom embedded platform. Experi ment results showed that the total time for decoding was reduced on the embedded platform, and the goal of real time and fluent playing of audio files was fulfilled, which demonstrated the effectiveness of the proposed MP3 decoder. The proposed MP3 decoder could be applied in fields such xs the set top box based on Broadcom embedded platform and other portable devices.
文摘In mobile environment, a low-complexity is the significant feature because the mobile device has very limited resources due to power consumption. In this paper, we propose a low-complexity watermarking scheme for mobile device. We apply the minimum average correlation energy Mellin radial harmonic (MACE-MRH) correlation filter to watermark detection. By the scale tolerance property of MACE-MRH correlation filter, the proposed watermark detector can be robust to scaling attacks. Empirical evidence from a large database of test images indicates outperforming performance of the proposed method.
基金supported in part by the NSF of China (61471131, 61771149, 61501126)NSF of Guangdong Province 2016A030310337+1 种基金the open research fund of National Mobile Communications Research Laboratory, Southeast University (No. 2018D02)the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2017-ZJ022)
文摘With the development of manufacture technology, the multi-level cell(MLC)technique dramatically increases the storage density of NAND flash memory. As the result,cell-to-cell interference(CCI) becomes more serious and hence causes an increase in the raw bit error rate of data stored in the cells.Recently, low-density parity-check(LDPC)codes have appeared to be a promising solution to combat the interference of MLC NAND flash memory. However, the decoding complexity of the sum-product algorithm(SPA) is extremely high. In this paper, to improve the accuracy of the log likelihood ratio(LLR) information of each bit in each NAND flash memory cell, we adopt a non-uniform detection(N-UD) which uses the average maximum mutual information to determine the value of the soft-decision reference voltages.Furthermore, with an aim to reduce the decoding complexity and improve the decoding performance, we propose a modified soft reliabilitybased iterative majority-logic decoding(MSRBI-MLGD) algorithm, which uses a non-uniform quantizer based on power function to decode LDPC codes. Simulation results show that our design can offer a desirable trade-off between the performance and complexity for high-column-weight LDPC-coded MLC NAND flash memory.
基金supported by National Natural Science Foundation of China(62371225,62371227)。
文摘Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant(No.51677058).
文摘Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%.
基金National Natural Science Foundation of China(11971211,12171388).
文摘Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.
基金supported by Yunnan Provincial Basic Research Project(202401AT070344,202301AT070443)National Natural Science Foundation of China(62263014,52207105)+1 种基金Yunnan Lancang-Mekong International Electric Power Technology Joint Laboratory(202203AP140001)Major Science and Technology Projects in Yunnan Province(202402AG050006).
文摘Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy.
基金supported by National Natural Science Foundation of China under Grant 61501072 and 61701062Chongqing Research Program of Basic Research and Frontier Technology under Grant cstc2019jcyj-msxmX0079Program for Changjiang Scholars and Innovative Research Team in University under Grant IRT16R72.
文摘In multiuser massive Multiple Input Multiple Output(MIMO)systems,a large amount of antennas are deployed at the Base Station(BS).In this case,the Minimum Mean Square Error(MMSE)detector with soft-output can achieve the near-optimal performance at the cost of a large-scale matrix inversion operation.The optimization algorithms such as Gradient Descent(GD)method have received a lot of attention to realize the MMSE detection efficiently without a large scale matrix inversion operation.However,they converge slowly when the condition number of the MMSE filtering matrix(the coefficient matrix)increases,which can compromise the efficiency of their implementation.Moreover,their soft information computation also involves a large-scale matrix-matrix multiplication operation.In this paper,a low-complexity soft-output signal detector based on Adaptive Pre-conditioned Gradient Descent(APGD-SOD)method is proposed to realize the MMSE detection with soft-output for uplink multiuser massive MIMO systems.In the proposed detector,an Adaptive Pre-conditioner(AP)matrix obtained through the Quasi-Newton Symmetric Rank One(QN-SR1)update in each iteration is used to accelerate the convergence of the GD method.The QN-SR1 update supports the intuitive notion that for the quadractic problem one should strive to make the pre-conditioner matrix close to the inverse of the coefficient matrix,since then the condition number would be close to unity and the convergence would be rapid.By expanding the signal model of the massive MIMO system and exploiting the channel hardening property of massive MIMO systems,the computational complexity of the soft information is simplified.The proposed AP matrix is applied to the GD method as a showcase.However,it also can be used by Conjugate Gradient(CG)method due to its generality.It is demonstrated that the proposed detector is robust and its convergence rate is superlinear.Simulation results show that the proposed detector converges at most four iterations.Simulation results also show that the proposed approach achieves a better trade-off between the complexity and the performance than several existing detectors and achieves a near-optimal performance of the MMSE detector with soft-output at four iterations without a complicated large scale matrix inversion operation,which entails a big challenge for the efficient implementation.
基金supported by the National Natural Science Foundation of China(No.62373027).
文摘In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set.
基金Supported by the Natural Science Foundation of Chongqing(General Program,NO.CSTB2022NSCQ-MSX0884)Discipline Teaching Special Project of Yangtze Normal University(csxkjx14)。
文摘In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching.
基金supported by Science and Technology Innovation Programfor Postgraduate Students in IDP Subsidized by Fundamental Research Funds for the Central Universities(Project No.ZY20240335)support of the Research Project of the Key Technology of Malicious Code Detection Based on Data Mining in APT Attack(Project No.2022IT173)the Research Project of the Big Data Sensitive Information Supervision Technology Based on Convolutional Neural Network(Project No.2022011033).
文摘Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score.
文摘Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design.
文摘To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks.